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Abstract. We establish the system of equations for the hygro-
thermomechanical behaviour of a composite material, using the homo-
genization method. The macroscopic coefficients are deduced and
it is proved that the macroscopic system of equations is a coupled
one, the temperature and moisture equations containing new terms.
Finaly the convergence theorem for the homogenization proces: is

proved.

1s INTRODUCTION

l.1. Generalities

In the general framework of the ﬁomqqenization method [},2]
we consider the problem of linear elasticity of a composite mate-
rial under the effects of combined moisture and thermal environm-
ments. The periodic structure of the composite material is asso-
ciated with a small parameter ¢ . The asymptotic process, ¢ - 0,
implies that the number of periods is verv large.

All hygrothermomechanical properties are different in the

matrix and in the inclusions, and their magnitude is of order one.



1.2. General equations

We consider a parallelipipedic period Y of the Space of

the variables ¥ (i=1,2,3) formeqd by two parts ¥. and ¥

1

(the

matrlx and the inclusion) Separated by a smooth boundary B

We also denote by Y. (i=1,2) the tnion of the Y parts of all

periodsqs If S is the domain of the composite material in the

Space of the variables Xy o+ We introduce the small parameter ¢

and the domains izei defined by

-Q.i,i=£x; e, we ¢ Yi} (i=1,2)

In jlgi we have the equations:
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¢ ¢
where ng and eij are the respective linear stress and strain

£

tensors, Bglis tﬁe temperature, H is the moisture concentra-
tion; u;'are the components of the displacement vector, To and »
Ho are the respective absolute reference temperature and mois-
ture content, fi are the body force components,”and h are the
respective heat and»moisture supply. The stiffness tensor c;jkh y

¢
the strain-temperature tensor pij and the strain-moisture tensor
¢

L i = I = € 2, € ¢ o t
Jij are symmetsic . tensors: ©iikh Ckhi § Ciikh ’ Pij = Pji .
2z ozi
e R :
The coefficients are kij ~ the termal econductivity tensor,
. :
dij - the hygroscopic conductivity-tensor, o ; the specific heat

at constant deformation, bE the specific hygroscopic capacity
€

and f the mass density.
We look feor Y-periodic coefficients in the varialbe y = ?

ij

ez k), afimza @), ¢frze @, cfez o) ana
b ()= b (%)

The boundary conditions on M are:

[ufj =0 , {G‘;.n.] =0
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S s Ty gt
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(] =0, fra =0
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1.3. Two-scale asymptotic process

In order to study the asymptotic process ¢= 0 we consider

the classical expansions [1,2J:
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u (x,t) = Eo(x,t) + fgl(x,y,t)+ Pk

¢
PREE) = 8%, vit) 40 Gy de L. (1.7
H (x,t) = Ho(x,y,t) + le(x,y,t)+ T

and all functions are considered to be Y periedic with
respect to the variable y. The two-scale asymptotic expansion is
obtained by considering that the dependence in x is obtained
directly and through the variable y. The derivatives must be

considered as

d ? ;N
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j Xy i
and then
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2. MACROSCOPIC EQUATIONS

2.1. Macroscopic balance of momentum

In order to obtain the macroscopic equation we use (1.7)
and (1.8) in (1.1) and (1.6) and we identified the succesive

powers of € . At orders ¢ 1 and ¢ © we have

3-::‘;;
—3xl = (21

1] . e e(y) b -f, (2.2)

The mean operator

~

i
= o dufly 2. 5}

applied to (2.2) give us the macroscopic equation of balance of

momentum:
1] _% 1. ¢ (2ah)
,__\X. - g 2 i li o
¢ =3 e

Remark 2.1. The equation (2.4) is the classical homogeneized

equation for the linear elasticity (2].

2.2. Macroscopic conductivity tensors

Flrst it.is necessary to observe that the equations . (1.2)
and (1.3) are of the same type. As it usually happens in homcge-
nization problem [l,ZJ, @O and H° does not depend on y. . Using
the same computation as in the case of linear thermoelasticity of

composite materials [3] we obtain
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where w? and h) are the solutions of H;er(Y)’ with %j=0 and

h3=0, of the equations:

A 20 gﬁk
e = 1€ ., 1
2( id ) W yijt§ e ¥y @)Y ¢ Hper(y) (2511)
3 hj '3‘10 g ? die 1
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i ie R 4 -7 ye9ﬂ y M¥e B  (¥) (2.12)

Remark 2.2. The macroscopic thermal conductivity tensor kzj
and the macroscopic hygroscopic conductivity tensor‘diﬁ drediffe-
rent from the simply mean values of the microscopic tensors; and

~ they was obtained in classical way (2,3,4].

2.3. Macroscopic constitutive equation

As in the case of thermoelasticity of composite materials

[3} we must return to the equation (2.1) named the local equation.

Using (1.8), the equation (2.1) takes the ‘form
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or in the variational formulation
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abstraction of a function depending on x and t.

Using (2.18) we have
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and applying the mean operator (2.3) to the last equation we

obtain the macroscopic constitutive equation

Oi(ijjzcgjkh,;ih g o)
~with:

czjkh=g;7kh : [Cijmnemny<ﬂkh)J - (ewdoy

rlj (1] tljmn mnij)JN = g;j+ [anemny(ﬂlj)J (2+21)

Qz'_EL)]'_——"ZL:'iJr{cl.Jmn mnv(X)] =‘Q;j+ ﬁimnemny lj)] (e

Remark 2.3. The macroscopic constitutive equation (2.19) is

also linear. (2.20) is the macroscopic stiffness tensor obtained
first in the classical linear elasticity [2]. The macroscopic
strain-temperature tensor (2.21) and the macroscopic strain-mois-
ture tensor (2.22) depends also of the microscopic stiffness. The
- equalities (2.21) and.(2.22) results from (2:15) ; (2.36) and
(2.17) by taking as test functions succesively Hkh, C) and7£ and

using the symmetry of cljmn - Fij and « 13 &

2.4. Macroscopic equations for temperature and moisture

Brem “(1:2]) “andi (1. 3) ", ‘usihg (1. 7) ‘at order go we have

the equations:
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If we take the mean value of (2.23) and (2.24) we obtain,

as-in [3}, the macroscopic equations:

0Ny o . el ! o 0
¢ b G ~
(Ko=) = T 5 9. — 3] _ (&lr f)ﬂ-—wé Bty (2.25)
%xi ijJ % xj e 1 0% 0 2t @ .t
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) e e ) - -
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where
= Piye55y @) (2.27)
<= T by = V/ w =
0= Tpu414y T lm s (@0 (%y28)
A= (4138159 (X)) (2.29)

Remark 2.4. The macroscopic equation for the temperature
(2.25) contain the time derivative of the moisture,. 'and the macro-
scopic equation for the moisture concentration (2.26) contain
the time derivative of the temperature. Then we havé a complet
cowpled system of -egudtiong (2.4), (2.19), (2.25), (2.26).. This
system was dbtéined for the first time by Chung and Bradshaw [5}
using the classical theory of mechanics of continua and the
thermodynamic restrictions imposed by the entropy inequality. In
that case the macroscopic coefficients must be determined by the
experiences. In our case, the macroscopic coefficients (26 ), (205
(2.20) (2.21), 42.22)5 02.27), 12.28) ang. (0 29) may be computed

directly starting from the microscopic values in the matrix and
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in the inclusion.

G CONVERGENCE»THEOREM

Jhe equations: (1.1), (1.2), (1.3) admit a unique solution
(Ei, Qi,H ). If the initial conditions are Zexo, as in the‘ecase

of thermoelasticity [6,75 we have: there exists (EX, g X,HX) such
¢ 13
that u — Ex weakly in L2(O,T:H1(JZ)), 9

B ) o 0 ara T S i ki in 12 (0 meg srl .

s B weakly = n
T oo

Let h(f)= { h(t)¢(t)dt for all y¢ c,(fo,T]).
O

: ¢ ¢
Theorem. Let (Ei, ¢ ,H ) be the solution of (B T 0 20
(1.3) with homogeneous initial conditions and (;,r,h)é~L2(QT) X
2.0 2 A -
) x 1 e 8= 10,7 2. ek (u®, 0°,8°) be the

Seduelonof  (2:4) , (2.25); (296} Then

< (o
Ll b
it o) ? i 1
e weakiyidn LT{0,T=4;H @)), . (F)g>0
e 12 “
Eroor
e

We shall prove that u™=u° , 8x= 6° and u*=g®. Using the
1 it

classical method of [2}, we define the vector We o with the

components W §i Xﬁ + gw?h(§), where ﬂkh is the solution of

(2.15). For w . we obtain the equation

€

wle . (v)dx = 0 (V) veL? (0,7-4 ;8 (2)) (3.1)

The equation (1.1) is equivalent with the equation



< ¢ e - Eo At
Scijkhekh (u (p))ey . (vhdat gg ui((F )v, dx- gin’ij (Weij (v) dx-
iy St i
¢
- g"klj y)e ; (v)dx = Sfi(%)vidx (3.2)
L S

We take, as in [2], vi=ui(f)ﬁ/ I (3« X)sand v, {l\y in
(3.2) with %’QCZ(Q). By substraction, taking into account the
symmetry of the coefficients and passing to the limit with £ - o

we obtain

QX
x o) ‘uk($0 i

: e —— | 1 1™
i3 =Ci5m ;;;- < bt oS-
K kh®khy )] ‘ (3.3
' ¢
¢ vy (@)
Here (%) is the weak limit of c¢ —————— in L° () and
i5kh 0 Xp

we used the fact that wE g = gikxh strongly in Lz(ﬁ) and the

well known result: if f(x,?) i a Y periodic function then

f(x,§)46> f(g) weakly in LZ(Q). Taking into“dececount: (3.3) and
passing to the limit with ¢ -0 in (3.2) we obtain that (ux,é;X,Hk)

verify the equation

*
m 5
(P ?uk») B a0 TR (w”)f el
/ij‘vljkh RN {% 15 LV kh khy 2K
- ’ ij .«,U__H._.. -Pg xn i = 2 M
t“zij ol i B )J } e ] fy (3.0

We denote by p and qf  respectively, the weak limit in

2 e i r(\/‘?é S /}H£ 0 2 : .
L™ () of k,, =—=—— and d,. ——— . We introduce the functions
iy 9 x. s

j ; J



T : i i
z£=xi+ ¢w (?) and tg =K Ehi(§), with w™ and h?t solutions of
A S G o Using the equations (2.11) and (2.12) with test
functions of the form Z ,¢% . respectively t,¥ , substracting it

from (1.2) and (1.3) and passing to the limit with ¢ - 0 we

obtain:
®_ .o Do x
Pi = %45 LES (3.5)
SR .
S (opeel |
g = dij - 5 (856])

€

Bisesy (_g‘f(n(a')) - p(¢") weakly in 12 @) (3.7)
¢ S 2

&ijeij(g (©’)) - v (¢') weakly in L“(2) : (3:8)

Now we shall determine F(@) and: ¥ (¥).. Por that we take (2.16)

and (2.17) under the global form

( ¢ o e %) 4
J Cigmn®nn (@) egy(ax== | B, ey, (max : el
R7e K

¢ 7( € g $
%cijmnem (X ey (v)dx=- Jo(ijeij (v)dx (3.10)
$t n

¢ : g

~E :
where G;)=E@)(§) and A= ?%(?). Now we take v= @+ in (3.2) and

R oo
v;ggq/ dms (859) with ﬁ'(CO(R), substract it and pass to the limit

With "¢ =0 (mote that QD{>O strongly in L2(ﬂ)). After that we
; =

’ el
take y=/ § in (3.2) and v=u‘y in (3.10) with ¥ € € (@) and

preeced asibefore, Then we obtain, using (2.21), (2.22), (2.27),

(2% 28) and (2.29):
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Thie eguationss (3.5} , (3460, =80l ik S8 (1o 20 dlliigies as

S>> 0, implies:

D AR

e ) n © ’ 1y j§I < iil__ :
oy 1577 Xj) T, Pljel]( Y+T ) .U +TOUH {} (3518
g (@< DHﬁ{) H 53 (o rpenani e S pteaay (3.14)
e ST T 8 W Y = -

The equations (3.4), (3.13), (3.14) having a unique solu-

tion and the coefficients being the sameof (L. 1}, (1.2}, (1.3

*

: * ~O
we obtain (u™,%",H)=(u ,¥¢

o]
(HT)

4, CONCLUSION

A composite material subjected to hygrothermomechanic
loadings has been investigated. The obtained macroscopic equa-
tions and the macroscopic constitutive equatibn, are of the
same type as those obtained by usinag the classical theory of
mechanics bf‘continua [5]. The macroscopic coefficients may be
calculated directly by the explicite formula obtained here. In
[5} a numerical example was studied, consisting in a composite

with graphite fibers in an epoxy matrix. The conclusion of this

example was very explicite "the effect of femperature and moisture



1s significant in the deformation and stress £leld”. That

Justifie our rigurous mathematical deduction of these equations.
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