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MOVABLE SINGULARITIES AND GALOIS THEORY

OF - DIFFERENTIAL FIELDS

By ALEXANDRU BUIUM

The aim of this paper is to extend to several variables
the "one variable theory" developed in DJJ. Results will be
stated and discussed in Section O belew, ‘

Ve shall folleow Kolchin's terminolegy from [6]. A diffe-
rential field will mean a field F of charscteristic zero
together with pairwise commuting derivatiohs S},...,'é;
on it;.gfo with denotevthe‘field of constants of F . Unless
otherviise stated, all differential fields will be assumed to
be differential subfields of a fixed universal differential
Fael o 0L,

For any field K a K-variety will mean here a geometrically
integral quasi-projective K-scheme; K(V) . will denote the

functien field ef the Kavariety V. Tf '[=Ki{V) sand (G

” 2 e ~ x A = C’; = "’*{ ) v X (
an cAtvﬂalgn gt K yeushall put VKx"V)<Spec(K)“p9c(k )— and K (V)
KX(L)xKX(V )3 furthermore V(Kx) denotes as usual the set of

K™

* : (e
K"-points of V. By a K-group we mean a group scheme of finite

type over K,
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O.Introduction. An extension ¥ e 5 of differential fields
will be called a Fuchs extension if there exists a nonsingular
pirojective ¥ -variety V whose function field is‘ 5  and
all of whose local rings are differential subrings of G c o
V as above will be called a Fuchs model for Fe 9 . Fuchs ex-
tensions were introduced in I}%] gnly: fer the case tr . deg, §/}7=1
and they were called there "differential algebraic function fields
of one variable with no movable singularity”. They are however
gquite classical pbjecte cf, ﬁZ](see also @l] for further discus-
sion). |

In Matsuda's beok PJ] a classification was given for Fuchs
extensions with tr,deg.'ﬁ/?le (and under the assumpticn that
m=d - ile, in the case”of Jordinary ditferential fields). In the

present paper we shall provide such a classification for arbi-

v

trary tr,deg’ 3/37 2 1 (and arbitrary m 2 1) by bringing Fuchs
extensions into the setting of Kolchin's Galois theory of diffe-
rential fields. We should note that methods from [1£] 89?17 oﬁly
Cor the "case of curves" so new tools are required for the
case we are treating here., Such a tool will be provided by our

previous paper [?] . Hererist ol main conclusion:

THEOREM 1. tet Fe 9 be a Fuchs extensien with §;; 96

and ?% _algebraically closed. Then there exist an extension £

: Sl . X
of 5 with Eo: ?; and & finite extensieon F of . F cob=
o , X : , . Sk o :
tained in 5: such that - F e £ is g - G-primitive extention
. . %
(G being some connected ?;—JFOUP); in particular F e £

is 'strongly normal,

Now by Kolchin's Galois theory [b] subextensioms ot



strongly normal extensions are well uncderstood; in our case
Sfﬁ c:g?ﬂ(fg) is a suextension of a strongly normal extsn-

sion so we see from Theorem 1 that Fuchs extensions turn out

to have a quite precise Calois~theoretic description "modulo

finite base change”. In the converse direction we shall prove:

THEOREM 2, Let Fe 8. be a full G-primitive extension
with ?;: Eo’ ?; algebraically closed and G a connected
?hmgroun which is either complete or linear. Then for any

intermediate differential field 5 between F and <5 , the

extension Fe S is a Fuchs extension.

Recall that since G is connected, the nroperty of :FC 5
being full simply means that tr,cdeg. /% =dim{C). We expect
Theorem 2 te hold in fact for arbitrary connected G not ne-
cesgarily complete er-dinear.,

Now returning to Theorem 1, it follows from [?] p.427
that there exist intermediate differential fields

Frexr’c A ek

N

guch. that " = g°

is. @ fipite extensien, 3r@¢v¢% is. an
Ampfimitive extension (A being an abelian-variety) and A < &£
is @ Ficard-Vessiot. extension. This combined with aur Theorem 1
and with»Knlchin‘s enalytic descriptien [8} of A-primitive
extensions may be viewed as a differential-slgebraic answer to
Poincaré's problem (formulated at the end of [12]} concerning
the nature of transcendental functions which muy appear from
inteyration of systems S of algebraic (partial) differential

equations with "no movable singularity“: roughly speaking, if
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S has meromorphic coefficients in some region in d:m then
integretion of S may be proved to reduce to integration

of a linear system whose coefficients may be expressed in
terms of algebraic furctions, abelien functions and functions
which are primitive (cf.[@]po404) over the differential field
generated by the coefficients of 5, We deo neot enter intg
details (compare also with [3] Yo 7

In connection with splittings into abelian and linear parts

-we shall prove:

i o , , g
THEOREM S Let 370 5 he a Fuchs extension with yoz 56,
?o being the complex field. Then there exist an extension

H of 5 with 7{0: ?g and intermediate differential fields

Fe " c®B c B = H

: % + +

Sich ‘that: B e 7§ ) #nd such thet Fe¥ and @ e &
G . N . : H7 e e ; :

are finite extensions, J < @b is an A-primitive extension

: o ; + : ok . 3
(Abeing an abelian variety) and B e H is a Picard-Vessiot

extension,

Note that Theorem 3 does not follow from Theorem 1 and
fromrthe splitting gf“ < 350 & A e £ by ju&t putting
& '*2550. @Jx@fﬂﬁ; L M= 8 . indeed one won't have in gen‘eral}
Wi e Sy

As an application of our results we shall give a generali-
sation to the case of simple abelian varieties of quchin‘a
theorem [7] 5,800 (see also Eﬁjpu7@} on elliptieg differsntial
function fields posuessing infinitely many differential auto-

morphisms:



THECREM 4, Let Fe g Hhe an extension of differential

¢

fields with fFom 50, ?} algehraically closed and $= (V)
S G ,
. 7 . | . Lo . o 3
with V a simple abelian & -variety. Suppose there are
infinitely many differential automorphisms of .9 over F .
= . FLE : o X
fhen there exists a finite extension & of F such that
: % X ek € .
the extension ¥ e« F (§) is an A-primitive extension

: : o~ ;
(A being an abelian fb~varlety).

Trivial examples show that the ass@mption on V. being simple
cannot bhe removed,

Let's mak@ a final remark on the case tr.deg. S/?f:mxl;
in this case our results were essentially known from 11}
although connection with strongly normal extensions is not
explicitely made there)., For instance our Theorem 1 follows
in this particular cagse from Theorems 3,8,14 in [ilJ Dk
13,37 and 91  wnd from the well known faet that ‘the (Riccati

"

equation "reduces” to a (second order) linear equation. Con=-
versely (as-the.reader willirealize) oeur’ methodican be'used

to give alternative proofs of the three theorems quoted from 1}1],

1. Proof of Theorem 1. We start by recalling a basic result

from E%W . If. K dis:an algebraically clesed field [of characte-
rietic zero as usual) and V is a K-variety then a subfield k

of K - is called a‘field of definition for V if there exists

2 Kk-variety X such that 'V is K-isamorphic to XKQ One

defines:



A(\/)uffé[}er@‘(K(V),K(V)); S‘(ﬁv,p‘)‘: C’v,p fer all pev}

KA(V)m{heK; §Phs  vwwinan Se AW

THEOREM [ﬁ]. Fftav i nonsingular and projective then:
) KA(V) is a field of definition for Ve,
2) Any other algebraically cleosed field of definition for

V must contain KA(V).

For . the proof of this theorem we send to [4] ; we should
say that the proof involves deformation of polarized varjeties
anc an analytic argument from Kodaira~Spencer theory. The hard

part is 1); we shall need the following consequence of 1%

CORCLLARY, If ?rc Q is a Fuchs extension with Fuchs me-
del ‘¢ M imind =y 32 .algebraically closed, there ‘exists a finite
&
gxXtension 3?% of gyzwmia nonsingular prejective §;~variety
A ; : :
Z such that we have an F ~isomorphism v,’,é'xﬁ Z:'F i
Proof. Apply Theorem ahbove to Vi (K=the algebraic closure

of %) and note that K= ?B and that

Now suppose we are in the hypothesis of Theorem 1 and let

K : . N N
& and - Z be as in the Corollary above, Moreover let Cz fbahd

0,:35M(§ ) - >57¥(Z) be the isomorphism deduced from

Co , = s e 3
the isomorphism in the Corollary, Define on % (Z) ke e

rivations ;gwl’z,..., J\m 7 by the rule gj,z(a @ﬂ* = o(@cﬁ{g

o £



s

o l{\ + >- ' % N y :
(Bt Gy ﬁ;e F 7). Now consider the %" ~derivations of
i oy . Soad ;
DT (Z) ‘into itself défined by

o :
a5 efrek i o |

Clearly d. . -~ maps each lecal ring ef inte iteelf sg

2 2 X
J F

®, F*

x)=K(z,T 0

o
{
¢ el

3.z (7

o e

where . T .is the dual eof the sheaf SZ of .relative differen~

tialss Ut G:AutO(Z/C y=identity component of the group scheme

of C -automorphisms of Z; as well known G is a C ~grouvp.

We elaim:thats Z . “hasia Zariski . open. G-orbit, X (hepce Z - is

almost homogenous in the sense of [1]).'Indeed ONE& can cons-

truct (using. the method of Chow psimts as 4in [lO] or [13 p.406)

a dominant morphism ¢ :X ——>Y from a G-invarisnt Zariski

open subset X of Z te a .variety ‘Y such that for any x & X

we have LF"]‘(‘ﬁ’(x)):Gx. Clearly, for any vector field g e

& HO(Z,TZ/G ). the restriction le is ‘tangent te the fibres

of ¥ and consequently, viewing § as a derivation on iz

we get ~g(L€%((f(Y))):O, Since 5} > vaniéhes on %7%(8 (Y))® 1
2

the same will hold for .U‘ggd‘ml. But now the equality

({,L"'}((g’))o.-_ C forces G(Y) to be equal to € hence Y is a

point and X .is an orbit, Mow fix @ point p &€ X(€ ); the map

i :6—=—> 2, @ . (g)=gp; permits to embed L (2) :into. LC.(E)

p p
and hence to embed ?’M(Z) into 3?K(G). Let jﬁe () be the

] 1 ~

Lie algebravef right inv@rignt “wector fields on G “andg let

6 y(ﬁ} be the image of the natural embedding
S »

F



é’e(@)cgg Phdchin g D@r?x(&?'%(f‘y), #¥%(6)) cf. [6]p.325.

We claim that the restriction map

X

Der  (FX(6), £X(6)) ~ R S (F*(z), #%(6))

c

: : ) 3 , :
' induces an isomorphism of F "-vector spaces and Lie algebras

over 8 ‘

L (6 = 4%z N )
e X : ; . *
7 L, o

Indeec it 15" sufficiént to pfove that the'reStrictionmap

(C(G),C(6))— Dere CE (2, e induces an isomor-

G
i o

But there is a well known icdentification of H° (25 Z/G ) - and

hiem of Lie &@lcebras over : GY ——— H
p, < we

the tanyent space TlG which associates to any tangent vector

t & TlG the vector field HZ e (4 TQ/E,) defined by

1
is the taﬁgeﬁt'map of ﬁ' G —— 7, ﬁ‘( g)=gq). Let” - § be

. i ‘ : Z Y{where T : ===

QZ(Q)”(TlJ‘q)(t) for any g & Z( @ ){where alﬂa.T G >TqZ

the right invariant vector field on G with ﬁﬂ(l)zt. ifaga e

sufficient to see that for any X & G we have (T & )(f.(p))=
J 7

zgz(xp); but this follows from the equality J :ﬁ’oRx where

R G ——> G is the right ttranslation Rx(g)zgx. Cur clainm about

X
£ being an isomorphism of  Lietalgebraf 1" proved;

how let J}

detined oy &l R e e e B M
o ®{% Jr : ﬁ

is thivial Te ctheck~"that for any ee,fiﬁ(c) and for-any

we have [ 5, b.@]ef (G) and y([é’j's,gj)x[% ,Z'j’{G):}

r . : : : Ko v v pok
(Hers - ,] denotes the Poisson bracket on Uere (F7(6),#74B))

1 ; ' Y
Grere 5} G be ths werivations en & (G)
[

*

and D&r@ (d~ o Yo F (Z)) respecrively), Finally let
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: 3) be s = for
dl,G""’cm € xf (G) be such that ~)p(d G ] 7 0
all 4. and oeflne derivations  Dy,...,D on L by
the formulae Djmcg.(fdj,@' We claim that [Uj,ij =0 : feon

all j and k. Indeed we have

(055 = [gj,O‘dk,G} 7 [-dj,6’£,61+ [95,6+%.c]

and the image of the above sum via T equals

[gj ,Z'dk,Z] + [dj 'Z,Xk'z] + [dj,Z'dk,Z] =
=[(r(%g‘ = b 6'6/;(6‘ ==

5 n~ X . ; .
Se J (G) together with Dl""’Dm becomes a differential

field (not embedded in the universal field ) moreover
K ; 2 : :

F7(2) becomes a differential subfield of it and ¢ becomes

an isomorphism of differential fields. Now let Spec(R) be any
ot 3§ s ; X . X .

affine Zariski open subset of G. Put R zR@%?$ e BarlvT R

‘ : : : X 4 "

is @ differential ‘subring of 5(C).“Write C?(L):[?(gl,..,gN),

gi:hi/fi, hi c R, fi € R; replating R~ by Rf (f=f * we

l‘oo hj)

may suppose that g; € R forsall™d, It¥s-clear that ng(Z)[R%J

:S'le where S:QTx[g]....,gN]\gO} S0 S"le Psa fdndtely

generated }:M( Z)~-algebra, By results of Kolchin LGJ po.l42-143

the iscmorphism T=¢ l; 32"3/‘(21) v \,1’%( g Y2l can be extended

to a morphism of differential rings o sstlRtal 1S g s canpdial
if £ denotes the field generated by the image of T then fg

. : . X ; 2

Bs algebiraic over (F (9))0; in our case wesget é~:<f. Put

szker(r)f\Rx € Spec(ﬁﬁ), PRt R Spec(R); we shall still

oy Ay ; X ] :
denote by T the induced morphism R Sl L . We claim
e

" 3 e T
that the point o &€ G(Y ) given by <X 62 P R e R* y*—«JvZL
< r.) &3
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is a G-primitive of F*& £ ( Note that this would close
the proef, since ?i: EO BT e [6_] p. 419), Indeed we have

gfﬂ(o( )= ?’X( T (R)e £ . Moreover for any Ae’:RP we have

L o
c(;o( ()= t(mj))z t(,dj'G;s)W(ZL(uj © )

where & X: (@, —> 2 is the Z[-morphism induced by &,
U (’u'pu

By the very definition of the logarithmic derivative gc%(o()
7

[6]().349 we must have then ‘ ffj(om:d rge o€ dgya

A 3.6
3 et X | .
G-primitive of Fre (S and Theorem 1 is preved,

2. Proot \’of Theorm 2. By [6] p.419 ¥Fe £ is a strongly
normal extension with differential Galois group G. By The
Galois theory [G] p.398 (and by the remark at p.402) 5’
is the field of invariants of the group H(C ) where H is
some C-subgroup of G (C)x}’o). Now suppose o & G(?,L)’given
by =< X, (’OG o =l (PEic): g a fll]  Geprimitive of Fe E .
The equality tiadeqs 8/\?-':(31}11((5} implies that P is the
gensric point eof . the C -scheme G and moreover we get an
5 —morphism N;:

= . 261 S S A :\‘ i sdiately
dJ,G fc%(o(), by hypothesis _dJ.G = ,ﬁj:(C, It immediately

follows that if we let D. be the derivation induced on % (G)

F(c) —r U whose image is & &, Put

% ®. =1 X
¥ : e s DS S oy vhein D LS
L Sy g; (i.e } 37 ) gJ ) i ol e
where § D = b’b@ : 2)/"@ 2(G), pe F ). how we claim

L clfep) if (Fee(e).pes)
there exist & nonsingular projective (C-variety Z, a G-action

on L Z. randia pointiip e . Z(E,) such that the orbit “Gp . is

Zariski epen and the iseptropy group of “p 1s H, If 6" is



complete this is clear by just taking @Z=CGfH. dIf . .6 _is.dinear
then by Chevalley's theorem [5] Ble there exist a G-action

on a prolective space IP and a point pve Fe)whose isotropy
group is H; by Hironaka's‘wdrk on: equivariant reselutiens (cf,
BO]) one can G-equivariantly desingularize zZ —> Gp the
elosure of the-orbit-ef .p -din IP . te ocbtain theidesingd. 7.
Since the field C?(G)H(Cz) of fixed elements of ' (Z(6) under
H(C ) (H(L ) acting by right translations) equals C(Z) we

get (by the computation in [iSJ pp.405-406) that
) 3
(F ()M E)e g(z)

It is=ateaight forward:to.check that Dj takes each local

ring of Z?, into . itself . We.conclude that Zohs is .a Fuchs

model of F e § and we are done,

3. Proof of Theorem .3, Start with the follewing:

LEMMA., Let ?Y:S be a Fuchs.extension with Fuchs medel 'V‘
and suppose we are given a dominant morphism of non~5ingplar
projective F.varieties f:Vv——>W with 65 = F (W) al-
gebraically closed in f; =F(V). Then:

1) @ is a differential subfield of S and Fe @ isa
Fuchs . extension with Euchs model W,

2) 65 (o f; is a Fuchs extension with Fuchs model Vx Spec(®).

W

2 o M {8) ke i S l‘«.»f f
Freol . Let TV/@ =Hom Ov("QV/Q . (ﬂv) .")6 the sheaf of

: ~-derivations fr Y into itsel The ma sz ~%.fz :
QQ derivations from v, into itself. The map = f WG /@
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induces (via Homv(n,Cﬂv)) a map

¢]

°¢v, Tysg ) = Hom, (F JZW@ &,,) =Hon,, (2 d,) -+

W/ | Ty g

The existtence of this map already proves 1). Statement 2)

follows“trivialldy.

Now suppose we are in the hypothesis of Theorem 3 and put
Gm ?%.By the proof of “Theorem "},  if V' is'a Fuches model Yot
Fe§G we may find a finite extension &7 of & such
that V =7 for somenonsingular preojective (fnv riety

2= + F

Z which is almost ho omogenous. By Ll] p /b5 “the* Albanese “map

PA=ALD(Z) " is surjectiveand has connected fibres Zg

(s € A(€)) such thar wi(z_, U,z )=0 for i % 1 (the infor-

mation available in [1} concerning the Albanese morphism is

far more precise but we don't need it)., Putting W:A3y+ we

get a morpnhism f:V9¢+—~——¢\V satisfying the hypothesis in
4 ¥ . e e

our Lemma so both Felh=F (k)  and Ger G

Fuchs extensions, It is apparent from the proof of Theorem 1
+ : AL :
Thet e B is an A-primitive extension. On the other

hand if @) \{er Spec( () then clearly Hj'(V(B , O Y=0

far 1> 1,8y the proef of ‘Thepmn 1 there-existsa finife

extension (%+ of @ such that (V@)@+ & x@+ for

: : ' 0 : :
seomes Crsvaristy X; furthermore if G=Aut”(X)  thBn the ‘extension
o + o B i 5 3 3 °

Brie @ =28 embeds into a G-primitive extension

+ : + , ;
@ e H with 650:3{0. The ‘only thingsto be proved is.that

~

G is linear, But this follows from the obvious equalities
l’x CQ el 2 14(in Tect ‘one gan prave that X z-zs) and

\\
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from @Jp.as or Bﬁﬂ p.161. Theorem 3 1is proved,

REMARK, Let K be the algebraic closure of ¥ in Theorem 3.
The following additionalvfacts can be said in the conclusion of
Theorem 3:

1 e K(g) is not ruled then one can take B=H=2"(95).

2r it Ke K(g) has irregularity zere then one can take 31"’”:(2,'l

Indeed 1) follows from the fact that Z turns out to be
non ruled and almost homogenous, hence an abelian variety by I}OJ.
Finally in 2) Z will have irregularity zero and hence Auto(Z/é?)

will be linear,.

4. Proof eof Theorem 4, We can easily reduce ourselves to the
~
case when J- is algebraically closed, Now it can be easily checked

( see also [2]p.58) that the set

p)c: &V,p for all j}

U=gp€~\’.: cfj
~is the complement of a divisor D en V. If U=V ' then

is a Fuchs extension and the prbof of Theorem 1 immediately
yelds the conclusion. Suppose U %V and let's look for a
contradiction, Since V. is a simple abelian variety D must
be ample. Now it is eésy te check using [9] p.8B5 that the set
of all 3y—automorphisms 6" of V (not necessarily preserving

the zero element of V) such that ¢ (D)=D is finite. On the
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other hand it is clear that any differential 37—automorphism o~

of

_9 induces an gy-automorphism G oV with (D)=,

contradicting the infinity from hypothesis. Theorem 4 is

proved,

1634
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