INSTITUTUL DE MATEMATICĂ INSTITUTUL NAȚIONAL PENTRU CREAȚIE ȘTIINȚIFICĂ ȘI TEHNICĂ

ISSN 0250 3638

MOVABLE SINGULARITIES AND GALOIS THEORY
OF DIFFERENTIAL FIELDS

by

Alexandru BUIUM

PREPRINT SERIES IN MATHEMATICS
No.10/1985

PENTRU OREAȚIE PENTRU OREAȚIE STRINTIFICĂ ȘI TEHNICĂ

DE DE MATERATION

erar besa weer

HETTH THE LONG A

CORPANDED OF SECURITY SECURITY

MOVABLE SINGULARITIES AND GALOIS THEORY OF DIFFERENTIAL FIELDS

by
Alexandru BUIUM*)

February 1985

^{*)} Department of Mathematics, The National Institute for Scientific and Technical Creation, Bdul Pacii 220, 79622 Bucharest, Romania.

MOVABLE SINGULARITIES AND GALOIS THEORY OF DIFFERENTIAL FIELDS

By ALEXANDRU BUIUM

The aim of this paper is to extend to several variables the "one variable theory" developed in [11]. Results will be stated and discussed in Section O below.

We shall follow Kolchin's terminology from [6]. A differential field will mean a field $\mathcal F$ of characteristic zero together with pairwise commuting derivations s_1,\ldots,s_m on it; $\mathcal F_o$ with denote the field of constants of $\mathcal F$. Unless otherwise stated, all differential fields will be assumed to be differential subfields of a fixed universal differential field $\mathcal U$.

For any field K a K-variety will mean here a geometrically integral quasi-projective K-scheme; K(V) will denote the function field of the K-variety V. If L=K(V) and K* is an extension of K we shall put $V_{K} = V \times_{Spec(K)} = Spec(K)$ and K*(V) $K^*(L) = K^*(V_K)$; furthermore $V(K^*)$ denotes as usual the set of K^* -points of V. By a K-group we mean a group scheme of finite type over K.

O.Introduction. An extension $\mathcal{F} \subset \mathcal{G}$ of differential fields will be called a Fuchs extension if there exists a nonsingular projective \mathcal{F} -variety V whose function field is \mathcal{G} and all of whose local rings are differential subrings of \mathcal{G} ; a V as above will be called a Fuchs model for $\mathcal{F} \subset \mathcal{G}$. Fuchs extensions were introduced in [11] only for the case tr.deg. $\mathcal{G}/\mathcal{F}=1$ and they were called there "differential algebraic function fields of one variable with no movable singularity". They are however quite classical objects cf. [12] (see also [11] for further discussion).

In Matsuda's book [11] a classification was given for Fuchs extensions with tr.deg. $\mathcal{G}/\mathcal{F}=1$ (and under the assumption that m=1 i.e. in the case of ordinary differential fields). In the present paper we shall provide such a classification for arbitrary tr.deg. $\mathcal{G}/\mathcal{F} \geqslant 1$ (and arbitrary m $\geqslant 1$) by bringing Fuchs extensions into the setting of Kolchin's Galois theory of differential fields. We should note that methods from [11] apply anly to the "case of curves" so new tools are required for the case we are treating here. Such a tool will be provided by our previous paper [4]. Here is our main conclusion:

THEOREM 1. Let $\mathcal{F}\subset\mathcal{G}$ be a Fuchs extension with $\mathcal{F}_o=\mathcal{G}_o$ and \mathcal{F}_o algebraically closed. Then there exist an extension \mathcal{E} of \mathcal{G} with $\mathcal{E}_o=\mathcal{F}_o$ and a finite extension \mathcal{F}^* of \mathcal{F} contained in \mathcal{E} such that $\mathcal{F}^*\subset\mathcal{E}$ is a G-primitive extension (G being some connected \mathcal{F}_o -group); in particular $\mathcal{F}^*\subset\mathcal{E}$ is strongly normal.

Now by Kolchin's Galois theory [6] subextensions of

strongly normal extensions are well understood; in our case $\mathcal{F}^* \subset \mathcal{F}^*(\mathcal{G}) \quad \text{is a suextension of a strongly normal extension so we see from Theorem 1 that Fuchs extensions turn out to have a quite precise Galois-theoretic description "modulo finite base change". In the converse direction we shall prove:$

THEOREM 2. Let $\mathcal{F} \subset \mathcal{E}$ be a full G-primitive extension with $\mathcal{F}_c = \mathcal{E}_o$, \mathcal{F}_o algebraically closed and G a connected \mathcal{F}_o -group which is either complete or linear. Then for any intermediate differential field \mathcal{G} between \mathcal{F} and \mathcal{E} , the extension $\mathcal{F} \subset \mathcal{G}$ is a Fuchs extension.

Recall that since G is connected, the property of $\mathcal{F} \in \mathcal{E}$ being full simply means that tr.deg. $\mathcal{E}/\mathcal{F} = \dim(G)$. We expect Theorem 2 to hold in fact for arbitrary connected G not necessarily complete or linear.

Now returning to Theorem 1, it follows from [6] p.427 that there exist intermediate differential fields

such that $\mathcal{F}^*\subset\mathcal{F}^o$ is a finite extension, $\mathcal{F}^o\subset\mathcal{A}$ is an A-primitive extension (A being an abelian variety) and $\mathcal{A}\subset\mathcal{E}$ is a Ficard-Vessiot extension. This combined with our Theorem 1 and with Kolchin's analytic description [8] of A-primitive extensions may be viewed as a differential-algebraic answer to Poincaré's problem (formulated at the end of [12]) concerning the nature of transcendental functions which may appear from integration of systems S of algebraic (partial) differential equations with "no movable singularity": roughly speaking, if

S has meromorphic coefficients in some region in \mathbb{C}^m then integration of S may be proved to reduce to integration of a linear system whose coefficients may be expressed in terms of algebraic functions, abelian functions and functions which are primitive (cf. [6]p.404) over the differential field generated by the coefficients of S. We do not enter into details (compare also with [3]).

In connection with splittings into abelian and linear parts we shall prove:

THEOREM 3. Let \mathcal{F}_c \mathcal{G} be a Fuchs extension with \mathcal{F}_o = \mathcal{G}_o . \mathcal{F}_o being the complex field. Then there exist an extension \mathcal{H} of \mathcal{G} with \mathcal{H}_o = \mathcal{F}_o and intermediate differential fields

such that $\mathcal{B} \subset \mathcal{F}^+(\mathcal{G})$ and such that $\mathcal{F} \subset \mathcal{F}^+$ and $\mathcal{B} \subset \mathcal{G}^+$ are finite extensions, $\mathcal{F}^+ \subset \mathcal{D}$ is an A-primitive extension (Abeing an abelian variety) and $\mathcal{B}^+ \subset \mathcal{H}$ is a Picard-Vessiot extension.

Note that Theorem 3 does not follow from Theorem 1 and from the splitting $\mathfrak{F}^* \subset \mathfrak{F}^0 \subset \mathcal{A} \subset \mathcal{E}$ by just putting $\mathfrak{F}^+ = \mathfrak{F}^0$, $\mathfrak{B} = \mathfrak{G}^+ = \mathcal{A}$, $\mathfrak{H} = \mathcal{E}$; indeed one won't have in general that $\mathcal{A} \subset \mathfrak{F}^\circ(\mathfrak{S})$!

As an application of our results we shall give a generalisation to the case of simple abelian varieties of Kolchin's theorem [7] p.809 (see also [11] p.70) on elliptiv differential function fields possessing infinitely many differential automorphisms:

THEOREM 4. Let $\mathcal{F}_{c}\mathcal{G}$ be an extension of differential fields with $\mathcal{F}_{o}=\mathcal{G}_{o}$, \mathcal{F}_{o} algebraically closed and $\mathcal{G}=\mathcal{F}(\mathsf{V})$ with V a simple abelian \mathcal{F} -variety. Suppose there are infinitely many differential automorphisms of \mathcal{G} over \mathcal{F} . Then there exists a finite extension \mathcal{F}^{*} of \mathcal{F} such that the extension \mathcal{F}^{*} \subset $\mathcal{F}^{*}(\mathcal{G})$ is an A-primitive extension (A being an abelian \mathcal{F}_{o} -variety).

Trivial examples show that the assumption on V being simple cannot be removed.

Let's make a final remark on the case tr.deg. $\Im/\Im=m=1$; in this case our results were essentially known from [11] although connection with strongly normal extensions is not explicitely made there). For instance our Theorem 1 follows in this particular case from Theorems 3.8.14 in [11] pp. 13.37 and 91 and from the well known fact that the Riccati equation "reduces" to a (second order) linear equation. Conversely (as the reader will realize) our method can be used to give alternative proofs of the three theorems quoted from [11].

l. Proof of Theorem l. We start by recalling a basic result from $\begin{bmatrix} 4 \end{bmatrix}$. If K is an algebraically closed field (of characteristic zero as usual) and V is a K-variety then a subfield k of K is called a field of definition for V if there exists a k-variety X such that V is K-isomorphic to X_K . One defines:

$$\Delta(V) = \left\{ \int \mathcal{E} \operatorname{Der}_{\mathbb{Q}} \left(K(V), K(V) \right) ; \ \int (\mathcal{O}_{V,p}) = \mathcal{O}_{V,p} \text{ for all } p \in V \right\}$$

$$K^{\Delta(V)} = \left\{ \lambda \in K ; \ \delta \lambda = 0 \text{ for all } \delta \in \Delta(V) \right\}$$

THEOREM [4]. If V is nonsingular and projective then:

- l) $K^{\Delta(V)}$ is a field of definition for V.
- 2) Any other algebraically closed field of definition for V must contain $K^{\Delta(V)}$.

For the proof of this theorem we send to [4]; we should say that the proof involves deformation of polarized varieties and an analytic argument from Kodaira-Spencer theory. The hard part is 1); we shall need the following consequence of 1):

COROLLARY. If $\mathcal{F} \subset \mathcal{G}$ is a Fuchs extension with Fuchs model V and \mathcal{F}_0 algebraically closed, there exists a finite extension \mathcal{F}^* of \mathcal{F} and a nonsingular projective \mathcal{F}_0 -variety Z such that we have an \mathcal{F}^* -isomorphism $\mathbf{V}_{+} \cong \mathbf{Z}_{+} \cong \mathbf{F}_{+}$

Proof. Apply Theorem above to $V_{\rm K}$ (K=the algebraic closure of ${\cal F}$) and note that $K_{\rm O}={\cal F}_{\rm O}$ and that

$$K^{\Delta(V_K)} \subset K_o$$
.

Now suppose we are in the hypothesis of Theorem 1 and let \mathcal{F}^* and Z be as in the Corollary above. Moreover let $\mathcal{C}=\mathcal{F}_o$ and $\sigma:\mathcal{F}^*(\mathcal{G})\longrightarrow\mathcal{F}^*(Z)$ be the isomorphism deduced from the isomorphism in the Corollary. Define on $\mathcal{F}^*(Z)$ the derivations $\mathcal{S}_{1,Z},\ldots,\mathcal{S}_{m,Z}$ by the rule $\mathcal{S}_{j,Z}(\alpha\otimes\beta)=\alpha\otimes\mathcal{S}_{j}\beta$

 $(\alpha \in \mathcal{C}(Z), \beta \in \mathcal{F}^*)$. Now consider the \mathcal{F}^* -derivations of $\mathcal{F}^*(Z)$ into itself defined by

$$d_{j,Z} = \sigma S_j \sigma^{-1} - S_{j,Z}$$

Clearly $d_{j,Z}$ maps each local ring of $Z_{{\red{F}}^*}$ into itself so

$$d_{j,z} \in H^{0}(Z_{\mathcal{F}^{*}}, T_{Z_{\mathcal{F}^{*}}}/\mathcal{F}^{*}) = H^{0}(Z, T_{Z/C}) \otimes_{C} \mathcal{F}^{*}$$

where T is the dual of the sheaf Ω of relative differentials. Put $G=Aut^{\Theta}(Z/C)$ = identity component of the group scheme of C -automorphisms of Z; as well known G is a C -group. We claim that Z has a Zariski open G-orbit X (hence Z is almost homogenous in the sense of [1]). Indeed one can construct (using the method of Chow points as in [10] or [13]p.406) a dominant morphism $\varphi:X\longrightarrow Y$ from a G-invariant Zariski open subset X of Z to a variety Y such that for any $x \in X$ we have $\varphi^{-1}(\varphi(x))=Gx$. Clearly, for any vector field $\theta \in$ \in H 0 (Z,T $_{\mathrm{Z/P}}$) the restriction $\theta|_{\mathrm{X}}$ is tangent to the fibres of arphi and consequently, viewing heta as a derivation on $\mathcal{C}(\mathsf{Z})$ we get $\theta(\varphi^*(\mathcal{C}(Y)))=0$. Since $\mathcal{S}_{i,Z}$ vanishes on $\varphi^*(\mathcal{C}(Y))\otimes 1$ the same will hold for $\sigma \mathcal{S}_{j} \sigma^{-1}$. But now the equality $(\mathfrak{F}^*(\mathcal{G}))_0 = \mathcal{C}$ forces $\mathcal{C}(Y)$ to be equal to \mathcal{C} hence Y is a point and X is an orbit. Now fix a point $p \in X(\mathcal{C})$; the map $\pi_p:G \longrightarrow Z$, $\pi_p(g)=gp$, permits to embed $\mathcal{C}(Z)$ into $\mathcal{C}(G)$ and hence to embed $\mathcal{F}^*(Z)$ into $\mathcal{F}^*(G)$. Let $\mathcal{L}_{\mathcal{C}}(G)$ be the Lie algebra of right invariant vector fields on G and let $\mathcal{L}_{oldsymbol{x}^*}(\mathsf{G})$ be the image of the natural embedding

 $\mathcal{L}_{\mathcal{C}}(G) \otimes_{\mathcal{C}} \mathcal{F}^{\times} \xrightarrow{} \operatorname{Der}_{\mathcal{F}^{\times}}(\mathcal{F}^{\times}(G), \mathcal{F}^{\times}(G))$ cf. [6]p.325. We claim that the restriction map

$$\operatorname{Der}_{\mathcal{C}}(\mathcal{F}^{*}(G),\mathcal{F}^{*}(G)) \to \operatorname{Der}_{\mathcal{C}}(\mathcal{F}^{*}(Z),\mathcal{F}^{*}(G))$$

induces an isomorphism of \mathcal{F}^* -vector spaces and Lie algebras over \mathcal{C} :

$$g: \mathcal{L}_{\mathcal{F}^*}(G) \longrightarrow H^0(Z_{\mathcal{F}^*}, T_{Z_{\mathcal{F}^*}/\mathcal{F}^*})$$

Indeed it is sufficient to prove that the restriction map $\text{Der}_{\mathcal{C}}\left(\mathcal{C}(\mathsf{G}),\mathcal{C}(\mathsf{G})\right) \to \text{Der}_{\mathcal{C}}\left(\mathcal{C}(\mathsf{Z}),\mathcal{C}(\mathsf{G})\right) \quad \text{induces an isomorphism of Lie algebras over } \mathcal{C}\colon \mathcal{L}_{\mathcal{C}}(\mathsf{G}) \longrightarrow \mathsf{H}^0(\mathsf{Z},\mathsf{T}_{\mathsf{Z}/\mathcal{C}}).$ But there is a well known identification of $\mathsf{H}^0(\mathsf{Z},\mathsf{T}_{\mathsf{Z}/\mathcal{C}})$ and the tangent space $\mathsf{T}_1\mathsf{G}$ which associates to any tangent vector $\mathsf{T}_1\mathsf{G}$ the vector field $\theta_{\mathsf{Z}}\in\mathsf{H}^0(\mathsf{Z},\mathsf{T}_{\mathsf{Z}/\mathcal{C}})$ defined by $\theta_{\mathsf{Z}}(\mathsf{q})=(\mathsf{T}_1\mathfrak{T}_{\mathsf{q}})(\mathsf{t})$ for any $\mathsf{q}\in\mathsf{Z}(\mathcal{C})$ (where $\mathsf{T}_1\mathfrak{T}_{\mathsf{q}}:\mathsf{T}_1\mathsf{G}\longrightarrow\mathsf{T}_{\mathsf{q}}\mathsf{Z}$ is the tangent map of $\mathfrak{T}_{\mathsf{q}}:\mathsf{G}\longrightarrow\mathsf{Z}$, $\mathfrak{T}_{\mathsf{q}}(\mathsf{g})=\mathsf{gq}$). Let θ_{G} be the right invariant vector field on G with $\theta_{\mathsf{G}}(\mathsf{1})=\mathsf{t}$. It is sufficient to see that for any $\mathsf{x}\in\mathsf{G}$ we have $(\mathsf{T}_\mathsf{x}\mathfrak{T}_\mathsf{p})(\theta_{\mathsf{G}}(\mathsf{p}))=\theta_{\mathsf{Z}}(\mathsf{xp})$; but this follows from the equality $\mathfrak{T}_{\mathsf{xp}}=\mathfrak{T}_\mathsf{p}\circ\mathsf{R}_\mathsf{x}$ where $\mathsf{R}_\mathsf{x}:\mathsf{G}\longrightarrow\mathsf{G}$ is the right translation $\mathsf{R}_\mathsf{x}(\mathsf{g})=\mathsf{gx}$. Cur claim about S being an isomorphism of Lie algebra x is proved.

Now let $\delta_{1,G},\ldots,\delta_{m,G}$ be the derivations on $\mathcal{F}^*(G)$ defined by $\delta_{j,G}(\alpha \otimes \beta) = \alpha \otimes \delta_{j}\beta$ ($\alpha \in \mathcal{C}(G),\beta \in \mathcal{F}^*$). It is trivial to check that for any $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$ and for any $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$ and $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$ and $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$ and $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$ (where $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$) denotes the Poisson bracket on $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$) and $\theta \in \mathcal{L}_{\mathcal{F}^*}(G)$ respectively). Finally let

 $d_{1,G},\ldots,d_{m,G}\in\mathcal{L}_{\mathcal{F}^*}(G)$ be such that $\mathcal{S}(d_{j,G})=d_{j,Z}$ for all j and define derivations D_1,\ldots,D_m on $\mathcal{F}^*(G)$ by the formulae $D_j=\int_{j,G}+d_{j,G}$. We claim that $\left[D_j,D_k\right]=0$ for all j and k. Indeed we have

$$[D_{j},D_{k}] = [S_{j,G},d_{k,G}] + [d_{j,G},S_{k,G}] + [d_{j,G},d_{k,G}]$$

and the image of the above sum via ρ equals

$$\left[\delta_{j,Z}, d_{k,Z} \right] + \left[d_{j,Z}, \delta_{k,Z} \right] + \left[d_{j,Z}, d_{k,Z} \right] =$$

$$= \left[\sigma \delta_{j} \sigma^{-1}, \sigma \delta_{k} \sigma^{-1} \right] = 0$$

So $\mathcal{F}^*(G)$ together with D_1, \ldots, D_m becomes a differential field (not embedded in the universal field 2ℓ); moreover $\mathcal{F}^{*}(\mathsf{Z})$ becomes a differential subfield of it and σ becomes an isomorphism of differential fields. Now let Spec(R) be any affine Zariski open subset of G. Put $R^* = R \otimes_{\rho} \mathcal{F}^*$; clearly R^* is a differential subring of $\mathcal{Z}^*(G)$. Write $\mathcal{C}(Z) = \mathcal{C}(g_1, \dots, g_N)$. $g_i = h_i/f_i$, $h_i \in R$, $f_i \in R$; replacing R by R_f ($f = f_1 \dots f_N$) we may suppose that $g_i \in R$ for all i. It is clear that $\mathcal{F}^*(Z)[R^*]=$ $=S^{-1}R^*$ where $S=\mathfrak{F}^*[g_1,\ldots,g_N]\setminus\{0\}$ so $S^{-1}R^*$ is a finitely generated $\mathcal{F}^*(Z)$ -algebra. By results of Kolchin [6] pp.142-143 the isomorphism $\tau = \sigma^{-1} : \mathcal{F}^*(Z) \longrightarrow \mathcal{F}^*(G) \subset \mathcal{U}$ can be extended to a morphism of differential rings $\tau:S^{-1}R^*\longrightarrow \mathcal{U}$ such that if $\mathcal E$ denotes the field generated by the image of $\mathcal E$ then $\mathcal E_{\alpha}$ is algebraic over $(\mathcal{F}^*(\mathcal{G}))_{o}$; in our case we get $\mathcal{E}_{o} = \mathcal{C}$. Put $P^* = \ker(\tau) \cap R^* \in \operatorname{Spec}(R^*)$, $P = P^* \cap R \in \operatorname{Spec}(R)$; we shall still denote by T the induced morphism $R^* \longrightarrow 2L$. We claim that the point $\alpha \in G(\mathcal{U})$ given by $\alpha^*: \mathcal{O}_{G,P} = \mathbb{R}_P \subset \mathbb{R}^* \xrightarrow{\tau} \mathcal{U}$

is a G-primitive of $\mathcal{F}^* \subset \mathcal{E}$ (Note that this would close the proof, since $\mathcal{F}^*_o = \mathcal{E}_o$, cf. [6] p. 419). Indeed we have $\mathcal{F}^*(\alpha) = \mathcal{F}^*(\tau(R)) = \mathcal{E}$. Moreover for any $\lambda \in R_p$ we have

$$S_{j} \propto *(\lambda) = \tau(D_{j}\lambda) = \tau(d_{j,G}\lambda) = \propto *(d_{j,G}\lambda)$$

where $\alpha_{\mathcal{U}}^{*}\colon \mathcal{O}_{G_{\mathcal{U}},\mathfrak{D}_{\mathcal{U}}}\longrightarrow \mathcal{U}$ is the \mathcal{U} -morphism induced by α . By the very definition of the logarithmic derivative $\mathcal{U}_{j}(\alpha)$ [6]p.349 we must have then $\mathcal{U}_{j}(\alpha)=d_{j,G}$ so α is a G-primitive of $\mathcal{F}^{*}\subset\mathcal{E}$ and Theorem 1 is proved.

2. Proof of Theorm 2. By [6] p.419 $\mathcal{F} \in \mathcal{E}$ is a strongly normal extension with differential Galois group G. By the Galois theory [6] p.398 (and by the remark at p.402) \mathcal{G} is the field of invariants of the group $H(\mathcal{C})$ where H is some C-subgroup of G ($C = \mathcal{F}_{G}$). Now suppose $\alpha \in G(\mathcal{U})$, given by $\alpha^*: \mathcal{O}_{G,P} \to \mathcal{U}$ (PEG) is a full G-primitive of $\mathcal{F} = \mathcal{E}$. The equality tr.deg. \mathcal{E}/\mathcal{F} = dim(G) implies that P is the generic point of the $\mathcal C$ -scheme G and moreover we get an \mathcal{F} -morphism $lpha_{\mathcal{F}}^{\ st}\colon \mathcal{F}(\mathsf{G}) \longrightarrow \mathcal{U}$ whose image is \mathcal{E} . Put $d_{1,G} = \ell \mathcal{S}_{1}(\alpha)$; by hypothesis $d_{1,G} \in \mathcal{L}_{\mathcal{F}}(G)$. It immediately follows that if we let D_i be the derivation induced on \mathcal{F} (G) via $\alpha_{\mathcal{F}}^*$ by δ_j (i.e. if $D_j = (\alpha_{\mathcal{F}}^*)^{-1} \delta_j \alpha_{\mathcal{F}}^*$) then $D_j = \delta_j G^+ d_j G$ where $S_{1,G}(\mathcal{T}\otimes\mathcal{B}) = \mathcal{T}\otimes\mathcal{S}_{j}\mathcal{B}$ ($\mathcal{T}\in\mathcal{C}(G)$, $\mathcal{B}\in\mathcal{F}$). Now we claim there exist a nonsingular projective \mathcal{C} -variety Z, a G-action on Z and a point $p \in Z(\mathcal{C})$ such that the orbit Gp is Zariski open and the isotropy group of p is H. If G is

complete this is clear by just taking Z=G/H. If G is linear then by Chevalley's theorem [5] p. there exist a G-action on a projective space IP and a point p \in IP(C)whose isotropy group is H; by Hironaka's work on equivariant resolutions (cf. [10]) one can G-equivariantly desingularize $Z \longrightarrow \overline{\text{Gp}}$ the closure of the orbit of p in IP to obtain the desired Z. Since the field $C(G)^{H(C)}$ of fixed elements of C(G) under H(C) (H(C) acting by right translations) equals C(Z) we get (by the computation in [13] pp.405-406) that

$$(\mathcal{F}(G))^{H(\mathcal{C})} = \mathcal{F}(Z)$$

It is straight forward to check that D takes each local ring of Z into itself. We conclude that Z is a Fuchs model of $\mathcal{F} \in \mathcal{G}$ and we are done.

3. Proof of Theorem 3. Start with the following:

LEMMA. Let $\mathcal{F}_c\mathcal{G}$ be a Fuchs extension with Fuchs model V and suppose we are given a dominant morphism of non-singular projective \mathcal{F} -varieties $f:V\longrightarrow V$ with $\mathcal{G}=\mathcal{F}(V)$ algebraically closed in $\mathcal{G}=\mathcal{F}(V)$. Then:

- l) ${\mathbb G}$ is a differential subfield of ${\mathcal G}$ and ${\mathcal F}={\mathbb G}$ is a Fuchs extension with Fuchs model W.
 - 2) $\mathcal{B} \in \mathcal{S}$ is a Fuchs extension with Fuchs model $V \times \operatorname{Spec}(\mathcal{B})$.

Proof. Let $T_{V/\mathbb{Q}} = \underline{\operatorname{Hom}}_{\mathcal{O}_V}(\Omega_{V/\mathbb{Q}}, \mathcal{O}_V)$ be the sheaf of \mathbb{Q} -derivations from \mathcal{O}_V into itself. The map $f^*\Omega_{W/\mathbb{Q}} \to \Omega_{V/\mathbb{Q}}$

induces (via $\operatorname{Hom}_{\mathsf{V}}({\scriptscriptstyle{\mathsf{-}}},\,{\mathcal{O}}_{\mathsf{V}})$) a map

$$\mathsf{H}^{\mathsf{o}}(\mathsf{V},\mathsf{T}_{\mathsf{V}/\mathbb{Q}}) \longrightarrow \mathsf{Hom}_{\mathsf{V}}(\mathsf{f}^{*}\Omega_{\mathsf{W}/\mathbb{Q}},\mathcal{O}_{\mathsf{V}}) = \mathsf{Hom}_{\mathsf{W}}(\Omega_{\mathsf{W}/\mathbb{Q}},\mathcal{O}_{\mathsf{W}}) = \mathsf{H}^{\mathsf{o}}(\mathsf{W},\mathsf{T}_{\mathsf{W}/\mathbb{Q}})$$

The existence of this map already proves 1). Statement 2) follows trivially.

Now suppose we are in the hypothesis of Theorem 3 and put $\mathcal{C}=\mathcal{F}_0$. By the proof of Theorem 1, if V is a Fuchs model of $\mathcal{F} = \mathcal{G}$ we may find a finite extension \mathcal{F}^{\dagger} of \mathcal{F} such that $V_{2^+} \simeq Z_{2^+}$ for some nonsingular projective C-variety Z which is almost homogenous. By [1] p.55 the Albanese map a: $Z \longrightarrow A=Alb(Z)$ is surjective and has connected fibres Z_s (s \in A(\mathcal{C})) such that $H^{i}(Z_{s}, \mathcal{O}_{Z_{s}})=0$ for $i \geqslant 1$ (the information available in [1] concerning the Albanese morphism is far more precise but we don't need it). Putting W=A ~+ we get a morphism $f:V_{2+} \longrightarrow W$ satisfying the hypothesis in our Lemma so both $\mathcal{F}^{\dagger} \subset \mathcal{B} = \mathcal{F}^{\dagger}(A)$ and $\mathcal{B} \subset \mathcal{F}^{\dagger}(\mathcal{G})$ are Fuchs extensions. It is apparent from the proof of Theorem 1 That $\mathcal{F}^{\dagger} \subset \mathcal{B}$ is an A-primitive extension. On the other hand if $V_{\mathcal{B}} = V_{\mathcal{X}} \times Spec(\mathcal{B})$ then clearly $H^{1}(V_{\mathcal{B}}, \mathcal{O}_{V_{\mathcal{B}}}) = 0$ for $i \geqslant 1$. By the proof of Theorem 1 there exists afinite extension \mathcal{B}^+ of \mathcal{B} such that $(V_{\mathcal{B}})_{\mathcal{B}^+} \simeq X_{\mathcal{B}^+}$ for some $\mathcal C$ -variety X; furthermore if G=Aut $^{
m O}$ (X) then the extension $\mathcal{B}^+ \subset \mathcal{B}^+(\mathcal{F}^+(\mathcal{G}))$ embeds into a G-primitive extension $\mathcal{B}^+ \subset \mathcal{H}$ with $\mathcal{B}_0^+ = \mathcal{H}_0$. The only thing to be proved is that G is linear. But this follows from the obvious equalities $H^{1}(X, \mathcal{O}_{X})=0$, $i \geqslant 1$ (in fact one can prove that $X \simeq Z_{s}$) and

from [1]p.55 or [10]p.161. Theorem 3 is proved.

REMARK. Let K be the algebraic closure of \mathcal{F} in Theorem 3. The following additional facts can be said in the conclusion of Theorem 3:

- 1) If $K \subset K(G)$ is not ruled then one can take $\mathcal{B} = \mathcal{H} = \mathcal{F}^+(G)$.
- 2) If $K \subset K(G)$ has irregularity zero then one can take $\mathcal{F}^{\dagger} = \mathcal{B}^{\dagger}$

Indeed 1) follows from the fact that Z turns out to be non ruled and almost homogenous, hence an abelian variety by $\begin{bmatrix} 10 \end{bmatrix}$. Finally in 2) Z will have irregularity zero and hence $\operatorname{Aut}^0(\mathbb{Z}/\mathcal{C})$ will be linear.

4. Proof of Theorem 4. We can easily reduce ourselves to the case when ${\cal F}$ is algebraically closed. Now it can be easily checked (see also 2p.58) that the set

$$U = \left\{ p \in V : S_j(\mathcal{O}_{V,p}) \subset \mathcal{O}_{V,p} \text{ for all } j \right\}$$

is the complement of a divisor D on V. If U=V then is a Fuchs extension and the proof of Theorem 1 immediately yelds the conclusion. Suppose $U \neq V$ and let's look for a contradiction. Since V is a simple abelian variety D must be ample. Now it is easy to check using $\begin{bmatrix} 9 \end{bmatrix}$ p.85 that the set of all \mathcal{F} -automorphisms \mathcal{F} of V (not necessarily preserving the zero element of V) such that $\mathcal{F}(D)=D$ is finite. On the

other hand it is clear that any differential \mathcal{F} -automorphism σ of \mathcal{S} induces an \mathcal{F} -automorphism σ of V with $\sigma(D)=D$. contradicting the infinity from hypothesis. Theorem 4 is proved.

REFERENCES

- l Barth W. and Oeljeklaus E., Uber die Albanese Abbildung einer fasthomogenen Kahler-Mannigfaltkeit, Math.Ann. 211-1 (1974),47-73.
- 2 Buium A, Class Groups and differential function fields, J.Algebra 89-1(1984),56-64.
- 3 Buium A., Corps differentiels et modules des variétés algébriques, C.R.Acad.Sci Paris 299(1985)
- 4 Buium A., Fields of definition of algebraic varieties in characteristic zero, Preprint INCREST (1985).
- 5 Humphreys J.E., Linear Algebraic Groups, Springer Verlag New York Heidelberg Berlin 1975.
- 6 Kolchin, fferential Algebra and Algebraic Groups, Academic Press, New York 1973.
- 7 Kolchin E.R., Galois theory of differential fields, Amer.J.Math. 75(1953),753-824.
- 8 Kolchin E.R., Abelian extensions of differential fields, Amer.
 Math.82(1960),779-790.

- 9 Lang S., Abelian Varieties, Springer Verlag New York Berlin Heidelberg Tokyo 1983.
- 10 Lieberman D.I., Compactness of the Chow scheme: applications to automorphisms and deformations of Kahler manifolds, Seminaire F.Norguet 1976.
- ll Matsuda M., First Order Algebraic Differential Equations,
 Lecture Notes in Math. 804, Springer Verlag Berlin Heidelberg
 New York 1980.
- 12 Poincaré H, Sur un theoreme de M. Fuchs, Acta Math., 7(1885), 1-32.
- 13 Rosenlicht M., Some basic theorems on algebraic groups, Amer.

 J.Math. 78(1956),401-443.

INCREST, BUCHAREST

ROMANIA