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STRUCTURE OF POSITIVE BLOCK-MATRICES
AND NONSTATIONARY PREDICTION

Gr.Arsene and T.Constantinescu

L. INTRODUCTION

What is called today "Schur analysis" originated in the paper [19]}; there the
structure of the Taylor coefficients of a contractive analytic function on the unit disc
was done using as paraineter the so called "Schur sequences". A lot of work was done to
generalize this to the Hilbert space operators context; see [2] for a history of the
subject and for a Schur analysis of contractive intertwining dilations using an operator
generalization of Schur sequences called choice sequences. The Schur analysis of
positive Toeplitz form done in {8] and [9] provides a geometric inside to factorizations,
Naimark difation, and Szego limit theorems. Further, we applied it in [3] for showing
the role of choice sequences in studying Gaussian stationary processes and for giving
geometric interpretations to Szego limit theorems and to the entropy.

Due to their algoritmic feature these phenomena have quite a few connections
with questions in extrapolation theory, inverse problems, prediction and filtering,
electrical engineering (transmissicn lines), geophisics (discretization of wave equations)
and so on. It is then natural to expect t'n,e’necessity of passing from stationary case to
nonstationary case {l.e. from Toeplitz forms to general positive definite ones); see [i6],
[18] and the references therein. A Schur analysis of general positive block-matrices was
done in [10]. |

The present paper uses [10] and scme new geometric analysis for studying what
may be called nonstationary prediction: the angles between parts of the past and the
future of nonstationary processes versus the generalizations of Szegd limit thecrems
and their geometrical interpretations. These generalizations of Szeg8-type phenomena
include the first and the second limit theorems for nonstationary case, and a new scale
of limit theorems which connects these.

Let us shortly describe the contents of this paper. Section 2 gives preliminary
results concerning the structure of row (or column) contractions, elementary rotation
associated to a contraction and some resuits (Lemmas 2.1, 2.2 and 2.3) about various‘

properties of composition of elementary rotations, which are necessary in the next



section. In Section 3 we recall first the Schur analysis for positive-definite block-
-kernels on Z and their Kolmogorov decomposition using generalized choice sequences.
Then we consider the (Gaussian, nonstationary} process associated to the kernel and we
deiine some angle operators in it. The main result of this section is Theorem 3.4; it
gives a formula for angle operators which -will be wuseful in computation of
determinants. Theorem 3.4 uses Theorem 3.2 which has its own interest. Section 4
gives another variant for studying angle operators using Schur complements (Theorem
4.1). Section 5 contains applications. The first part describes thoroughly how to use
previous sections in the stationary case; this presentation is generalized to. the
nonstationary case in the second part. Here we include a scale of SzegS-type limit
theorems, their interpretation, and the relations with generalized choice sequences. The
last part gives the interpretation in our setting of a result from [17] (where a particular
nonstationary case was completely analysed using different methods).

“Let us note that the general notations concerning Hilbert spaces operators-are -
those of [21].

2. PRELIMINARIES
For two Hilbert spaces H and H', let L(H,H') denote the space of atl (linear, -
. bounded)  operators from ./I into H'; we write L(H) for L(H,H). If T€L{H,H) is a

contraction (i.e., ”T” K1)y then DT:(I-T*T)% and DT:DT('H) are the defect

operator, resp. the defect space of T.
<

If H= @ Hk’ the structure of a row contraction T €L(H,H") (and of its defect

g o k=1 ' e

spaces) was given in [9). This structure goes as follows:

(2 by ST (T DTTTZ, iy DT.,; ...DTt_lTk it

where T, is.a contraction in L('HI,H‘)vand for each kzz, Tk is a contraction in

1
L(Hk’DT* ). For describing DT , consider (for each k > 1) the operators:
k-1 ; ;
Shdni . K =
B (S ET e
=1 ' Bl Lozl
= e * * X =
| DTI -IETZ -TIDT;TB » 0 8 ‘TiDT;a-.DT;-ITk
-3 *
(2.2), 0 1:>Tz 3T, Yk —T2DT; "'DTi-ka
Dk(T) = O 0 DT,\ s 0 o
3
0 0 ey et D ;
£ Tk of
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and the operator:
. -

)

o
O i

Gl D
[Dm(T) : H »j(:)l .
(2.2) !
lD o(T) =s-limD
k+ o
where for a (closed) subspace H' of H, Pg, is the orthegenal projection of H onto H'.

Then the operator:

@
olT) ¢ Dp— @ DT. = D(T)
(2.3 S

|

| «TD =D (T)

is a unitary operator.

For the description of DT* , consider (for each k> 1) the operators:

IHk('r) e DTE
(2.4)k t s
H (T) = D H* o o e DT*
R loE Tk B

and the operator

LT et

(2.4)
H2 (T) = s-lim HX (DH, (T) .
k>
Then the operator

B(T) : Dox —RanH (T) = D, (T)
(2.5)

B(T)D-x = H _(T)

g S
is a unitary operator.
In the case where Hk = 0 for k > n, the relations (2.1'}00, (2.3)00, and (2.5) _ can be

written as follows:

@el). - TomlTy, Dty Do Dios Tn),

1 1 n-1

n
[a(T) :Dp =@ Dy
(2.3) o

n
t A«T)Dy =D (T)| Dy

(where Dn(’i") is defined in (2.,2)n), and



_L‘u..

BTy 4 Dok = Dis
(2.5) o

BT = H_(T),
(where Hn(T) is defined in (2.1;),“). -

The useful feature of these formulasTis that the knowledge of a decomposition
of type (2.1) for T (n e N L)) implies a upper triangularization for Dy having on the

diagonal the sequmce { T }Z
I k=

For an arbitrary row contractlon T as in (2 .1) o» the following operator will be

useful in the sequel:

-rW+(T;H1,H2 )= W (T H ~ H@D(T)

T
WJ”{D (’r)} )

The operator W+(”{)'is clearly an isometry (see (2.3) ) it is connected with the -
so-called adequate isometries in [7] It is evident that W (T) (and &T), &T), D T) and

(2.6)

50 on) depends upon the decornposition of H as O Hj we will omit the dec omposmon in
=l
the notation only where the context is unambigous.

For a contraction I' € L(H,H') the following unitary operator will be repeatedly

useds
(J(I’): H@®D px —H®D

(2.7) =
v o
HL)= s
{ LDF L

-

)

©s

We will call 3(T) the elementary rotation given by I. Note that from the definitions it
results that

28 AUD =W (W (THHYSHD L)

On the other hand, having in mind (2.3) , and (2.5) it is natural to cbnéicier the

unitary operator

J"W(T;H peee) = W) : DUT@H —~H@DT)

[w'n-“ OT’(T) 0 1}
; 'Lo )"V an of .

- Then we have that

42.9)



(2.10) W (T)= W(T)|H .

The elementary operations of deleting some subspaces and/or putting together
(e

Sl

some others in the decornposition of H as Q H. have nice interpretations for the previous
=l
formulas; we will need only the following simple (but useful for induction) fact.

For a row contraction T as in (2.1)_ and a positive integer n2 2, let us denote

by T(q) the infinite row contraction
i

foe)

(2'11)1

)i

neb? "

T{n) = (Tn 9 DT‘X‘T
: n
Then we have

LEMMA 2.1. With previous notation,
(2.12) W _(T)= (T ‘@I)(I@W+(T(2))),

where the dlrect sums in the right hand side are written with respect to the

(a2 o
deuomposatlons H O]&) H. and (nfl@DT.rr Q(”\Z D j), respectwelv.
PROOF. The lemma follows by direct matrix computations, using formulas
(2.7), (2.6), (2.2, and (2.2}, o . '

The iterative use of Lemma 2.1 gives an idea about the connections between
W_F(T) and the family {J(Tk)}::l (see also [7]).

. Our next aim is to establish a formula for the elementary rotation of a column
contraction. We do not repeat the corresponding notation for celumins; let us only note
that in this case the operator & from {(2.3) is the identification of the defect of the
adjoint.

Let S be a contraction between H and H' = H'I@H’z, Then
(2.13) S5, ;55P5

2= 9
1

where "t" stands for matrix transpose, and Sl eL{H,H"), S2 sz:L(.DQ, ,H’z) are contractions.
' s

’

LEMBMA 2.2. For S as in (2.13) we have
(2.14) [IDBE)IEUEMS) ] = IS )IIIE D1,

where the direct sums are written with respect to the decompasitions, in the left hund
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mde U‘)\v}{ns“?@DS*) and (Hv)@(DS), and in the right hand side (H®DS*)®(DS*‘) and
1 2 1 2
' (H',)@(DS @DS*). '
A ; 1 2

PRQOOF. Using (2.7) it follows that the operator in the right hand side of (2.14)
is acting between HOD * C)sz— and H) (i1, ODS*’ by the matrix
2

S1 DS"; 0
- - %
(2.15) SZDSl -5251 DS.;
e B - By 87 8"
555 S,°1 2

Theboperator in the left hand side of (Z.14) has, with respect to the decompositions
(H)®(DS’1‘ @DSZ) and (B, ®1, }@D i the following matrix
; S Dgxa(S)*
(2i16)" |
LB(S)DS’ -B(S)S*US)* |

Taking into account that

[ Dgx -5 lsg"l

(217) oSDgr = | !
0 DS§ 1 :
and that S
(2.18) B(SID, 5 = D¢ D¢ 7
5573

the formulas (2.16) and (2.15) shows that it remains to prove that

. Y 3\ ¥ -
(2.19). B(S)S*US)* = (Dg S SH)|Dex DD

2 i 2
For proving {2.19), take h € H and ) € DST, 5, € DS;; put a = DszDslh € DSZ. Then:

(2.20) <B(S)S*AS* (s Ds,) a>'=<sl@sz,'éc(s)SB*(s)DSZDSImg

(H]

<5, ®s, , AS)SDh> = <5, (Ds,, USID¢xSh> =

1t

h> =

<S}‘ Sy ,(D %S n—b S*S 5De¢ h)@(DQ%‘S DS
_' Lo 1 Foie .‘ ,1 5 - -‘( ¥



\‘;\Z

=<s

>

e SIDSZ(D Dg h)> + <s,, §,0¢ 'Dg h>=
3

S 2
— <D525T81 ya> + <S;sz 3580

As {DSZDSIh:h e H} = DS1 , the formula (2,2())‘ implies (2.19), and the lemma»is

completely proved. :

We use now Lernmas 2.1 and 2.2 for obtaining a multiplicative formula for the -
operator W _ of two "coupling" rows. More precisely let T be a row contraction as in

(2.1) ,and R another row contraction

(R 2 D) > HY

(2.21) {
R:(p\l’DRTRz, ga-),

where R.:D.. —H" and R.: D.. —D_x (j>2) are contractions. Then one can
T ] j Tj Rj—l =
consider the column contractions:

s
(2.22)l 4

t
5=y RyDy )"

1 ° I—I‘{ — H‘@HH

and for k > 2

~

S ‘.‘H, — Dx
k k Sk—l

% 3 * T t

(2.22),

It is clear that

o o
S 191 H -~ H@H"
(2:22) B

\S:(Si’DS*SE’ oo o
1
is an infinite row contraction written in the canonical form. We write S=R#T, if S is
constructed from T and R in the previous manner.
LEMMA 2.3. With the previous notation:

(2.22) (@RS POHS )@ - W, R#T) = (OW RIW_(T),

where the direct sums are written with respect to the decompositions, in the left hand

IJT I/

side (J'I"@H”)@(DS @De &...), and in the right hand side (GRICIIEN O G T S
1 o7 1 7



PROOF. Using Lemrna 2.1 it follows that:

U, ®OW RIW (T) = 1;®IR, Lmb,R HOD @OV (R ))(J(T )®
&y

(2.24) @ID(T Py @W+(T(2))=(I”,®3(1{1)@.’ID(R(Z)))(J(TI)@EDR%@ID(R(Z))*
\ 1

o
-(1”1@1 AW (xz(z)))(lu GV (T,
l
(here, and in what follows, the indices to the identity operators make clear the
decompositions which appear in the direct sums). Using Lemma 2.2, the formula (2.24)

becomes

(I @V, RV (T) = (@ @ H@BE I H}@o_a(s )OI E

(2)
(2.25) .(1[11@{(1 B AW R, IV (T = U g @B NIG PO g (2))> :
1
| - 1

On the cther hand, using again Lemma 2.1, we have

Uiy @ (B YOS )@ . DV (S) =

(2.26) (IH’@H”Q)(B(Sl)@ BIS )@ . .))(J(Sl)@ID(S(Z)))({Hl@wf(s(‘z))) i

:((IH,@ MOLSINUENIO) D(R(z)))(IH @, *@8(52)@8(53)63. : .)V'v'#(_s(vz)))‘)_; v

= g @ISOl iy @ (oxs ) @B(S DB @ - I, Gy )y

where the row contraction S(Z) = (52 ) 'Dg 53 e e) With Sk = a(Sl)Sk (k>2) verifies

S, 5o R, 2)* 1( 2 From (2. 25) and (2.26) it follows that (2.23) is reduced to

n 52 I = o = ; et e : : . 4 Y
(2.23), (‘DT* @Dgs DBE DB )P . IV (5,)) = (ID_T* DV RV (T ),
§ 1 1
which is exacty (2.23) with T and R replaced by 'l( y resp. R( y Thus the procedurc can
be contmuw and this provides, in fact, a proof of (2.23). This can be easily seen if one

takes into account the upper trianguiar form of the cperator W+(T). @

Other multiplicative properties connected with the structure of contractions

will be discussed in[1].
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Let us note that the previous phenomena (and some which will be described
later) have interpretations in terms of transrhission lines, using ideas frem [5], where
the structure of a positive Toeplitz form (as given in [&]) was illustrated in circuits

setting.

3. SOME ANGLES IN NONSTATIONARY PROCESSES

The main concern of this section is the study of positive-definite block-kernels
on Z. Given a family of Hilbert spaces {Hn}ne‘Z? a positive-definite ({f""n})—!<er1‘:e1 is an
application T defined on ZxZ such that T(i,j) = Ti ; € I'(Hj’Hi) for every i,j €Z, and the

. ]

operators

S j
Mi’j(T):Mi.; @Hk——> @ H

e S K
G.1). . k=i k=i
1y}
ij = Tm,nlicm,ng
for i,j €Z, i<j, are all positive. In what follows we will suppose that T » for each

i €Z; this will simplify the formulas without being a serious restriction (ch e.nar‘k 1.4
of [10)).

Before going into describing the connections with nonstationary Gaussian
processes, let us recall the structure of positive-definite block-kernels on Z, as present-
ed in [10]. For the rest of this section, let us fix a positive-definite ({Hn}):-kemei T,
when this will cause no confusion, we will omit the indication of the dependence on T of
the objects presented in what follows. ‘

The structure of T can be described using generalized choice sequences (ges)
(see [10]). A generalized ({H_}-choice sequence is a family G = {Gi,j}i,jez, i where
Gi; = Oy s for i€Z, and for each i,j €Z, i<j, Gi,j : DG”1 j*"*D fj 1 is an arbitrary

) ¥~

contraction (so G ] acts between H and Hi)'

+1
As shown in [10], there exists a one-to-one correspondence between the set of |

ail positive-definite {Hn}—kernels and the set of all generalized {Hn}~choice sequences.
If the previous mentioned T and G correspond to each other under this correspondence,

then one has:

B i M2 St o

for every i €Z, and for ,j € Z, j>i + 1,

G2 Ty =R UL Gy Dc gy
7



~

where the operators R1 Uih and Cij will be defined immediately. (Note that
b 5 §d
~ fe L QT m = - b s 'ﬁ" T
{(3.2). ?}}1”} i< completely define T from G because T; ;=1 and Ty, = T, ; for j€ Z

and i > j; this procedure can be also reversed. )

}ox a fixed i€ Z, the family { Gi k} < 1eceo defines a row contraction
PRAR

[ (<o}
Bit i @D <
s { Eiogerl. ek )
-3
Y e il .
(R G Dex.  Siiiar o)
i+l

9

if j>i, the operator R J which appears in the formula (3.2)”.+1 is the restriction of R,
b ]

j

to ®D . Analogously, for a fixed j€ Z, the family {G—k,;} _j<k<e defines a

k=i+1 Ti+l,k
column contraction

(c.:H & s

i j st (% G_ .

Cut), l ==(j-1) “-kj-1 t
LCi & -1, GJ"Z»JDQ 3y sl

j= 1,

if i<j, the operator Ci by which appears in the formula (2. 2) i is the compression of Cj

P
a

10 GD DG%
- k=-(-1) -kyj-1

The operators Ui i are "generalized rotations" associated to G. So for every i€ Z

b

) R ke = .
. )1,1 Ui,l I Cx* DL:. L
x i,i 1yl

and for j>1i

)
' - M l\) D .)‘. e @ DG
, 3 i i .
(3.5, . ko Ookoj kel ik
5

Ui~ 360078 2) » 346G, W, 1;01 ’

;}

where the subscript j at J(G; i+k) means that for 1 <k<j-i
1y

k-1
J(Gnm) V@B , @D - B JO} @ Pe o
m=1 i+1,i+m i+1,i+k 11+k m=k+1 11+m
S b :
G0 o j
=+ (1@ D YD * @D, IOl ® D, )
m=1 1+11+m i,i+k-1 i,i+k  m=k+l Tii+m
; .. ‘— g - ‘\ -
3Gy = 1OIGy 1, )OI
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A first useful byproduct of this analysis is the possibility of obtaining triangular
factorizations for each Mi j(T), LieZ, i<j (sec [10]). For this, consider for i € Z
3
F..sH.~H;
i i
(30 ])i,i

o |

i
and for j > i

j j
B v, — (D -
L g g
"07--
Sl
BiEe . Unit. |

0 DG v

["F
F... =
L) l
| SN

Then we have for i,j €Z, 1<j, that

(38). . Mi.=FFF. ..
1] 1) L] 1)
It is worth mentioning that {F, j} verify also the fallowing relations (see [10],

relation (1.13)):
X O cé
G BB |
3.7 sl
( 1) l is) ! :
0 D}.(R. j)F. J , (i,j-eZ, j>i)

I}~ i+l,j

where DJ.(Ri J.) is defined as in (2. 2)j.
o7

The previous analysis is also useful for describing the so-called Kolmo orov
p ) ng
decomposition of T, which means the indication of a discrete process which has F as its
p ’

covariance matrix. This construction goes as follows ([10]).
For each i ¢Z, we apply the anal sis of Section 2 1o the row coniraction R.
2 i
defined in <3’3’)i' Let us denote by D; the space D(Ri) considered in (2.3) , and by D; «.

$

~ the space D« (Ri) which appears in (2.5) « Consider also the Hilbert spaces:
(.9 K= ® D; OH;®D; .

(Note that Ri is defined on Hi+i@Di+1)° Define the unitary operators:

(Wi Ky K
(3.10), §
kwi = I@W(Ri) ;



(728

where the direct sum is written with respect to the decompositions Ki+l

i-1 '
—-( C) '7 )(W(ﬂ @H. G}D. Y and K. =4 @ D, L)@(H.@D.), and W{R.) was
i+1 i+l i e 1 i i i
deim'—‘d in (2.9). '
Putting I,. =H, Ou ., we have that W‘L(R;) (denoted in what follows by W:) is
(see (2.6)) g
(
Wikl
it
/+_ / i+
W= wilig,)

Bl
o BEE;

The (minimal) Kolmogorov decomposition of T is then the sequence V(L) &Y =
= {v(n)}n ¢ o defined by

p
vin): H . —K N

(w* w¥ ...\VﬁlHn, n<G

: -17 -2
(312)
2] K
Vin) = (PHO)* 5 =i
0

N Y/ 3
LXO\X ves W

1 ot/ Hys m>0;

\.

this means that Ti .= V{i)*V(j) for each i,j €Z and that Ko \ /V(n)H The sequence V
2 néZ

i an identification of the Gaussian discrete {nonstationary) process which has T as its
covariance mairix. |

The minimality condition and the triangular structure of each Dm(Ri), i €N, (see

(2.2),,) imply that K; :\/‘J(n)Hn is exactly I—]O@DO. The same argument shows that

n=0
n'_'_"}. ﬂ l : ; ;
forany n>l, () D, is equal to \/ V(K)H |5 we denote this space with K . More
' k=0 o,k Gyt LS5

1 :
generally, for twe integers p<q, Kp q is, by defmmon, the space\ /V(k )H We will

i

also need the space K_=\_/ V(n‘)H 3
© n}’_ &)

The evolution (and the prediction) of the process V is connected w1th some
angles between these subspaces of AOQ In this respect consider, for each n21l, the
. " ks = . =
roiections P~ and P_of K_onto K , respe K = s [ :
i = n o o,n ? M=%k 1,0’ o Ky

The key operator to be studied is



B:K —K
0 0
(3.13)
B=pP PP,
which is a measure of the angle between the past (K;) and the future (K;L (Compare
with [13], [15]), where this operator is denoted by Bl)‘ B is approximated by the-

operators

I8l
— +. -
[Bn=PnP R (i) s

which measure the angle between parts of the past (K 7 _1) and the entire future.

This analysis can go further by considering, for each n> 1 and k> 1, the operator

o S
Bn,k’Ko y'{o
2
("'15)n,k ;
) 11 B 1 o
Bn,k x Pnl kpn

These operators, which measure the angle between X n..] @nd Ko  » Will be studied in
=g = 3
the next section.

Our next aim will be the study of the structure of the operators I - Bn, D8

n-1
For this we consider the spaces V( )F , defined as h(mn) = ®D (bl
0, k=0 “'m,m+k
- \
€7 cles K(O) ::K enot +(m) +1 3 iori of {": i[( W
m € Z); clearly Oin 0,n° Denote by Pn the projection of &  onto ‘O,n’ clearly
F‘;(O) = P;. With these notations, we have:

LEMMA 3.1. Forevery nj |,

; i e * AT '
(3015)]1 l - L’n = W—l ¢ o e \X»-'/_ (} _n_l @DA"x,\v_l_lo» . W"l’

n
£ n
e B
where
(KE - K?
(An i KO -n
(3.17)
n
Ao pilelg g
n n S
PROOF. First, note that
¢ v ¥ +(~ ﬂ) \
(3,1u)n P,w\/l.,,V_P “n“.w_i.

This relation follows from the equality

- y . K( xk\)
BBk, W e WK ) =00 5



~x.

L=

this is equivalent with the fact that the closed linear span of H o W nH N TREEY

cea W_ oW s H_ D, ORROLS » which can be easily proved by
3 =Ny=N+4 "eny=1

induction using the upper triangular form of each W:, i €Z, and the structure of the
diagonals (see reiations (Z.A)k, ka1
Using (3.18) , we have

. “tr-
I =B i = PnP Pn =
& Q) O
i ¥ ¥ p+(-n) 1 ¥ +(-n) A
= IK - \X-_l...\"/__nPn wol_‘.,.wmlp W-l W—npn W n"'w-—l =
¥ 3 +(“n) 5 X '{( n)
=W 1...w (IA -pn w“]...w 1P W l...W B L R

&yF
+*- :

i et +(=n). Wt
~W’~“ w_nu gt O(IK* -p! W ...W 1W-1"'W-n

-1°
® [) -n

’_-—OO

8 +{-n) v/
PEUOW_ W

@
i

and the lemma is proved.

The main step is the use of Lemma 2.3 to obtain a nice structure ‘for the
: wy . . .
product. W™~ . W_i this will imply immediately the structure of A n? and so that of

I-B - To this end, for a given n> I let us define the following row contractions:

fmatli g0k &
-n “-n ~n
(see (3.3) ), and for every L <k<n - 1, put

ri alnr- - peln)
Vi D™ Pt ey * Bk

(for the index (2} see (2.11), , and for the operation # sce (2.21) and (2. ??)P_ ). These

definitions make sense. Indeed the domain of the result of the operation # is the

domain of the last term; and the domain of (Ri>(2) is D(Ri+l) for any i eZ (see (3'3)1)’ "

exactly as asked in (2.21). Now we can state:

THECREM 3.2, (i) Foreveryn> 1

.21) whowto wt s el
(3 l"n -n  -n+l W—i Un +( —i)’
where U' s a unitary operator, and S ( ) was definsd in (3.20)“1.
(i) The wnitary operator U' from (i) has the property thut it is diagonal with the

exception of its n xn corner.



PROOF. (i) The case n = 3 contains all the ingredients for the general situation,
so we will consider only this case.

Using Lemmma 2.1, we have

(3,220% W, = MR

3 P=U5 0y OV

-2

where U'3 1 is a unitary operator. Now, Lemma 2.3 implies

(3)

where U’._, P is a unitary operator, and 5(32) was defined in (3.20)? . Applying again

Lemma 2.1 to S( ) and Lemma 2.3 for (S* ))( ) andR_, , and taking into account (3.22)
and (3.23), we obtam:
R e &) T (3)

(3.24) W7 W W7, = ULW (573),y# R_;) = UV (87},
where Uy is a unitary operator. But (3.24) is (3.21)3, and the case n = 3 is proved.

(i) The operator U'n is a product of unitary operators resulting by succesive
applications of Lemma 2.1 and Lemma 2.3. The statement follows from the observation
that the unitary operators arising from Lemma 2.3 (as U3 5 in (3.23)) are diagonal, and

the ones arising from Lemma 2.1 (as U, ; in (3.22)) do not affect the entries off the
~y ) A

nX n corner.

COROLLARY 3.3. For every n> 1, the operator Aqfrom (3.17)n has the form:

(3.25)n A U"S( ),

-1
where U" has the property U"U"* = PT("n).
n g Raglnt il
PROOF. The corollary follows (té.king U’r'] g P:(“H)U'n) from (3.17 , Theorem 3. 2
(i), Theorem 3.2 (ii), and (2.6). AN s TE ‘“9

Having in mind the usefulness of (3.25}n for the structure of I - Bn {see (3.16)n),
(n)
>4

it is necessary to clarify the structure of as a row contraction. We put all these

facts together in the following:

THEOREM 3.4. For every n> I,
2

oA = * { n ’ n¥k
(3.,_6)n I~ B W' e ‘)U‘nDKm)U‘n‘ \yIK+ {( n)) V' i
@D -n~" 0,n
e (n )} (n)
where W'n and U‘;}‘ are unitary operators, and the components Ll\ oj K" as a row

contraction (see (2.1)_) are, up.to some unitary operators, the followmg (1<k<®)x



e
) ) k< (ORI RN R ey
M | ~1,j-1 -2,j-1 G«l,jd =Nyj=-1 G«n+1,j~1 G-l,j~i

PROOF. The theorem results from Lemma 3.1 and Corollary 3.3, putting

4 v 4 o " ~~("n) (H) - q{.n)d, & Ao a g g e =Y (n) 1 T
nee W_l, Un = Un !KO,n g T Sy the structure of K follows l.r&o:m

= (=}
o200, il snaleani,

Wi =W
n

The formula (3.26)n gives the connection between Bn and the gcs associated to
the process; this will allow us te compute the determinant of I - Bn (when this has a

meaning) in terms of the gcs.

4. QUALITATIVE NONSTATIONARY SZEGO-TYPE PHENOMENA

Consider again the positive-definite ({Hq})-kernel T with its associated gcs G
and the generated process V.

This section is devoted to showing that the operators {B_ } (see (3.15))
n,k n,k>1

are connected with a sort of "Schur complements” in the matrices {M_n i l}n ST This
will give a simpler alternate way (aside Theorem 3.4) of computing the éetern’]i.ﬁ}mts of
1 Bn,k}n,k>1' Also it will point out that behind the numbers which converge in Szegd
limit theorems there are convergences of some angle operators.

Consider (for n> 1 and k > 1) the operators

+(-n)
n

i { .
W o ergee e W g LO,k s

(l:-.l)n’k Gn,k': P

From (3.15) . and (3.18)_ it follows that.
n,k n

2N g — ¥ v/ % % ; (7
(42 T = Bpy= WE L WEDE N LW
0 n,k
On the other hand, for n>1 and k> 0, the matrices M By (see (3.1) % l<) have
. -N,K =y
the form ,
7
- M—n,l Q—n,k‘l
(q‘j)n,k M—-n,k i ,
Q"ﬂ,k L’\Ao,k 9

where Q =k ; the matrix in (4.2) , is written with respect to the
-n,Kk k n,k

i,-ngi<- 1, 0

Kk =1 k
decomposition of @ Hi as (_@ Hi)@(@ Hi).
: i==n i=-n 1=0:3

We can state now:



I
THEOREM &.1. For every n2 1 and k20, we have:

. — ¥ 2 R
(@ Q—n,k 5 l‘~n,~’1Gn,,k+1FO,k 4

the operators {Fi j} being defined in (3.7); 5
9 ¥

* 2 i .
2 F»n,~1 9 S Gn,k+l I<-n,--1 ¢
(i) M—n,k = ; i
DR e S I Be.coFouls 4

(iii) If the operators {F. '}j>i are all invertible, then

L,)

: ok * _px-l -1 * -~ 1
g - B rupa il pes W-n(IKn B e 1 MG

S R

By

Ng-

'PROOF. (ii) follows immediately from (i), using (3"8)~'n,—1 and (3.8)0’}(;. (iii)
results from (i) and (#‘Z)n,ml’ So, it remains to prove (i). A proof of (i) is virtually
contained in the proof of Lemma 1.2 and Proposition 2.1 of [10]. For completeness we
indicate here how the formula (i) follows from the recursive relations verified by the

operators {Fi j}i<j' To this end, note first that {(3.7)'i j} imply that for each L,j € Z, i<j,
IR s

(‘““)1,; F j:(Pi’lei,Pi,j\az/ile,...,E>.’i\x/3\¥,/i_s_l...wj_llh'j),

i, i

(i)

where we denote in this proof by pij the projection of K, onto KOj o
s Gl 9t

is clear because

. This can be

proved (for a fixed je€ Z) by induction on -*<i<j. Indeed, (4.#)”.

’

F.. =13 the induction step uses (3.7} . and the formulas
) H; = f - Ly)
(i+1) ij
4.5). . P..W. g ?
( )1,1 PI’J llKO?J"l
DR, :
it 19)) ;

and

(4.6). . P. .W.P. . .W.
L] 1

Ll Hl---leH}:P' 'Wi“‘WjIHj’

1y)
which follows by definitions and from the triangular form of the operators Wi} Hi@'Di'

The formula (i) follows now by simple matrix computations using (4.4), (4.5) and

the fact that

_ K
) : - .
(4.7)i’j Ti’j_PH Wi"‘wj—llHj’ LjeZ, i<j.

Theorem 4.1 (and the triangular form of (Fi,j)iﬁ.j) shows e connections

between the gcs of the process and various angles associated to the process. These



..
ey

facts will be analysed in the next section.

5. CONSEQUENCES

In this section each term which appears in the sequence {Hn}rP?’ from the
. Yhr £on

definition of the positive-definite kernel T is a finite dimensional Hilbert space.

A. Stationary case. We start with the analysis of the situation in which T is a
Toeplitz form. Aside classical analysis of asymptotics of Toeplitz determinants and
generalizations of these phenomena (see for exarnple [14], [22], [4]), the study of various
angles in stationary processes is done in [13], [15], [11], [23], and so on; the connection
between these two is presented (in the context of this paper) in [8], [9], [3). We remind
this connection because it gives a paradigm for the general case.

T is a Toeplitz form if T,.=T, . _ for every Lj,n€Z, i<j; the form is
Lj 7 i+ngj+n =

determined by the sequence T. =T, . ., , i €N, This implies that H = H _ for every
i Iyi+l n m

n,m €N; denote this space by H. The parameter (gcs) G becomnes a usual choice

seguence: G. . = G, !
i iy i+n,j+n

have that the sequence {Gi} verifies that G0 = Oy and fori> |l Gi is a contraction from
D inte DG.y, . The process associated to this form is stationary; the Kolmogorov
G. :
i-1 -1
decornposition becomes the Naimark dilation, Le. W, = Wj for each i,j€Z, and

. n I \, f e +h = “ R
Vin) = W', (n€N), where W Wi‘ We have that Mi,j = Mi+p,j+p and Fi,j = Fi+p,j+p
and Fosp

3 ‘ 1 EN.
I+l i 1,i+1? N
It is clear that the form is completely determined by its part on N (this is not at

for i,j,n €Z, i<j, and denoting Gi = G1 n for i eNU{0}, we
’

for

1

. each Lj,p €Z; we denote M. = M

all the case in general). Moreover, the position of the origin is not important; this

implies that the operators {Bn k} 5y do not depend on the choice of the origin in the
b

n,Ke
process.

The computations depend upon the following:

COROLLARY 5.1. Foreachn> 1 and k> 1

(n~k)-1 .. nvk . n+k-~1 :
(i) det(I-B_,)= ( I (detD )21)[ I (detD. )2(n/\k))( I (detD )2(n+k—1))’
n, k . Chla o : o
i=1 i i=nAk i i=(nvk)+1 i

where nak = min{n,k} and nvk = max{n,k} ;

n-1 ol 198
P 21 s Zn
()  det(@-B)=(T @etD;)*)(I @erdy) .

=1 1 i=n 1
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PROOF. Relation (ii) follows from (i) neting that

(5.1)n 3@1:31 a- Bn,k) =(I - Bn) ;
The proof of (i) results from Theorem 4.1 (ii). Indeed, from the quoted formula

we have that

(5'2)n,k det (I - B k) = (det M ) ((det Mnml)(det Mk—l)) PEIEY

. n+k-1

(We consider throughout this section only the nondegenerate case where all choice
operators have the defects with nonzero determinant, i.e. they are completely
nonunitary contractions. The degenerate case can be easily worked out.) From (3.8) it

follows that for everyi € N
From (3.7), we have for every i € N

8 T 1 ot \i_‘l
(5.4)i detF; = (det D ) (det D )™ ... (det DG.) 3

1 2 i

Relations (5.2)_ | , (5.3) and (5.4) imply (i), &

REMARK 5.2. Formula (ii) (with appeared in [3], Proposition 5.1 with a
different proof)) of Corollary 5.1 can be also proved using Theorem 3.4. Indeed, from
(3.26)  we have '

& 2
(./¢5)n det(I- B )= (det DK(n)) ;

<2

From (2.3) _ and (2.2), we infer that:

: (n)
(5.6), detD (n)= det DK e jT:Ilde‘i D (n) -

From (3.27)Jn and (2.5)n (for colums contractions), it follows that:
el

(5.7);1 det DK(n): I detG

iese)
From (5.5)n 4 (5.6)n , and (5.7)? it results the formula (ii) of Corollary 5.1.
(n)

Formula (i) can also be obtained in this way, using truncations of K",

ke

Let us note that Theorem 3.2 (i), besides being the key ingredient in obtaining
Theorem 3.4, has an independent interest. It gives the possibility of understanding the

evolution of the process, via the relations {3.12).



e

We give now the geometric interpretation of the two Szego limit theorems (see
[9], [3]); we show also that these tweo theorems are the first and the last term from a

whole scale of Szegd-tvpe limit theorems.
< 4k "

COROLLARY 5.3,
($e]

(i) lim. (det M _)/(detM ) =det(l-B,) (= I detD )2)

> n n-| 1 G
e fi=l n

(this limit is usucally called the geometrical meun of the process and is denoted by

(1) = g).

(ii) For every integer p > 0

lim [{det Mn)/(d@t Mn_l)]p+ lf(de‘ﬁ M ) = lim [(det Mpm)/(det MP)]/(de‘c Mn) =

oo e

- s . }p+l i)
= det (i BPH)[_{) /(detMp/,L

- .
(iii)  lim (det Mn)/(gml): I/det(1-B) (= 1/ T (detD. )T
> n=1 n

The proof follows from the formulas (5.2) and Corollary 5.1.

REMARK 5.4, Let us make some coimmments on Corollary 5.3.

(i) The first part of Corollary 5.3 shows that the limit in the first Szegd limit
thecrem is in fact the approximation of the angle operator B, with the sequence {Bi,n}
(or {Bn.l})' It gives also the formula of the geometrical mean of the process in terms of
its associated choice sequence. As pointed out in [3], using the notion of the entropy of
a process (defined as h(T) = - £In g(7)}, one obtains a nice connection with the maximum

entropy spectral analysis of Burg [6]. Indeed, because

@
(5.8)  hT)=- ] IndetD; ,
ri=1 n

if the nxn corner of T is fixed, the extremal entropy continuation of it is obtained
taking Gk = U%ork 2 m

(i) The second part of Corollary 5.2 is the announced "scale" of Szego-type
theorems. It gives the interpretations for all angle operators Bn, n31; interms=of
determinants from T. Case p =0 in (ii) is exactly (i); the second Szegd limit theorem
‘contained in (iii) is the "limit case" in (ii).

(ili) The third part of Corollary 5.3 shows that the limit in the second Szego
limit theorem is in fact the approximatiocn of the angle operator B with the sequence

{Bn}. Seef3], Theorems 5.2 and 6.1 for a discussion about the (suggested by (iii))



connection between B being trace-class and the convergence of the product
e
I (detD e
=l Gn

B. Nonstationary case. We come back now to the general situation of a positive-
~definite ({H 1)-kernel T with its associated ges G and the generated process V; recall
that all Hn are - in this section - finite dimensional. The analysis in Part A clearly
indicates how to generalize the Szegd phenomena and their geometrical interpretations
to this case. (Szegd limit theorems for positive-definite kernels were given in [10].) This
general context will give the possibility to understand some "hidden" features of the
formulas from the stationary case.

Let us note that there are two simple operations on the parameter G which
generate new processes. First, for each neZ, consider the gcs G defined by the
family Csi)l = G ,j €Z, 1<j). (This corresponds to the changing of the origin in

the process.) Then define o) by the family GE"J.):G*j - (i,jeZ, i<j). (This
H =)= a

corresponds to the interchange between past and future.) The stationary processes are

or Ey v il
i+n,j+n

invariant to the first operation; the second operation shows that in the stationary case
there is no difference in the behavior near +« and -, In the general case thesc
operations produce a whole bunch of Szegd-type phenomena. Because the reader can
easily work out the details for e and G("), we will consider in what follows limit

phenomena to +®, starting with a fixed origin.

COROLLARY 5.5. Foreachn> ] and k> 1

~1 k-1 9
(1 dete(l =B pdee T 0l detDZ 5
myks 7 : G. .
i=-n j=0 1,
-] ® g
(ii) det(I-B )= I I detD
n : : QG. .
i=z-n j=0 1y

The proof follows from Theorem 4.1 (ii) (or Theorem 3.4) as in Corollary 5.1 (or
in Remark 5.2). Note that the formulas are even clearer in this general case. The key

equalities are:

(5.9), | det(-B )=(etM_ idet_  MdetMg, I, (121 k21D

COROLLARY 5.6, Foreach meZ

(o]
. e ‘ B 2
(5.10) lim [(detf\‘im’k)/(det Mm+1,k)]". I det DZ
k> }:lﬂ+l ’m’j



Denote this limit by gm(T) = By Then

(5.11) det(I - B =g, -
These follows from the fact that for i,j € Z, i<},

j"l ) S
(5.1\2)j j det M, o= i I Do
3 . X
’ 7op=logep+l Tpyq
{see (3.7) and (3.8)), and from Corollary 5.5 (ii).
This is the analogue of the first Szegd limit theorem and of its geometrical
interpretation. As for each meZ

(5.13)0 gm(T) = g_l(T{m*”),

(m+1) (m+1)

where T is the kernel associated to & , it is natural to call &y, the
geometrical mean of order m for T; its geometrical interpretation follows from (5.13)m
“and (5.11) '

: Note that {(B.IO)m} show the right procedure in forming the ratio for the first
Szego limit theorem.

Owing (5.8), it is natural to define for each-m €Z

[es]
(5.14) _ h (T)=-fng (1=~ ) dndetD.
J=m+ i My]

to be the entropy of order m for T. These lead to an extremal entropy spectral analysis
for nonstationary processes {see [12] for related ideas).

Note that due to the analysis in 5Sections 2 and &, it is clear that behind the
numbers which represent entropies, there are (even in infinite dimensional case) some
angle operators (as I - B,

As in the stationary case, Corollary 5.6 is a first step in a scale of Szego-type

limit theorems, the last one being the analogue of the second Szegd limit theorem.

COROLLARY 5.7. (i) For eachp> |

wl
Lim [ I (detM., )/(detM
; ; ik
R+®j-p
k
=lim [T (detM _)/(detM . ))/(detM
-0 j-‘-O =Ps) ~Py)-1

1/(det A .
)i/ detM_ | )=

1k Dy

O,k) &

-1
SASEEE FE T st
e Bb)( (j:~p é")/(d‘“{M"Pwl))'



B

4 8 R e
()  lim (detM (T g)=1/det-B)=1/T T detd? ).
o Syt P 1 L e G. .
i j==n 129320 151

In (i) above we use the products in the.first two terms in order to point out the
idea that these are generalizations of the fact that the ratio of two consecutive
determinants from T is a measure of some angle (see [20] for a construction of gcs as
"angles" inT ). :

C. Krein-Spitkovskili case. One of the problems discussed in [17] is the
following. Consider a positive-definite Toeplitz H-kernel T (where H s finite
dimensional). We use the notation from subsection A; in particular W is the Naimark

dilation of T'. For a fixed integer k > 1, define

1 : Tk rl.:- J, 25 ¥ Tkm
T | €
(5015)11’k Ay =det | Ty ; » NEN.
: ‘ n
¥
kani

Then in [17] it is proved that lim (det d, k)/(defc M) = dy exists and a geometrical
¥ 0O ¥
1
interpretation of these numbers as "angles" is described. (In {17] it is proved also that
lim d, exists.)
k
e Y
ri :
This problem is an example of a nonstastionary situation as studied in
f P :

Subsection 3. Let us explicitate this. b
V{k] :{‘[[.k:h

Fix an integer k > 1 and consider the process () he z where

W(n-k+1)]H n<o0
5 [ﬂ]“ * A
(5.16), Bl 4 n=0
wh H n>o .
It is easy to verify that the correlation matrix of V(k] is the following
'—.hOIOQOOIIll.l"‘.0'(».0.0.te.’ﬂl!.’.‘.‘l&'.“l-—‘
Serciie sl T1 T2 TI<+2
"x. v -
wll.’Tl I* Tl Tk.*-‘[ 7!(.{.2"....‘..."‘...
(5Q17) T[.k]: oo-ooooo--.Tl I.X' Tk Tk+1 Tk"ﬂz.’..a..".‘
I'k 1 11 [y ’[3....,..o
% - -
QG!.OO!O...C'..CO.QAT}- i z‘l T2.pl‘l60‘
¥ .
!lOO'G‘0"'..'.'.'.00‘0&0'}! l 'Ilocolv!'.
L"leb.G...00.0‘.0100&{104l‘Il..’ﬁb..&ln.lﬁl...loé




(the marked position is the (0,0) one). We use the exponent [k] to indicate the objects
associated to the process VU{'], It is clear that for each n> I we have (see (5.15)n k):

g
(5,18), d  =detmK |

1,k n,k ~l n

From (5.9) it follows that

/ et M ) (det A 4“] )/(deuf’k])«- det{l - B [k] ¥

(‘)"1&)119!-( n, I,n+1

From Corollary 5.6 we have that

(5.19)k lim d }\/(da tM ) =det(l- [k]) = ;J k1 17 det D?

b
e : j=0 [k]
- . —1,] . . .
which shows the existence of the limit dk and its geometrical interpretation in the
process ylkl

Note that in the classical case ({14]) or in the generalizations of Szegé limit
theorems (e.g. [22], [4], [17]) there were obtained nice integral formulas for the limits in
terms of the spectral function of the process; the parameter gcs and the formulas using

it are intendent as a "discrete" replacement for them.
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