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HYPONCRMAL OPERATORS ARE SUBSCALAR

by Mihai Putinar

Introduction

In this paper we coastruct a universal functional model for hyponormal
operators.This shows in particular that every hyponormal operator is subscalar,
wigje, is similar to the restriction to an invariant subspace of a (generalised)
scalar operator (in the sense of Colojoara-Foias {5]). ”

Let H be a complex (separabie) Hilbert space and let £ (H) denote the 1i-
near bounded operators on H.Recall that T ¢ £(H) is called subnormal if there
is a Hilberi' space K,containing H isometrically and a normal operator N on K,

* such that Nh&TH; he€H,in other words H is & closed invariant subspace feor N
'and the restriction N|H coincides with TvInterest in suBnormal and related
classes of operators has risen considerably since S.Brown [3] proved that
every subnofmal operator has e nontrivial invariant subspace.A iarger class of-
operators related to subnormals is the following: T € £(H) is called hyponor-
mal it ¥ r¥r,or equiviale'nwﬁly,if ¥ nll -<fnT-hu for every h¢€ H,There are
classical examples of hyponormal non-subnormal operators,see [?,Chaé}16].

As we shall prove below the distinction between hyponormal and subnormal
operators lies only in two degrees of differentiability added to the admissible

functional calculus of an extension.More precisely,

THEOREM 4 Any hyponormal operator is subscalar of order 2.

A linear bounded operator S on H is called in [5]»sealar of order m.if it
possesses a spectral distribution of order m,i.,e. if there is a continuous

unital morphism of topological algebras
v CNe) —> £,

such that U(z)=S, where as usual z stands fp%-%he«identical function on C and
Cg((:) for the space of compactly supported functions on C ,continuously dif-
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-ferentiable of order m, O <sms o ,An operator is subscalar if it is the
restriction of a scalar operator to an invariant subspace.lt is necessary to
~ point out the disiinction between scalar and Dunford scalar operators,which
are characterized by en integral representation with respect to & spectral
neasure, [6] -
" As a matter of Ffact,the proof of Theoremlis constructive and it offers some
‘additional information coﬁcefning hyponormal operators and a canonical scalar
extension.Let us skeich below.this construction. :

Let T be a linear bounded eperator on H.The starting point is the investi-
zation of the operator z-T on various spaces oT H-valued functions.TBe study of
the operator z-T on the space O(U,H) of analytic H-valued functions on U,
U=U ¢ € . ,1ed E.Bishop‘[2] to fundamental results in spectral thuory.Among

other things he ‘isolated in [2} the single valued extension property,which

means by definiiion that the operator z-T acts one to one on O(u,H) for an
arbitrary open’ subset U of C  ,and the property (6 ),which requires that
z-T should be one to one and with closed ;ange on-. © (U,H) for every open set
U.The operators with a2 rich functiondl calculus,e.g. the scalar opsrators,as,
well as their restrictions to invariant ' subspaces have. property (% ) .The im-
porténce of property (¢ ) lies in assuring the natural framework for locali-
zing the analytic functional calculus’ and fhe spectrum with respect to each
vector pe H,separately,see [yZ,Chap. 4] .This can be explained &s followsf

Let ﬁs assume that the operatorAT has property (@ ).Let U be an opeun sﬁbset

of € @nd consider the Fréchet space
FU) = ©(u,H)/(z-T) O(U,H).

When U runs over thé open subsets of T , g , with the natural restriction
maps,becomes an analytic Frébhet sheaf on © ,which caries all;thm infofmé—
tion,local or global,concerning T.For example,the global sections space 7()
corresponds to H because of the existence of the analytic functional calculus
for T,the cperator induced by the multiplication with z on -©O(UV,H) corres-
ponding in this identification to T.Moreover,it turns eutﬂghat £h9~loca1 spec—-
trum G&(h) is the support of the corresponding section kﬁé&@%((l),anq SO0 on,

This sheaf model appeard in {9] in connection with, some decomposability pheno-

-

mena.,
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what happens when the operator T satisfies'(ﬁ ) or the single valued exten-
sion proper:y with respect to some other function space J4 instead of © ? 0f .
course,the above procedure sti1l works,but it beccmes effective only when the
initial space H and the operator T can be recuperated in the corresponding
- quotient spacewIf this is the case,then the bigger space and the multiplica-
tion operator Mz on it will provide an ex*ension of T (i.e. H will be invariant

for Mz and MZleT) with a functional calculus as rich as allowed by A

H ot s A(C,H)/(z-1)A(C,H)

o =

2
He —— =~ A(cC,H)/(2-T)A(C ,H)

This construction is functorial in T and H and has some minimality properties.

. For hyponormal operators a Lz—estimate involving 2z-T and ? -derivatives up
to the degreé€ 2 (see Proposition 2.1 below) insures that a Sobolev space with
respect only fo the D derivatives-hss all the reguired properties foy A in
the above general scheme., .

The peper has two sections:

§1 deals with the preliminaries concerning vector valued function spaces.
some facts from local Spectrahgtheory'ére also recalled.

In §2 the construction of the functional model for hyponormal  operators is
performered.The properties of this canonical functional model appear in Propo-
sitiom 2.5,

The paper concludes with some remarks on the applications of the functional

model .-
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§1 VECTOR VALUED FUNCTION SPACES

Let z be th: coordinate in the complex plane C and let:dp(z),or
simply dy,,denote planar Iebesgue measure.Fix a complex (separable) Hiibert
space H and a bounded (connected) open subset U of C.

We shall denote as usually by LZ(U,H) the Hilbert space of measurable fun-

ctions 7:U ——s H,such that

I £ ”2,U = gjhf(Z)llzd/w(z))% & e,

The functions f<€ L2(U,H) which-are in addition analytic functions in U,i.e.

:5f=0,form a ~losed subspace denoted

22(u,H) = L°(U,H) N O(U,1).
“ fhe orthogonal projection onto this space will be denoted by P.
similarely I (U,H) is the Banach space of essentially bounded H~-valued func-
tions on U.There is a continuous natural imbedding ﬂ%(U,H)CﬁLZ(U,H).
Let U.be the closure in C of the open set 7 and let Cp(ﬁ,H) denote the
space of germs on U of continuously differentisile functions of order p,0< p<Soo.
The integral representation formula with potentials of the (elliptic) opera-

tor 0 has a'remarkable simpler form,known as the Cauchy-Pompeiu formula (see

for instance [1?,Theorem 11.3.2] for its vector valued version).We:shall use
this formula in the case of a bounded disk D:
T O
() et e ) EEOBHS wp) e ) DR JIG o) Ay
2D D
shiets we Dand £e0(D,H).
Let us also recall some elementary facts concerning the Cauchy kernel (see

for exarple the introductory chapter to 10} ).The function 1/7 is summeble in

the neighbourhood of 0, e

Sd}A/IZl = 27 ,
[ Z1< 1



and the function

g(z) = g £(%)/(3 ~z) 43
oD

appearing in (1) is analytic in D and continuous on D,in particular g£5A2(D,H)
for féCz(-ﬁ,H)o

We shall also use the following well knowr fact.

LEMMA 1.1 If U,V are bounded connected open sets in f ;ond if V is rela-

tively compact in U,then there is a constant ¢ > 0,such that

el viicllfl‘z u

1 1
for every fe€ A2(U,H).

Let us define now a special Sobolev- type space.U will be again a bounded
open subset of C and m will be & fixed non-negative integer.We have already

used the notation © for the operator 9/ Z.

The vector valued Sobolev space ‘wm(U,H) with respect kgl,b and of order m
o =2

" will be the space of those functions f€ LZ(U,H) whose--derivatives 9f, 0 f,...,

= 2

anf in the sense of distributions still belong to L (G,H) .Endowed with the

norm

Falbon=> lall- .

i=0

wm(U;H) becomes a Hilbert space contained continuously in LQQU,H).Let us men-

tion that the notation W' above differs from the usual one,which involves all
the derivatives.The associated sheaf of locally W -functions will be denoted
W
log: :
If the open set U has in addition 2 smooth boundary,then a standard approxir .
2 mation procedure shows that ¢® (T,H) is a dense SubSpaée of wm(U,H),[B, §I.2.6}4q4
We next discuss some facts concerning the local spectral theory of_th@mmulti~vw
plication operator by 2z on wm(U,H).For the beginning let us recall some termi-

nology and facts from [5].
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for any system (’Fk)k=1

of disjoint closed subsets in C we have

n ; n
sup ‘lz:: ot R{: oS o< 2 S| “ S s ‘\
k k 1 =
k=1 K=
where x € XT(Fk) and 8, < 00 depends only on T.
Let us come back now to concrete function spaces.Let U be a (connectéd)
bounded oper subset of C and let m be a non-negative integer.
The linear. operatcr M of multiplication by z on wm(U;H) is.continuous and

it has a spectral distr.bution of order m,defined by: the relation
m M.
U(q))f = q>f, q>€ Co e, fe Wil m)s
The maximal spectral spaces ofM are by (2):
m, , m
(%) W (U,H)M(E) = {fé:w \ supp(f) C F}.

Instead of supn(f)C F we shall write also f FBND =0 :

Let Vi W (U,H) —> % LZ(U,H) be +he operator v(f)m(f,';é f,,‘m..f%mf)-’l‘hen
V is an isometry which intertwines M and the normal operatowr: 4%‘MZ ywtherefore
M is a subnormal operator.

Becauss of (3) the maximal spectral spaces of M corresponding to disjoint
closed sets are orthogonal,hence M is unconaitionally decomposable.

Let us remark finally that M isn't a Dunford spectral operator [GX ,because

the estimate

@) NA-2) "8l m < M2l o /aist (X, supp(£))0, A4 supp(f),

.

would imply by Theorem XV.6.7 of (6] that M is a2 Dunford scalar operator,which

contradicts the fact that M is subnormal but non-normal.
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THE XINCTIONAL MODEL

o~
N

This first part of §E deals with the basic inequelity for thc proof of
Theorem 1.Let T be a linear bounded operator on the Hilber spa~e H,Then,for a
given open bounded subset U of C ,2-T acts (linearly and) contiruously on
the space WZ(U,H).For a fixed z € C ,the adjoint on:H will be denotsd as
usually by (z»T)* = E—T*lon the other hand the adjoint in WQ(U,H) will be de-
noted gy (zmT)#. ‘

PROPCBITION 2.1 For every bounded disk D in C there is a constant ¢

D'

, 2
such that for an arbitrary cperator T€¢Z(H) and f<€ W (D,H) we have

ikl e ;
J= 5 A\ : & ) i -
l(z-2y2 11, o < op( | (zm1) ’DfHQ’D 2y 5 s H2,D )
Letws recall that P denotes, the orthogonaliipriojection of LZ(D,H) onto the -
Bergman space A2(D,H). ; !
Proof. Tet fq € C°°(5}H) be a sequerice which approximates f in the norm w2.

Then for a fixed n ve have
= ¥ = s~
7Y (7 2 S0 £
E(fn(z) (z-T)" © *n(z)) = ~-(z2~T) 0 *n(z).

\

By the Cauchy-fPompeiu formula (1) one gets

| fm(z)-(er)*i?:?n(z)~ ﬁligg)(fn(s )=(3 -1)"32 (3.0)(%-2)""d3 =
_zis 663 -1)'%%s (3))(B~z)."1d (55 ).
I D n : ,A

.

Let us denote by g, the first integral in the above formula.Then g € AZ(D,H),

hence

e g ll, o < llz-252 1, s 4 Il (z-1)3%¢_|| -

: i : ; ; i ;
wvhere the second integral was majorized as a convolution with a I -function &amd

R is the radius of D.



Finally we obtain the inequalities

l[g-p2 |l ,< l'\}“-gzn(\ N (6 (et an-gn‘l - <

- 4Rl‘(z~Tf*§2f H

c sl el 1P

which prove the proposition when passing to the limit.

COROLLARY 2.2 1f T-ls hyponormal,then

r-pye (1, j<cp | (z-7y2 £ I 5+ ez-2322ll, ).

9

Proof. This follows from [l (z-1fnll, < Nl (z-mnll, .

proof of Théérem 1. Let T be a hyponormal operator on the Hilbert space R

Let us consider an arbitrary bounded open subset U of C: and.the gquotient
space

H0(0) = 2we (U, 1)/ (Z=T W (U, )

endowed with the Hilbert space norm which identifies it with Ker(zqu& .The o
class of a vector £ or an operator . A on this guotient will be denoted by %i,
reSpectivelyﬁz.Note that M,the multiplication operator with z on wz(U,H),leaves
inveriant the range of Z—T,hence'ﬁ is weil :defined.Moreover,the spectral distri-
bution U of M commutes with z—T,therefore’ﬁ is still a scalar operatocr of order
2,with'G as spectral distribution. | ‘

v Let V be the operator V(h)z(zgﬁ,from H into % (U),denoting by 1®h the cons-
tant function h.Then . : = :

r~
(5) VT = MV,
Indeed, VTh'= 1®Th = z®h = M(1®h) = MVh.In particular the range of V is an in=ga

variant subspace for M.
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LEMMA 2.% Let D be a bounded disk which contains 6 (T).Then the operator

viH —> Y (D) is one to one and has closed rangs.

Proof. We have to prove the following assertion: if hné H and fnffwd{D,H)

are sequences such that

e T
(6) 1im [ (@-1)f_ + 1®”n“‘w2 =0,
n ! )
then lim hn = O , - v
The assumption (6} implies Lim( N(z-Tj?an - H(z~T)5.2fn‘(2) = 0,which,in
view of Corollary 2.2,shows that lim || (I-p)f |l , = 0.Then by (5)
n

= S mne : =
Lin || (z-1pe, +10n |, 5 =0,
which by Lemn2 1.1 insures that

1im H(zmT)'an +1®h Il o

oo, D!
where D' is a relatively compact domain in Dgstill containing (1),

Let us denote by
&: O ) — H | s

the enslytic functional calculus map associated to T.Then by the éontinuity.of
d> (see for instance [12,Proposition 111.8.13] foriithis form of the functional

calculus) there is a constant a7 0,such shat

lin_Il = 1 ((z=T)Pe_ + 1ebh )| < all(z-1)Pf + 1®n B e
Consequentlyvlim\lhn\\ = 0 and this concludes the proof of.Lemma 2.3.
This also concludes the proof of Theorem 1,because the range of V is,in the
~conditions of Lemma 2.%,by (5}, clﬁsed invariant subspace for the scalar opera-
tor M. : : :
C e next result establishes an analogue of the single valued extension pro-:

“perty for the space w2 and the hyponormal'operator 41
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LEMMA 2.4 ILet D be an arbitrary bounded diskbin C .Then the operator

z-T

s

WZ(P,H) ST WZ(D,H)

is one o one,

proof. Let iVewz(D,H) be such that (z-T)f = 0.Then f=Pf<€ AZ(D,H) by Corcl-

lary 2.2.Because T has the single valued extension property,e.g. as a subsca-
lar operator,then we infer from (z-T)f =0 that Pf=0,that is f=C,q.e.d.

Let us remark that if 1%? “(Z"T)fn“w2: 0,then we cannot obtain by the same
method more than liml\fn“ e 0.

A reformulation of Lemma 2.4 above is the following }
supp((z-T)f) = supp(f)

for every fé.wg(D,H). \ .

Indeed one computes the support of f,respectively of (z-T)f,by restricting
these functionsAto small disks containeda in D.

Let us reéturn to the functional model.lZ U1 and U2.are two bounded open sete
in C which contain G(T),then the corresponding spaces &((U1) and %(\Ug)
coincide,because z-T is invertible for zélli\ 6 (1),respectively zéﬁjz\ o ()
In fact they are both isomorphic with the universal rréchet space :

e T

2 2 e M ‘
WT(H) = wlon(QZ,H)/(z-ﬁ)wloc(ml,ﬂ)

which depends only on T and H.

J,et us fix a bounded disk D which contains o (T) and let us endow WiLH) with
the corresponding Hilbert space structure.Because the operators inducea by M,
respectively I®T on w;(H) coincide,we shall denote M also by‘a,depending on

the context.

PROPOSITION 2.5 Let T be & hyponormal operator on The Hi]oert space H.Let

w (P) denote the above Hilbert quotient space, with the dnduced operatofD/n it

&nd the natural embedding Vel = W (H) Then

a) T is a scalar operator of order 2 with G(T) C: T

b) The linear span of the vectors g.U(<9th $ ? € LO C jyhe H}Ais dense
in WS(H).




D

¢ IfsAse Y () and 7,8 1s a pair of hyponorwa' operators on H,such tha®

~e~ e

AT=SA,then A induces en operator Eﬁézf(w (H),w (H)) with the property AT=SA,

d) If f is en analytic funetion in a ne*ghbourhood of 6(T),then

vE(T) = 2(T)V,

where f > £(T) is the functional calculus morphism,

Proof. &) follows from thé fact chat WS(H) ~an be represented as & quotient
of WZ(U,H),with U an arbitrary open neighbourhdod of ¢ (T} ,and consequently
s (M) comlw?(u,H))CT.

b) is @ consequence of the de%ity o iCF (D) in WZ(D).

c) is derived directly from the definitions.

d) is a generu, propertv of the analytic functional calculus, {12 Cors ITL. 9. 1ﬂ

' COROLLARY 2.6 With the notations oft the @above propositjon‘
W) C o(T) Cio 5 (T

Proof. Since ¢(T) is in the approximate point spectrum of T,it is alss
centained in the spectrum of the c¢xtension %. :

In”@érticular”this corollary shows that,exsctly as for subnormal operators,
the Fpectrum. 6(T) is obtained from (7(ﬁd“byﬂfilling some bounded connected

components of C \NG(T).

Remarks 1) Ths problem of scalar extensions bf opeﬂﬁbrs is treated in 1its
fulllgenerality in[ﬂﬂ ,in analogy with the theory of subnormal op@rators.The
major distinction between the two cases is the folloving : while the minimal .
normal extension of a subnormal operator is unioue.the minimality,as it is
stated in Proposition 2.5.b) above,doesn't insure the unlqueness of the scalar
extension of & subscalar opcrator.

2) ‘Though £(7) is not necessarely & hypunormal oparator,when f 18 an‘analy«
tic function in some neighbourhood of G (T),the assertion:d) in the abovevpfo—
position shows that f£(T) is still a subscaler cpergtor—"
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3) The operator T is normal whenever T isAnormél.Indeed,in this case I1®T"
commutes with z-T,hence Eﬁ,“is well defined andlﬁﬁzm E? .

4) Because the main facts of the local spectral theory of a hyponcrmal ope-
rator (for instance property (), the estimates for the local resolvents,and
80 o, see [4,Chapter I] ) are hereditary,they can be derived directly from the
same properties of the scalar extension T.The verification bf these properties
for the opsrater T is completely analogous with that for normal operators and
uses the fact fhat T has a continuous functional calculus with second order
continuous differentiable functions with réspect only to the operator'i .

5) An intrigﬁing question is whether S.Brewn's technique [3] can produce,
via the avove Theorem 1,invariant subspaces for hyponormal operators.The closest
result in tﬁis direction is Proposition 2.5 in [1] ,but which requires that thé
scalar extension should be unconditionally decomposable.We ignore if T=M has

-this property when T is hyponormal.
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