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REPRESENTATION OF MONOTONE OPERATORS
AS SUBGRADIENTS OF CONVEX FUNCTIONS
(preliminary version)
DAN TIBA

1, Introduction

¥ : % *
Let X and Y be reflexive Banach spaces with duals X , Y .
By the Asplund [l] renorming theorem we may assume them to be

strictly convex.

Consider K :

X X — [=00, +@§3 be a closed, proper, saddle
function satisfying

(1.1) el, cl, K = K,
For fundamentals of convex analysis we quate the monooraphs

of V.Barbu, Th.Precupanu [2] + R.T.Rockafellar [7] : I,Ekelaﬁd,
R, Temam [3] .

The following result will be important in the sequel

Theorem 1., The formulae

;/{4 e * ‘
(1.2) L(x,¥) = sup {(y,y V=K, ) v &% }

(1.3) K(x,y) = sup {'(Y,y*)'L,(X,Y*):y*é'X*}

define a one-to-one corresmondence between convex, lower

Y : * v
semicontiuous, pover functions L on X x X and closed, vover

saddle functions satisfving (1.1). Moreover, we have

(1.4) [x*,ykjé BK(x,Vy$>[x*,y]€ SL(x,y*).

In a sequence of vnapers [4] v [5] ’ [6] » E.Krauss defined

and studied the representation of arbitrary monotone onerators

via subgradients of saddle functions bv the formula

* e SR _
(1.5) x € Tx<®[x" ,x"] € 9k (x,x)



- :
It is proved that the operator TKCZ X x X is maximal

monotone and that every maximal monotone operator may be

represented in this way. Moreover function K in (1.5) may be

assumed skew-symmetric, i.e.

(1.6) clK(x,y) = el Wiy x) ¥ yex,

The purpose of this paper is to obtain similar results
using convex functions instead of saddle functions. However,
we underline that generally, our method depends heavily on the

results of E.Krauss.

2. Representation resulte

*® ;
Tt olisne X an -9]~cw, +@%] be a convex, lower semicontinuous

function.

; *
Definition 1. Function L is called skew-symmetric if L(x,y )=

£ % * % :
=L (y ,x) for any yeX , x €X.
o *
Here'li : X % X ~a]-cw, +°{] is the conjugate of L.
Let K be the saddle function associated with 1, by (03,

Theorem 2 L is skew-symmetric 1iff X isg skew-symmetric,

Proof.

oo

v %
Denote (.,.) the patring between X and X :
* * * * %
L (y ,x) = sju’?*{(y YR YLy x )} =
My

= sup (y*,y)+(g,x*) = SUup (x*,z)-clzK(v,z)
¥
V¥ : P

by (1.2). Then

de % ® % %
L (y ,x)zsup*{(y Y)Y+ (X,x Y-sup {(x ,z)+cllK(z,y)}} since
YeX Z

K is skew-symmetric.
Let ?(z)=wcllK(2,y)a It is convex, lower semicontinuous,

proper if y& dom K. It is enouch to work with v €dom K since we

take sup after all the values y € X. We have



it

x % % * * kg
L (y ,x)= sup {(y (YY), x )-p (x )}
Vox*

= sup  sup { (2, %*)=pp? (%) +(Y*IY)y
et

= S}}l@ {(y* py)-%*}ﬁ(x)} = sup {(yfy*)ccllK(x,Y)}

: ) y

: '»'t‘ ’ N * = P
a;p {(y’ry ) clzcllK(x,y)} ~-&§1p {(ypy ) K.(X'Y)s =

(]

= L(Xfy*) e

Conversely, from (1,3) we see that clszK, therefore

clzK(y,x)msup {(x,y*)msup_{(z*,y)+(z,y*)~L(z,z*)%}

y% 2%,z

= sup {(x y*)=sup {(zgy*)+sup {(z*,y)~L(z Z*)y}}
v z*

= sup {ﬂX;Y*) 5up 1(ZPV“)4K(£'Y)}}
® Z
2rsip &(x,Y*)msupi (Z,Y*)“GcllK(Z:Y))}.}
y* 5

Returning to the notation with p(z), we get:

clzx(y,x)m sup &(x,y*)»y*(y*)} =@(x)mwcllK(x,y)s
; il :

This finishes the proof.

Taking into account (1.4) and (1.5), we state

Definition 2. The.operator T, associated with L is given by:

4

(2o [xrix) Eap < [talee obibe s

Proposition 1. Let L be a convex, lower semicontinuous , proper

function on X x X*.. Then TL is monotone.

Proof.

For all [x*gx] : [?*,i] & TL we have

Li{x,x*) £ L{z,2*)+(x¥* x-2)+ (X, x%=2 )
Ly,y*) € Lw,w*)+(y¥*,y-w)+{y, y*-w*)

for any [z,zﬂ ’ fw,w* (5 £y T T e 0 1 [z, ﬂ

= Ly,y{] and [w,w*]= [k,x*] ; By adding the two inequalities
we obtain the conclusion.

Examples

1) Let 2}{»-:)]-&& .{.oq,] be
i +T1 Pe convex, lowersemicontinuous, proper



and L(x,y*)= p(x)+¥* (y*). Then T;=0 9.
2 SheyM =1 (=t P gy
2 2

Then TLm?, the duality mapping on X.
=1

=T
* &
= L

Theorem 3. gﬁ s Xenae X*-§]~°0,+°{}_is convex, lower semicontinous

g s

3y T

proper, skew-symmetric, then T. is maximal monotone.
&l

- Eroof,

etk Xix X —a[¥oo,+°{} be the skew=-symmetric, saddle function
defined by (1.3}, Then (1.4), (2.,1) give x*é'TLx <=> [x*,x%] G

oK (x,x) and by Krauss [5} P9, T.. is maximal monotone.

i
Theorem 4, Let ACX x X* be a maximal monotone operator. There

exists L:X x X* “9}~n0,+em] convex proper, lower semicontinuous,

skew-symmetric, such that AmTLQ

Proof.

s erer s v

By Corollary 1, p.13, Krauss [S] » there exists K:X x X ~§[Qa5+aﬂ
closed, proper, skew=symmetric saddle fgncticn, such that ‘

A=Tp. Take L given by (1.2). Then it 'satisfies all the conditions
of the Theorem.

3. Pinal remarks,

First we give:: a new and purely variational (without duality
arguments) proof of the Theorem of Krauss used in Theorem 3,

Theorem 5. let K:iX' x X m?[?oa, +o@ be a saddle, closed, proper

skew-symmetric function. Then the operator TK defined by (1.5)

is maximal monotone.

Obviously TK is monotone. In order to be maximal, we consider the
equation

(Je1) e T Sibk

for all x* € X*, F is as in Example 2.

Equivalently, we have:

(3.2) Ex*,x*.e [jTKx,TKQJ +_[?x;F§] 3



{3.3) fxﬁ,xé] € PK(x,x)+ fo,F%] )
(3.4) I0,0] K (x,x)+ [FX;F%I - [X*,Xﬂ .
Consider the skew-symmetric, proper, closed saddle function
o X % X3 M(X,y)=K(Xry)+%fo2“%[x§2~(xx,x—y). We remark that:
M(x,y)= 3K (x,y)+ [ﬁx;?y] »[%ﬁyxgli and (3.4) is equivalent with
[0,0] €2mex,x) _
that is M has a saddle point of the form [k,x] .
The existence of a saddle point for M is obvious by the

coercivity due to Ly zmil x | 2.

2 2
Let [XO'YOJ be this point. S%nce'M is closed, skew=-symmetric
EYO'XO] is also a saddle point. » |
Since the space is strictly convex, also by the presence
of’

1 [y[ 2«% lx{ 2, M is strictly concave-convex, therefore
5 :

the saddle point is unique and we conclude x This finishes

040"
the proof.

Finally, in opposition with séction 2, we study in detail
the case of symmetric convex funcéions. Unfortunately, ‘this
condition is too restrictive and the result  doesn’t extend
beyond the classical subdifferential. .

Let L: X x X‘mé]»oo,+mﬂ be a convex, lower semicontinuous,
proper function.

Definition 3. L is called symmetric 1€ Lix,y)=lily, %) for

all x,y eX.

With L the following monotone operator is associated:
(3.5) AsXHX*
x* ¢ Ax <ﬁ>[k*,xﬂ €. 0Llx, ).

Operator A is monotone without the symmetry assumption,

Theorem 6, If L is symmetric, A is maximal monotone.

Proof.

Consider the equation



(3.6) x* €Ax+¥x,
Equivalent, we have:
[k*,x*] € [Ax,Aé} %}X,F%} 7
[k*,x*} & DL(x,x)+ fo,Fﬁ] 5
~liet M X ~q]~c¢,+o$] be the convex, iower semicontinuous
function given by
Mx,y)=L(x,y)+1 |x{ 2+£ [ zm(x*ﬁx+y)
Obviously M iszsymmetric and (3.6) becones [b,o} & DM(x,x).
Since M is coercive, it gas a minimum poiﬁt, unique since
A sl 2+£ | Y] 2 is strictly convex. Let us denote it [xO,yé} By
ihe symmgtry property [yogxo] is a minimum point for M too and
we infer X0=Y g
Therefore equation (3.6) has solution for any x* € X* and the
proof follows.
The following result shows that not every maximal monotone
operator AC X x X* may be represented in the form (3.5).
Consider w:x-9]~c0,+oo] the convex, lower semicontinous
proper function

p(xj=1L(x,x).
7

Proposition 2. The operator A defined by (3.5) coincides

with 5.

Proof.

P e

- It is enough to show that A C 3. We have
x* ¢ Ax ¢${%*,x§} € oL(x%,x)=DL(x,x) SL(v,v)HX*,x~v)+(x*,x-v),

= Yx) £ pv)+(x*,x-v), V¥ vg}’ .
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