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DUALITY FOR THE HYPEREXT ON COMPLEX SPACES
by

A.Baran

INTRODUCTION

In certain problems of analytic gecmetry, especially in dua-
lity and. in deformation theory, the need naturally arises to consider
invariants Ext?(x; £0,8° ), Bt Retn, F Tord (x;:%°, ) or. Torl (Xu &, &)
whose arguments are no longer sheaves but complexes of sheaves with
coherent céhomoloqy. Thus, in the absolute duality theorems of Ramis
and Ruget [13], there appear invariants of the form Extq(X;@',K%) and

Extg(x;gz,K where & is a coherent sheaf on the complex space_x

%)

is the dualizing complex of X which is a complex in DZéh(X)'

X

Other important examples are the tangential cohomology groups intro-

and K

ducéd by Palamodov [12) . In order to solve problems of deformation
theory, Palamodov has defined for every morphism of complex spaces

XY aocomplex LX/ €D

v Coh(X) called the cotangent complex and

has associated to every coherent C&—module & its tangential coho-

mology groups with respect to fis

i ? o M e i
e (XY & ) =Ext (X,LX/Y,@,

It should be remarked that, unlike K% , the cotangent complex is not,

in general, a bounded complex.



The aim of this paper is to define natural topologies on coho-
" mological invariants associated to complexes with coherent cohomology
and to prove duality theorems for them. The essential technical tool
that is used is the notion of semi~simplicial system of sheaves
(s.s.s),intfoduced by Verdier in [14] ahd Forster and Fnder 4n [7].

If X is an analytic space and & € Coh (X) it “is well known that
there exist natural topologies of type QFS (quotient of a Fféchet—
-Schwarz space) on Hq(X,G:) and of type QDFS (quotient of a strong
dudl ‘of a FS space) on HE(X,G:), deduced from the usual topology on
the spaces ©of sections of & by means of Cecﬁ computations. Using
resolutions with s.s.s. one can introduce natural topologies of the
same type on the Spacés 5Y (x,G°) and H%(X,G“) for every G?‘eDCOh(X)
(see proposition 4.1). The problem was first solved by Verdier in
El4j for bounded complexes. The general case treated here is a direct
extension of Verdier’s method.

[¢3

If the complexes ¢ and ¥’ are in one of the situations:

: - ‘ s +
@) i g e D e G éDCO

o (X)orsb) =% leD

(), Baed (Xehas Ei=

h “coh
b

nite injective dimension (f.i.d.) or c) Ereb  y (X)ihas: finite tor

coh

dimension (fetid.), €' eD (X), then the complex R¥om* (¥",TF°) has

coh
coherent cohomology (see propositions 1.8 and 3.7) and one can intro-
duce a natural topology on the hyperext spaces Extq(x;‘€,<?) and

Extg(x;%',@“) (see proposition 4.4). The method consists in computing
these invariants in a category of s.s.s. by means of resolutions with

free s.s.s. (in the sense of [7) or el

The main duality result is:

Theorem 5.1, Let ¢°,%@° be complexes of sheaves such that

— % +
coh(k)’ = éDcoh

= -
o d o el &b s

G'éDb (X) has

e o an coh

(36 o bl 2 eDCOh(X),

i has Fat.dh 5 9 éDCOh(X). Then there exists

o))

a natural pairing which induces duality between the separated vec-

toy spaces associated to the spaces:



Extq(X;%f,@') and Torg(X;D(G'),%f), respectively

Extg(x;%',G’) and Torq(X;D(@'),%W

considered with their natural topologies. Moreover, Extq(X;%',G'),

respectively Extg(x;%f,G“), is separated iff Torg—l(X;D(G‘),%')

>

2

respectively Torq“l(X;D(67),‘€) 1es

In particular if one takes %'=69y in case c¢) one obtains the

classical result of Ramis and Ruget [13], formulated for a compilex

of isheaves. -'&°gD (X)

coh

Theorem 5.2. For every complex of sheaves &° éDc X) there

oh(

exists a natural pairing which induces a duality between the sepa-

rated vector spaces associated to the spaces:

Hq(X,G“) and Ext;q(X,G°,K'), respectively

X

-) :

Hg (X, &) and Ext (X, &, B

considered with their natural topologies. Moreover, Hq(X,G'), res-
pectively HE(X,G“), is separated iff Exté_q(x,@',Ki),»respectively

Ext(l;q (X,6°,Ky), is.

X

Since in the original paper of Ramis and Ruget the result is

proved for coherent sheaves and in [}] it is mentioned only for

b

a complex <§’€Dcoh

(X), and since the proof of theorem 1 relies on
this .result, for the sake of completeness we give a proof of theorem 2.
Imposing stronger conditions on %" and G° one obtains duali-

ties in which only Ext invariants are involved:

Theorem 5.3. Let % , 3 be complexes of sheaves such that

b
coh

(X) “or e) ‘E..‘éDcoh(x), &° D

b

d) Lg/. G.D COh

) e et el @'QD; ()

oh

has f.t.d. Then there exists a natural pairing which induces a dua-

lity between the separated vector spaces associated to the spaces:



considered with their natural topologies. Moreover, Extq(X;%f,@ﬁ,
respectively Exti(X,%',@'), is separated iff Exti"q(x;@‘,£‘§§ K%),

respectively Extlmq(x;@’,%fCQ Ki))is.

b

In particular, since every complex C?"eDc

Oh(X) has ‘f.t:d.

if X is a manifold (corollary 3.6) we get:

Carelliary 5.4, Ef X is & domplex manifold of dimensicn n and

b B . o e e b
&y F e ]
coh(y)’ e (X) or-e) ; eDcoh coh

coh (Bhe Hiel

d)- 2 eD (X) then
there exists a natural pairing which induces a duality between

the separated vector spaces associated to the spaces:
Bxt?(X; €,F") and Ext? 9 (x: €, ¢ i
et (XY, anc Extc (e, e Q)X), respectively

Extg(x;‘ﬁ,e”) and Ext™ 9(x; ¢, LR W),

. 3 : : . d A oL
considered with their natural topologies. Moreover, Ext*(X; 4 ,%"),

; 4 a S ; R S R ool : .
respectively Ext?(X; % ,F ), is separated iff Ext} 4 (X&', - l0 )
3 = £ c X

respectively pxtR dH (Xi@G % &

X),ise

A particular case of the corollary (X smooth projective
variety and % ,¢ €Coh(X) was considered by Drezet and Le Potier
i 4 ).

I weuld*like to thank C.Banicd fer suggesting me this

subject and for many helpful discutions during the preparation

of the paper.

1. COMPLEXES OF SHEAVES

In this paragraph we remind briefly some of the properties
of the hypercohomology, hyperext and hypertor for complexes of
sheaves on a complex space. As a general reference we follow

Hartshorne [ll], chapters I and Il.



1.1. Unless otherwise stated, (X, @&) will be throughout
the paper a finite dimensional analytic space with countable topo-
logy. One denotes by Mod(X) the abelian category of é%%—modules,
by K(X) the triangulated category of complexes 'of objects in Mod(X)
and by D(X) the derived category of Mod (X). The superscripts +,=0b
will mean complexes bounded to the left, respectively to the

right, respectively bounded in both directions. For every @ €K(X)

and q.€ % we define the truncations of & :

ag°;,, —F¥l— G4 > tm 49— 0 >

qGE':... + 0 » Im dq—l — F 4 s

>

Obviously, there exist natural morphisms of complexes AF -
and G ———2= ",
q
As it is well known, Mod(X) has enough. injective objects and
consequently there exist right derived functors for the extensions
of (%, and T_(X,+) to K (¥ (eprallary . 5.3 dn [T 2o
other words, every G“QK+(X) admits an injective resolution

o ; e s BT . i
>3 (i.e. there exist a complex of injective sheaves,}éK (X)

T

and & quasiisomorphisin € —==4F) and ['(X,3°), respeétively b (X, F)
are representatives for R[ (X,¢°), respecti{/ely RT'C(X,GF') . As usual,
one denotes by g4 (X,G'); Hg(X,G’) the cohomo'logy of s )
respectively ,[_'C .8 g
Since X has finite topological dimension, ['(X,<), f‘c(X,ﬂ)

have finite cohomological dimension and according to corollary
Tab. 3. 8 in [llj there exist right derived functors for ‘the ‘exten-
sions of « WX ) land j"c (Ripzde to K(X).  This is.becalseqevery complex

Fer(X)" admits a-resolutienGi——= whose components are rx,-)-

and I‘C(X,v)wacyclic (see Lemma I.4.6 in [11]). As above f(X,}')



and FC(X,}’) are representatives for R[(X,#’) and R fc(X,G”) and
their cohomology is denoted by Hq(X,G“)ﬁrespectively HE(X,G‘).

We say-that a sheaf dis aeyelic if it is YV (U,*)-acyelic for
every open set U in X. It is easy to see that every G'éD(X) admits

asresolution with scyelic sheaveg (see lemma I.4.6 in [lﬂ =

]

Remark 1. Let FeD (X) be a complex of acyclic sheaves, exact
in degrees > p. Then, 1f dim X=n, it 1s easy to show, by splitting
¢ ° into short exact sequénces, that in degrees 2> p+n the sheaves
of ‘botndares O0f & “are acyclic sheaves. Consequently, every
F°€éD. (X) admits a resolution & '— ~@”2fwith acyclic sheaves such

that ¥°eD (X).

Remark 2. If G’éDcob(X) (i.e. " has coherent cohomology) and
has components acyclic on Stein open sets, one can show, using an
exact sequence argument, that the sheaves of cycles and the sheaves

of boundaries of &° are also acyclic on Stein open 'sets (here again

the condition dim X<o< . is essential).

1.2. For every G'eD(X) one has a regular spectral sequence
qusz(X,}ﬁq(Sr)) converging to P 9 (x, 7)) (€9(F") is the g-th co-
homology sheaf of & ).

If X is a Stein space and @“GDcoh(X) then the spectral-

sequence is degenerate . and the edge morphisms:
Hl X G e - =P e

are isomorphisms.

1.3. The functors Hom:Mod (X) x Mod (X) - Ab and
Lo :Mod (X) x Mod (X)- >Mod (X} can be extended to bi- 9 ~func-

tors Hom®:K(X) x K(X)—>K(Ab), respectively ¥owm’:K(X) x K(X)—>K(X),

which associate to every €', F°€K(X) the complex of components



Hom™ (¢°, @) =T lHom (€ P, ™*P) ang differentials dn:-p'eiyd%?% =)rel

pel

respectively Hon (%, ) =] V?Gwy(%E%(¥n+p) and differentials of
PEZ

the same form.

Lemma 3. Let j'&K+(X) be a complex of injective sheaves and

¢ arin) Assume either a)iiES s exactiorb) 3¢ is exact. Then
Hom® (£, T ) and: Hem (€ . ) ore exact.

The proof can be found for example in [li], lemmas I.6.2
and BT 301

Since Mod (X) has enough injective obilects, it follows from
lemma 3 that one can define right derived functors:
RHom':D(X)OXD+(X)—~~@D(Ab), respectively R?bwm°:D(X)OXD+(X)~—~»D(X)
for Hom® and Hem*®, obtained by "deriving" first in the second va-
riable and then in the first one. If ¥ €D(X)., G‘€D+(X) and
G = 1 '4s abn-injective resplution: for & . then Hbm'(‘f,‘y) and
o (¢°, §) are representatives for RHom'(¢',9%), respectively
R¥tom? (£35:6°)... As usual, we denote by Extq(X;%°,Gf) the cohomology
groups of RHom'(%¢',F") and by Pt q(%';@") the §ohomology sheaves

of R¥towm! (%', %").

Remark 4. The complex Hewm'(¢°,¥) has flabby components

(this follows easily from the well known fact that for every

€ EMod(X) , Heom(E ,¥) is a flabby sheaf if U is an injective sheaf).

1.4. If A is an abelian category, for every two complexes in
the derlived category of A, X’ ¥ & D{L) . the . g=th . hyperext.of Xt

and Y° is defined to be:



B v ey
Eor o (X .Y ) HomD(A)(X SR )

where T is the translation functor.

If.B 1s another abelian ecategory and F:D(A)-—>B 18 a covar
riant additive functor then one clearly has a pairing, ‘called the
Yoneda pairing: Extq(X’,Y°) x Fp(X°)~m~%>Fp+q(Y°) where FP denotes
FoTp, Of coufse; for a contravariant functor a similar pairing
holds.

As ‘in the case of Mod(X), the functor- Hom on A extends to a
}bi—?—functor Hom® :K(A)xK(A)—>K (Ab) for which a result similar to
lemma 3 holds. Consequently, if A has enough injective objects one
¢an define, ag at 1.3, a right derived functor RHom”:D(A)OxD+(A)“~°
w-4WD(Ab) for the functer Hom®. ‘

According to a theorem due to Yoneda ([ll], theorem I.6.4)

there is a canonical isomorphism:

i (RHom® (X, Y) )~—=-=Ext" (X,Y) .

1.5. The connection between the functors RHom® and R¥em® is

given by the natural isomorphism:

RHom® (¢°, &) -—==>R["(X,RHom" (€, F")) : (1)
The above isomorphism implies there exists a spectral sequence of
term qu=Hp(X/%«ﬁ d(¢*,¥*)) converging to ExtP T (x; 8 ,6").
By analogy witﬁ thé isomorphism (1) we'define Extg(x;%’,§°)
to be Hq(RL"C(X,R}&WU(%',@'))). Using remark 4 it follows that
Extg(X;%',G') represents the cohomology of the complex

fb(x,?&mf(%‘,gﬁ), where J°is an injective resolution oE .



1.6. A complex (}‘éDb(X) is said to have finite injective
dimension (f.i.d.) if it admits an injective resolution of finite
length (for equivalent definitions see {1{}, propositien "T.7.65.

The most significant example of a complex héving foi ddnie

the dualizing complex of X, K. (for the construction of K] see

X X
[13]; a construction based on a different approach can be found in

[Q}). One can actually prove the following more precise results

Lemma 5. If X is an analytic space with Zariski dimension e
then its dualizing complex Ki admits an injective resolution which

is zero outside the interval [-n,0].

Proof. Since any locally injective sheaf is actually injective,
it follows from [lf], proposition I.7.6 that:the statement is local.
Hence we can suppose X is a closed subspace of-an open set Heo .

In [8} Golovin has proved that (5% admits an injective resolution

of length n. Since CQUCXCUU and since K& is a resolution of Tn(éOU),

3

U

s : ; ‘ A : : % i = .
injective resoclution K6~~@>j which is 2ero outside f=n,.0!. Tt is

where T is the translation funetor, it follows that K admits an

now easy to verify that Eﬁmﬂ&ﬁ((ﬁ J*) is an injective resolution in

Xf

B (%) for B = fon® ((QX,KaﬁX (for the properties of the dualizing

X @
U
complex used in the proof see leJ, proposition 1 or [2], theorem

T 2:.6)

1.7. In paragraph 4, in order to introduce the natural topolo~

gy on the hyperext we shall use the following truncation results.

Lemma 6. If “%'¢D (X)), G?éD+(X) and pe Z then the natural

morphisms %t 9 (€7, PE") —at (¥ ,"), Extd(x; £,PF") —
~—>Extd (x;¢°,07), Extg(X;3?,p5?)ﬁ~@>Extg(X;%',@a) are isomorphisms

for.g < p:



lonma |- Tet ¥Ten{X) . .If g epP (%) has f.i.d., then for

every qoejz there exists pe % such that the natural morphisms
et g s IPe gy, w2, — s Extdix:Pe 5y,
Extg(x;%fﬁf')» ~~~~~~~ >Ext§(x;p%f,@1) are isomorphisms for qzq,

The proof of the two lemmas is straightforward. In particular,
if in Lemma 7 &° admits an injective resolution which is zero in

all positive degrees (e.g. G“ﬂKi), then one can take JER> e P

B, ' . 5 . . (o*® (3 .
1.8. We give now sufficient conditions on € and @ which

ensure the coherence of the sheaves Gt . G,

Proposition 8. Let either a)‘ﬁ“éDcoh(X),(?“eDcoh(x) or

b) #£%& D

coh

= ® b 4 s A 4 - ° 'S ) \
(a9 eDcoh(X) and has f.i.d. Thea R&wm'(%£", ¢ )esDcoh(X).

Proof. A .general argument can be found in [11], proposition

I1.3.3 but we prefer here a direct proof.

a) One can suppose that %f has acyclic components (see remark
1). The proposition is clearly local, so that we can work in a
néighbourhood of a Stein compact set.

By using a standard argument of descendent induction, one
can show that % admits a resolution &’ —> % with free sheaves of
finite rank (in the neighbourhood of the fixed compact set). Let
now & ——>% be an injective resoluticn of . Since Hom' (X", 3 ) is
a representative for_Rﬁwa’(%UG“)f it is sufficient to show that
it has coherent cohomology. As Hem (X', }) is the simple complex
associated to the first guadrant double complex Qﬁbmm(&fp,}q)(p q)

pl 4

case a) follows studying the spectral sequence associated to this
dduble complex.

Case b) follows now immediately from case a) and lemma 7.



75 a : : ;
' @ ave. imn one of the situsiions

If X is a Stein space and
in proposition 8 then the spectral sequence_qu=HpKX,‘£mtq(%T,@”))
is degenerate and the edge morphisis: Extd(x; ¢ ¢ ) —=K, €l 2 (2°,6))

are isomorphisms.

et i e

Remark 9. If ¢" and F'are as in proposition 8 then the natural

morphism:

RHom (¢, F) 'X—-—~~> RHom’ (£ F )

is a quasiisomorphism and consequently one has natural isomorphisms:

%%t‘z(%“,@')-«w—*ﬁxtq@ (%0 o83 (ko e thig, let Fleremiibe
X Y x % X
F
an injective resolution, respectively an injective resolution of

finite length, for & ; the morphism above is given by the natural
morphism of double complexes: 2%mw,ﬂi°,'y)x-ww»Hom(‘£;y}X) which
induces isomorphisms on the second drawer of the spectral sequences

associated to them:(ﬁﬁtp(?ﬁq(%f),@W)x““““%EXt%Q (g@q(<a;),C¥;)).
X%

Remark 10. Let D:D(X)—>D(X) be the functor RXemn'(+,KJ. Since

Sy X

K% has coherent cohomology it follows from proposition 8 and lemma 5

that D sends Dcoh(X) in Dcoh(x).

of proposition 8 one can actually show that the result of case Db)

b

coh(x)

still holds under a weakér condition on ¥, namely that & €D
hag . 1.d; unifbrmely on fibers. SincerK% has by construction this
property, it follows that it.is: pessible to show for instance that
i Eep

pi)e b (X). without: nesértinguteo-Colovinis resudt

coh

(see the proof of lemma 5).

1.9. The tensor product in Mod{X) extends to a bi- ¥ -functor
K(X) % K(X)-——>K(X) which takes the complexes ¢’, F"€K(X) in the

complex ( £°@¥ )" which is the simple complex associated to the



double complex (¢P g g 4
u nplex ( @ G )(p,q)

Mod (X) has enough flat sheaves (sce '[llj ;. Droposition T1.1.2)

and .one can prove the following:

s i

- Lemma 12. Let #'eD (X) be a complex of flat sheaves and
@'e D(X) . Suppose that either a)% is exact or b)¥  is exagt. Then
¢Y@F° is exact.
Lemma 12 and the fact that there are eﬁough flat sheaves im-
plies that the tensor product functor admits a left derived functor

@ " D (X) x D(X)——>D(X) obtained by "deriving" first in the

first variable. If ¢'—>%"is a flat resolution for %° then the

complex P G° is a representative for ¢ @@ ([11], 1I §4).

Remark 13. Of course, if the second complex &  is bounded
to the right, one can "derive" first in F* and then 1n % . The
derived functor thus obtained coincides on'D~(X) ' D {X) wikth the
one previously defined.

If 2°eD (X), F'eD(X) or if %eD(X), FeD (X) we define the
local hypertor:  Jov i ¢, Gy = “j‘( “ﬁ’“@ ‘) and the global hypertor:
Ton:'i e ) :H—i (X ‘é@ G“*. ); respectively Tori (X; ‘{;”,(F‘)=H;i (X,‘*i'gg F°).

For every ¢, F e b (X} it is easy to prove that there is a

: : 0® (TP T~ -0 oo
natural isomorphism €& -—=>G@?.

: : L0 e i e ® .
Note also the isomorphism: Uer = (&, )Xf:_\f—:;I_‘or({/,y ( CX'G:X) ;
XX &

1.10. As for the hyperext we are interested in sufficient

%

conditions such that T @T° € Dcoh (%)

; el A o R At ;
We start with a definition. A complex ¥¢¢D (X) is said to
have finite tor dimension (f.t.d.) if it admits a flat resolution
: . 5 ] . . . g2 A .. . .
of finite length (for equivalent definitions see S;llj , proposition

A )



Propesition 14. Letkelther.a) ¥, Feb. h(X) or b) L.eD

i ano F* e ; The "o e
having f.t.d. and .G EDcoh(X). Then %zgm EDCOh(X).

spectral sequences of the double complex (G @ G:j)(i ; wvhere

s

@ ——>% 4is a flat resolution for & .

2. SEMI-SIMPLICIAL SYSTENMS OF SHEAVES

The category of coherent sheaves on the complex space X does
not” have enough projective objécts. Forster and Knorr in E7)<anas
Verdier in [133 have introduced an abelian category larger than
Mod (X), the category of semi-simplicial systems of sheaves (s.s.s.),
having a subcategory with enough projective objects which contains
Céh(X). In this paragraph we remind some basic facts on B S St and
compute the Ext invariants for complexes of sheaves_in Dcoh(X) by
using free resolutions (in the sense of kil ion [6]) forsthe fisst

texrm.

2ol s Slet = be an open covering of X and let /~ be

i)i@I
the nerve of U (one considers only alternated simplexes). A semi-
~-simplicial system of sheaves (s.s.s.) relative to W consists of

o, Familyiof sheaves (oty) , where oAy€Mod(Uy) , and a family

§e B
of connecting morphisms (ﬁhx)ucp . (%«: C%AUP——~;e?{§such that
for every &, f,x=id and for every «afpe ¥, $rp ol f}ax\U.&,—)=ﬂm

A morphism between two such s.s.s. relative to the same covering

QL, Y : ot - > Al consists of a family of morphisms (Y« lueyr o

fmzjﬁcwﬁ“%& , which commute with the connecting morphisms.

If W= (w

i)iﬁI is a covering of X with closed sels, one can

define in the same way as above, s.s.s. relative toW . In this

case the sheaves £y are defined in a neighbourhood of W, , and



the connecting morphisms, respectively the morphisms betweeﬁ twe
siich ‘s.8.8,. consist :actually of gerns of morphisms:

The s,s¢e. relative to.a covering W form an abelian category
that we shall denote by Mod (W) . The corresponding category of éom—-

plexes and the derived category will be denoted by K1), respecti-

vely D(U).

22 Tf M’:(Ui)iéi’ ”l)”z(vj)-j"&j. are two coverings of X, VU< U
(U finer than %) then any refinement function T :J—>I gives rise to
an obvious restriction functor Mod (U)-— Mod (V) and we denote by oAV
the image through this functor of A€ Mod (U) .

TE A eod (W 1s d s.s.8: on X, we define its restriction to
an open set U« X, uf {UGMOd (L NU) as the g.s.s. of components
( o"tm[UM Mu), “and connecting morphisms ( S;(W"Uﬁ 0 U}“C‘F’ -

For every s.s.s. A ,0eMod(U) one verifies easily that the pre-

2 (AU, B[U) is actually a sheaf which shall be denoted
Uom (A, G )
To every # €Mod (U) one can associate Cech complexes with com-

ponents Cp(’l,{,u’é e r QU rospec*lvely C‘p U, )= QB (/éogUoZ
|&] =p+1 ledl=p+1

and with differentials defined in the usual way. Obviously, if V<%
then any refinement function gives rise to mappings U, ) —>

—>c9 (U, A|V), respectively Cg (S u@)w—»—vcg (U, A ) .

Remark 1. If U is a locally finite covering of X and /€Coh (W)
(i.e. the components of W are coherent sheaves) then the spaces in
the complex C(U,##) carry natural topologies of type F.S. (Fréchet-
~-Schwarz). If A,® cCoh (W) theri Hom{# ,B ) carries a natural topology
©OFf type F.S8. litiis & closed subspace J.‘IM!&V[ ' (U, , Hem( c/&é{,uy‘w)))

Y

Similarly, if K is a locally finite covering of X with compact
S A € Coh 1% R e Sl il e ("“f:{ U%) carrv
sets and vt € Coh (%9 then the spaces in the complex C_ (7, y

natural topologies of type D.F.S. (strong dual of a F.S. space).



If A , & € coh (%) then fb(xg Yo (A,B)) carries a natural topology

of type D.F.S. (it is a closed subspace in €§;9 PR Ko oy B ) e

e

2.3. For the sake of gimplicity we shall work with open
coveringsof X but the definitions and the results hold also for
closed coverings. A

We say that a s.s.8 1s acyelic, respectively acyclicion Stein
open.sets if all its components are (see 1.1 for the definitlon of
acyclic sheaves).

According e [63 lemma I.2.2., Mod (%) has enouch injective
dbjects, As. at 1.1 it follows from [1{}, 1emma‘I.4.6 that every
complex in K+(ﬂ) admits an injective resolution. Moreover, since
X is' finite dimensional,we get tﬁat every complex in K(%) admits
a resolution with seoyelic sug.sq

There 18 & natural; exact, fully faithful inclusion functor
Mod (X)——=Mod (U) which takes every CQmeddule G gy thé S.S.5.
FlU=(Flus), . In general we shall identify & with its image in
Mod () and, if no confusion is likely, we shall write &F for FI|U

If U is a locally finite covering of X then the inclusion
functor Mod (X)——=Mod () has a right inverse (see Belkilani [3]).
)(U), where ®&((U)ed

U

=2 U. If one denotes by ﬁ?

Every #£€Mod (4) defines the presheaf‘UP@w%&(

is the largest simplex such that UM(U)

the associated sheaf, then one can easily see that for every xe X,

oﬁxﬁhziﬁﬁ( , where &(x)€#” is the largest simplex such that

X), X
7 A ) . -
XGEUN(X)' Consequently the association Atr—>A gives rise to an
exact functor Mod (U)-—>Mod (X) such that for every & ¢Mod(X) one has

1 ; : e AL ' '

a natural isomorphism F-==a (F|{WU ) . Moreover, for every

A ; . - Ao P .

vC € Mod (%) one can define a natural morphism 4 ~%w{, the component

2\
Axmm“mmyoéjua being given by

w

V&qu)& for every open set U in
S : :
Uyg (remember that we write # for U ).

For every & €Mod (X) and every w%eModON) one has natural iso-
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morphisms:

Hom (A ,F )——"s Hom ( A  F ) and Hewil b, & )= ,;Cmnm ( v’r LA

Remark 2. The isomorphisms abcve imply that if J éMod (X) 1is

T ——r

an injective sheaf then ¥ is an injective object in Mod (1) .

Remark 3. Let @ €K(X) and A*EK(U) . Every quasiisomorphism

j o Gfa o 3 < o i 4 e o ?p

o factors, via the morphism & —>k , yielding a qua S Se=
Fe :

morphism A-—=>&". On the other hand, it is easy to see that every

quasiisomorphism & °——= A'in K (%) can be completed to a quasiisomor-

S e : ;
phism m&F s A" —>#" in K(X). Conseguently, the inclusion functox

D(X)——=D (1) is fully faithful (E;ll] . Soropesition Te3a8ls

2.4. For every & ¢/ there is a natural functor Mod (U )= Mod (i)
SN e s T -zt
which takes ‘§ € Mod (Uy) in the sig.8..9 with Jg= J\UW if PO
ot

oielid 4 . o 4 rn - e 97 5
and Jp =0 otherwise. For every ® eMod (M) and % eMod (Ux) one has

natural isomorphisms

Hom\ ‘:: @ s Hom (%, B e=Lu (U, ; Hom (¢ j, @5“ Y Jeeand

P

a4 s
Yo (G, &) Lo W 5 D)

Where 14 1Uy—>X dg the inclusion.
A direct sum = ('Um where each @y is U ~-free of finite
K€ b
i ; r =
rank is called a free s.s.s. (see L7«5 or [6})

Remark 4. Let 1L be a covering of X with Stein open sets. 1f ¢
JerirPdesys 9., then it is g projective object in Coh (U) but it is
no ]_r_;nger projective in Mod (i). However, if A-Ls@—>0 is an exact

sequence in Mod () and 1F kep visa m.s.8. acyclic on Steln open

gsets, then the morphism Hom (@ ,#)—-=Hom (?,®) induced by ¥ is surjec-

tive.
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~ be a refinement function. If & eMod @) is a firee sJs.s5.. then Lejar
may no longer be free. However, if T is injective then £V is also
free.

We want now to give sufficient conditions for a complex,of

S.8.8. to admit a free resolution.

be a locally finite covering of X with Stein

K = :
Let (Ki)ieI

compact sets.

Lemma 6. Every &' ¢
Lemma 6 veryg&-CKcoh

K) (i.e. with echomo¥ogy ‘in Cehl (X)) . ha—
ving components acyclic on Stein open sets admits a resolution with

free gs.s.8.: (iR ().

Proof. According to [6] lemma I.2.2., Coh(K) has enough pro-
jective objects and, more precisely, evefy s.5.8. in Coh (K) is the
quotient of a free s.s.s.

The free resolution A ~——»A will be constructed by descendent
induction.
For i sufficiéntly large one takes &fi=0. Suppose that,we have

" constructed free s.s.s. §0j for j>» i and morphisms such that the

following diagram commutes:

- i - i+2
P g _NS_ — s li&_mﬂéﬂ 5 i i+2 § =
v o :
gt Al T
(i
i
TRt i ; ’ 142
dl ?: wi dl\v/‘ i+l dl+1 M i+2 d
e A T > A s

Moreover, suppose that £J induces isomorphism on cohomology
. . L .+ . . iy i+1 i+l A®
for- a4l and that £t t induces an epimorphism ker &t (ot

Consider the:- exact sequence:



~ 1,’% —

0 ——> I d' A ker @ (A) >0

. mpl L . ) B .
and let Hf:(?imwﬂji (A be an epnimorphism, where GH is a free s.s.S.

It is easy to show that the cycles and the boundaries of A are acy-
clic on Stein open sets, and this, together with remark 4, implies

s

p : g = 1;
that ¥ can be lifted to a morphism ¥ : Oi»wkaer d . Cptherother

T » N i . ;
hand let % QZMMW%ker 31 ][\ker fl+i be an epimorphism such that

; ; Lonise ) s
6>2 igs a free s.s.s. Now if one takes $re 0f§9@2 , §1=(0,‘%) and

£1=(¢ ,0) it is easy to check that the induction hypothesis are
satisfied.

Let now ‘4= (U,) be a locally finite covering of X with Stein

1'1ieT

open sets such that for every i@I,‘ﬁi is a Stein compact set, and

S ?:“-: ¥
let U=(U,) ;.4

Lemma 7. If u@gké@h(ﬂ) has components acvclic on Stein open sets

then AU admits a free resolution in K (U).

proof. One has U<U with a natural bijective refinement func-

tion. So the lemma follows from' lemma 6 and remark 5.
In particular, for conplexes of gheaves one has':

Corollary 8. TE g € Kaon

(X) has components acyclic on Stein

open sets then §'has a free resolution in K ().

-

A direct proof of this result can be found in [lj, lemma 0.4.

5. 5. Let U be a locally finite covering of X. As in the case
of sheaves, one has bi- d ~functors Hom® :K (W) x K (U)—>XK (Ab) and
Yo' 1K (U) x KW)—K(X). Since Mod (i) has enough injective objeéts,
these functors admit right derived functofs RHom':DGu)OxD+(@QW““““§
—»D (Ab) and R% w2 D () x0T (4)——-2D (X) obtained by "deriving"
first in the second variable. If A DU , ﬁféD+(ﬂj we denote the

N ©

& e 3 3 0 r ot ( ;oA s ® @ - ® o G © .
cohomology of RHom® (4, &) by Fxtd (L3 A%, &) rand that of Rifown' (A° &)
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by et (A, ). By definition, Extg (U; A, &) is BE (Rf’c (X PHm(A,605)))

Proposition 9. For every complexes of sheaves ¢ €D (X) and

o ; ; : , ceaey
€D (X) there exist natural isomorphisms extd (x; ¢ ,67) &=

~ExtT (U ;€ ,67) and Extg(x;%7J§W£1Extg(@i;%'ﬁFW.

Proof.. The proposition follows from Yemark 2 or from remark 3
and the theorem of Yoneda.
In order to define the Ext by means of free resolutions we need

two lemmas.

Lemma 10. Let &£'€X (U) be a complex of free s.s.s. and
B eX (L) . Assume. that either a) & 1is exactiorib) @' is exact and

has components acyclic on Stein open sets. Then Hom"(Z", ") and

e (L, %) are exact.

Proof. We deal first with Hom® . a) Since the components of
X" are projective objects in Coh (W) it follows R i split exact
and so, every morphism from £ in an arbitrary complex is homotopic
to 0. Consequently, Hom'(£,®’) is exact.

b) Since'®° is exact and has components acyclic on Stein open
sets, it follows easily that the cycles and the boundaries-of o’
are acyclic on Stein open sets (see remak 1.1). Now, using: remark 4,
it follows that any mérphism of complexes of given degree from &
to & is homotopic to 0 (the proof goes exactly as if £ would
have projective components).

Now we consider #em°. By a) and b) above, for every U in X

Stein open set, Hom® (£'|U,®|U) is exact and we conclude that

Hom (£, B ) is also exact.



Lemma 11. Let LeX ) be a complex of free s.s.s. and
B €K(U) a complex with components acyclic on Stein open sets. Then
the complex %em'(¢,®) has components [(X,+)~ and FC(X,s)wacyclic.
Eroof. We remark first that 16 @ eMod(U,) is @%waree of
e e &
finite rank and if B ¢Mod (1) is acyclic on Stein open sets then
. r\; B 3 . * :
Homi (4 ,05) .1s aeyeclic on Stein open sets and on every open set: con-

talning Uy .

Every component of ¥’ is of the form ¢ P= é;> &’p with (PP

_ &N 5
an (ﬁuxwfree sheaf of finite rank. One has the identifications:

. .

4 n TaL m&fv T =R ' - i 9]
Hon W0 f T { iy (Hom (f“’L n )
peZ «ew
e 5 S 18 o P n+p $
Let Juy be a flabby resolution for #em (G764 ™). It follows

easily, using the remark at the beginning of the pTOQL, that

o Mrﬂm [ : N @ ) ad e - 3
%mr i flﬁﬁ (ﬁao) is a flabby resolution for e (£,8) . Applying
pPEZL Hewr J' .

ENoe e and_ﬁc(x,«) one obtains the exact complexes:

T e e P T T
[T 0, Zom @F &Py e—T T TT v,

pPe€Z «ey pc‘" vlev A
[ —— 25 I'l,{ &
] o 22 02721 o 4
r PEd i

Let now’u:(Ui)iGI be a locally finite covering of X with Stein

open sets such that for every ieT, Ui is a Stein compact set and let

WU =(G7),. . . We denote by Kéoh(@,%) and D; (T{,%) the subcategories

iiael ~oh

of K (), D (U) consisting of restrictions of complexes from

X (@) and D (U).

coh coh

Lemmas 7 and 10 ensure that there exist ricght derived functors

SEcn s D 0L T Dl D (Ab) and }z';’fywc’:D; (@, %) ®x D @WU)—=D (X)

oh

for Hom' and ¥sm® , obtained by "deriving" first in the first variable.

coh



Let. whEeD LU, B €D, Azl hea veselution of A, where

oh( o
fj“’eD;Oh (W, %) is the restriction ‘of a comnlex in D;oh (7)), acyclic on
Stein open sets; let L'=—=2U'be a free resolution of ol in D(U) (see
lemma 7) and let & ——> }' be a resolution of & with components acyclic
on Stein open sets. The cozﬁplexes Hom (£ ¢) and #Hen'(£,7) are repre-
sentatives for RHom® (#,®) and R¥em'(#’,®") . Moreover, according to lem-
ma ekl fc(X, Hor" (£,%)) is a representative for RFC (R R (B
The cohomology of RHom® ( 4°,¢) is denoted Extd (U, &) that of
R¥o' (#,8) , %t T (/%) and that of‘RFC(X,R?um%A3W)), Ext] (Uit')8) .

Lemma 11 implies there exists a natural isomorphism:

RHom® (A,®) <==z-> R (X, R¥low (£,8) )

T

which gives rise to a spectral seguence qu"Hp( Yxt " (A,%)) conver-

2
gingito L‘ti q( 13 A 05) .
If & ep () and ¥ is an injective res cﬂutlon for & , the

sequences of quasiisomorphisms:

¥) ——> Hom" (A,%)

Hom® (£, 3" )e—— Hom * (J°, J

Hivn® (£ ! ) i oo (I, ) > Ho' (o, })

show that the functors RHom®and R~ defined with injective resolu-
-~ o ..}_ 3

tions and with free resolutions, coincide on Dcoh (W, W) P Th

partienlar, 1€ 4 CDC h( X) and §rent (X) one can compute Ext? (X4 ,6)

by means of free resolutions for ¢’ .

(x) then Ext (Us¢,¢),

Propostion 12. If ¢ @D B BED

coh coh

Extg (U2%°,6") and g, k9 (¢°,§) are independent of the covering U

Proof. We can suppose that €', ¢’ have components acyclic on

e e v

Stein open sets and let ™% be a free resolution for ¢ in K(«).



Since ¢ has coherent cohomology, yGV has also components acyclic
'»') »
on Stein open sets and so, Hom“(iﬂp@ﬁ is' a representative for

RHom'(¢, &). Since& has free components, it is easy to check that

S
for every g, HomQ(ﬁﬂﬁﬁﬁiproj lim Homqéf} ) and that (HomQ(iﬂp%W)p
and (Extq({;gﬂbﬁﬁ)p are surjective projective systems. This means,
according to Eld}, €. 0 , Droposition 13.2:3, €hat

T=rE
Extq(mqiygjﬁﬂproj lim Extq(ﬂ;%zpﬁﬁc Since Extq(%;%2§§? is canonical-

ly isomorphic with Extq(X;%)§$ﬁ (the second complex is bounded to

(

the left) it follows that Extd (4;%,6")e<proi lim Ext? (X347 @) . The

3 ) 0 0 “ 7. S B ( o e "
statement concerning Extg(%;z,@) and %t 2(%9) can be proved in
a similar way.
s : S - ; bl Sk
Proposition 12 justifies the use of the notations Ext™(X;¥,6)

and Extg(x;%y@) when ¢° is not bounded to the left.

Remark 13. If the complex on the second place in Ext® (X;¢,8)
is not bounded to the left it does not seem easy to prove that the
Yoneda isomcrphism still holds.

Using lemmas 6 and 10, one ‘can define, for every locally findte
covering ?% of X with: Stein compact Setsg, righf derivedeunctors

RHom"® :D _ . K)° x D®)—> D(Ab) and R¥wn":D_ K% D&H)—> D(X). As

coh coh
above, the functors R¥o» and RHom" defined with injective resolutions
coincide on D;Ok(ﬂ)o x DT (K) with those defined with free resolutions
il
and it is easy to see that proposition 12 holds also for compact

converings of X.

3.  COMPLEXES WITH FINITE TOR-DIMENSION

In this paragraph we prove that complexes in Dg l(X) having

or

f.t.d. admit free resolutions of finite lenath and, using this fact,

study the properties of the hyperext when the first complex has f.t.d.



s

3.1. We start with a general property which holds in the con-

text of ringed spaces:

Proposition 1. Let'(x,éﬁx) be a ringed space of finite topolo-
gical dimension and let % be a locally free (J,-module of finite rank.
Then there exists a covering A of X such that ¥ admits a free reso-

lution'of finite* length in K(U).

Proof. We can choose U=(U.)

. . to be any finite dimensional
e disielll

covering of X such ‘that : % js free on every U,. Let
n be the dimension of U (i.e. the length of the largest simplex in

the nerve #’of U) and let (‘ﬁi) be the family of commuting auto-

ie T

morphisms of ¥ , where i:fi:id for every i. Then, for e one has

the free resolution of ‘ﬁiUm given by the Koszul complex associated
yutomorphisms Ml R et

to the automorphi ( {lldm)léq

() (tei-) D)

0—= YUy —(4lu) —— .. (40, )% |0
1 /h.\'f/. 1 ra /“’“‘uu./
If one takes now the free s.s.s. (P%= Qgg (%in), Pt éﬁ%) <§§Uij),

... etc., one can verify that the above resolutions give in K@) the"

free resolution:

Corollary 2. Let (X,(?X) be a ringed space of finite topological
dimension and U a finite dimensional covering of X. Then (jX has a

free resolution of finite length in K@) .

Prcposition 3. Let (X,(ﬂ ) be a finite dimensional analytic

XI
e sy e 1
space and & €K
coh

(X) a complex -acyclic on Stein open sets«and having
f.t.d. Then there exists a locally finite covering of X with Stein
open sets, U , such that &' has a free resolution of finite length

Tne K L) .
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finite coverings of X such that:

be“loecally

1) U is a covering with Stein open sets.

2) V" is an open covering such that any intersection of sets
in WJis contractible.

3) X is a finite dimensional covering with Stein cdmpaét Sets.

4)U<V< X and the refinement functions between the coverings
dre injective.
kto construet the coverings one starts by choosing X ; the existence
of &' finer than® follows from the fact that any analytic space has
a ‘tr 1anqu1aLJon, the refinement functions can be made injective
by "repeating"'the sets in Y ahd then in X )

Let £'~——>@Fbe a free resolution of ¥ in K (X (see lemma
2,6) and let reZ be Strictly smaller than the degree of the first
aon=zero component of a bounded flat resolution of ¥° . We define
inductively a new complex (P €K (#). In degrees i>r we take (¢

e 3

1+ i
ker dag and d~ be the

-

identical withil' . If ie¢r let (P7=

composite of the morphisms:

éi “crdli'iﬁw——~e»ker(il+immmmnﬂ3,Cpl+l
d€m~w>

It follows immediately from the construction of ¢ that

=

OT -O for every Jj22 and « with {88 [ <=1 ‘Since fthe covering T wits
finite dimensional, it follows that (' is bounded.
It is easy to see that(®  is still guasiisomorphic to F° .

According to the proof of proposition IT.4.2 in [}13, it

follows that for every igr, ker d* has flat components. Since



i

he}

1
i

ker di<§Coh(K) one gets that its components are locally free sheaves.
‘ To finish the proof we remark thats; Since Vy 1is contractible
for each « in the nerve of ¥ ;'@jlﬁﬂ has free components. Further-
more, taking into account the form of the s.s.s @i and the fact
that the refinement functions between the three coverings are injec-
tive, we obtailn  that @'VV and‘?wQL are free resolutions of finite

length for & in K@), respectively KU .

Corollary 4. Let X be a finite dimensional analytic space and

@‘eKb(X) a complex of locally free sheaves of finite rank. Then
there exists a locally finite covering of X with Stein open sets

siueh that T Has a  free resolution of finite. lenoth insm @l

Remark 5. If X is a ringed space of finite topological dimen=

sion, one can prove, using proposition 1, a result similar to corol=

lary 4.

b

coh(X) a

Corollary 6. Let X be a complex manifold and F EK

complex of sheaves acyclic on Stein open sets (in .particular & can
be a coherent sheaf on X). Thend ' 'has a free resolution of finite

lepgth. in some K .

Proof. Hilbert’s syzygy theorem implies that ¥ has f.t.d. and

the statement follows immediately from proposition 3.

b

coh(X) has f.t.d. and G &D

3.2, Propogition 7. If £ &D (X)

coh

then R¥em’(€",¢°) e D, (X).
Proof. Using propositien 1.8 the vegult feotlows froms:

Lemma 8. If €'eb®  (X) has £.t.d. and G €D

e ok (X) then.Lor"

coh

every g, e Z there exists pe&Z such that the natural morphisms



Extd (x; ¢',9°) —>Extd (x; "

r g (T ierit C e i . i
(b%tq(%,,U_)mwmﬁwméI(Lﬁrpﬁ) are isomorphisms for gzq .

Proof. We can suppose that ¢° ,¥" have components acyclic on

Stein open sets. Since & has coherent cohbmology, for-every € 7,
pCF“ has also components acyclic¢ on Stein open sets.

‘ Now let % be a covering of X such that ¢ admits o eres reso-
lution of finite length in K(Y),£ ——= &'(see proposition 3). The
patural morphism RHomY %°.F")——= "RH om(¢,,p<?7 is given by the mor-

piilomes slon(e 8 = Hom%ift§§7. Since, in this case, Hon™Z &)

and Homﬂéfﬁp@”) are the simple complexes associated to the double

complexes Hom (&%, &) and Hom { Gq

, the result follows

(r,q) (29}

easily.
The other morphisms in the lemma can be dealt with in exactly

the same way.

Remark 9. If% ;0" are as in proposition 7 then the natural

morphism R?uwd‘f,@’)x~ﬂ“W RHQMW%;,@;) is an isomorphism and conse-
4 P4 "

- 4 s f R () (6 RS s o
ventl for ever €7 one has a patural isomorphism: %m&l(%,@) —=
q , / g =

43:%%Extq& (g;,@;) (to see this, use a truncation of ¢, & and
O e )
remark 1.9).

Remark 10. If X is a Stein space and ?“eDﬁoh(X) has~f ot d.
G’eD_}, (X), the spectral sequence of term E§q=HF X, €t (#,5)) is

degenerate and the edge morphisms: Extd (x;¢ JE e TR “wfq(ﬁﬂﬂ)

are isomorphisms.

4, THE NATURAL TOPOLOGY

Proposition 1. 1) For every G”gbcoh(x) there is a topology
of type OFS on Hq(X,GU, called the natural topology, such that:

e bn e e el (X) and u:§——>%" is a morphism then the

coh
@Gy o

induced mapping ” 0 q(x,G*) — PR s coptinuous.. Moreover, (if



U is an algebraic iscomorphism then it is a topologiéal isomorphism;
i) At e Xalisan lopen set then the restriction Hq(X,G')~~*w@
— gy, F) is conﬁinuous;
iii) if X is a Stein space then the natural morphism Hq(x,@°)~%
—>(x,# 2T F)) is a topological isomorphism wheﬁ on the right hand

side term one takes the usual topology on the-sections of a coherent

sheaf.

2) For every (}%{Dcoh(x) there is a topology of type QDFS

on HE(X,@”) called the natural topology such that:

i) same as 1i) for Hg(XﬁY);
i) it Uae X is an open.set then the extension morphism

HE(U,G”)~MWJ%HE(X,@“> is continuous.

Proof. l. Let U=1{0 be a locally finite covering of X

e i)ié]i
with Stein open sets such that for every ieI,'ﬁi is a Stein compact

Sete

coh(x>° Let @' —> J be a reso-

We treat first the case G'€D
lution of & with sheaves acyclic on Stein open sets and let
L —> ] be a resolution of J with s.s.s in Coh (¥) - (in particular
a free resclution; for the existence ofcf; see corollary :2.8) . Taking
éeéh complexes we obtain a morphism  CH{Y ,& )—>C (U ,T") which
induces a quasiisomorphism between the associated simple complexes.
The left hand side complex is a complex of FS spaces (see remark 2.1)
and the cohomology of the right hand side complex is Hq(X,@'). The
topology of type QFS thus induced on Hq(X,G”) is the natural topology.
The natural topology is of course independent of the different
choices we have made (to prove the independeﬁce of the resolutions
and covering, one refines two choices by a third one and one uses
the well known fact that a continuous algebraic quasiisomorphism

between two Fréchet complexes induces -topological isomorphisms on
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cohomology) .

yslet u:@~~ww%>§3be a morphism of complexes, with

F 8 EEDcoh(X) and let @ ——=>J3be a resoclution with sheaves acyclic
on Stein open sets for &, 3W65D:O7(X), There exist J €D }(X)
~oh ~“coh

with components acyclic on Stein open sets, a quasiisomorphism v
and @ morphism u’ such that the first square of the diagram below

commutes. If-ﬁf~mwwg is a resolution with components in Coh (%) for

. then there exist MED (W) with components in Coh (f{), a quasi-
isomorphism w and a morphism u" such that the second square of the

diagram below commutes:

% w
Biates waniyne 2 Loy

i ]l ul’ Euﬂ
Q Y i" &

It is now obviocus that u" induces a continuous morphism between the
Cech complexes which give the topology on the cohomology of & and %'
and consequently, that the induced morphism ﬁ:Hq(X,G?)mw@>Hq(X,i?) is
continuous., Morecver, 1f U is an algebraic isomdrphism(ﬁhen, accord-
ing to a variant of the topological result referred to above, u" in-
duces a topological isomorphism on the cohomology.
ii) Let U < X be an open set and let V' be a locally finite co-
vering of U with relatively compact Stein open sets, i L PO T E
F—e I°is a resolution for &' as above and o —= J"a resolution of

J* 'with objects in Coh (i), one can verify that the composite of

the continuous morphisms:

clinpE e e CAU L jU) —————C(V, L\UlV)

induces the natural restrictiom on the cohomology.

iii) We use the following vector spaces lemma:



:Lemma 2. Let A -be a Fréchet algebra and u:E—>F a continuous
morphism of Fréchet A-modules. Suppose that G=coker u is a finitely
generated A-module and that there exists on G a separated topology
of topo]ogic 1 A-module (on G one considers the algebraic structure
induced by F). Then the guotient topology induced by Fion G is separa-

ted and consequently Fréchet.

PlOOf One can wrlte the commutative diagram:

o N
AP E (¥ ,u) -
(<£:0)
v ~ v
@ 1 >G
where \Q:AqummaG is a surjective A-module morphism and Q?:Aqum@»F

i a Lifting of M . Since (% ) is'cbntinuous and surijective 1t is
open and consequently the identity is open when on the left hand side
G one takes the separated topologv in the hypothesis.

Now let Uc X be a relatively compact Stein open set. Since
Hq(U,Gf)Si‘r(U(iKQ(@V)) 14 follows‘that gl (u,G*) is finitely genera-
ted as (QX(U)wmodule and consequently, according to- lemma . 2, Lts
topology is separated and coincides with that of T, e (6.

The following commutative diagram solves the problem for X,

since V¥ is a topological -isomorphism and i is continuous:

HY (%, 6 ) —=——— mx, ®2(g

e i

T Ty U, § i :?*"“/ \TTF ,}ﬁq )

i@ T | iel

Finally we treat the case ¢°¢D (X)% If peZ-then for every

coh

gyp one has a natural algebraic isomorphism:



v:) O" 2 S = 31 = =g
H (X, %) —= = 1P (%,6°) .

By definition we take the natural topolegy on Hp(X,g°) to be the
image through this isomorphism of the natural toéology on Y (x,9%5°).
Since for every p<g<r one has algebraic and consequently topological
‘isomorphisms: H“ (X q§7~—mmwww’Hp(4 %‘) it follows that the-natueal
topology is independent of the truncation of G .

: : 2 e, : ;
As the trucation "G 1is a Ffunctarial operation, the natural

topology on HY(X,F°) has properties 1), 1i) and. 4i1) .

2. To obtain the natural QDFS topology on H?<x ") one repetes

the above considerations, replacing the open covering U by a locally

finite covering # of X with Stein compact sets and the Cech comple-

xes CU4 +) by Cé@%,“).

i) is proved exactly as 1 i).

SR d e o :(K )i 15 a -compact chbvering of X and R X is a

ieN

a0

compact set we define the sets of indexes: I(X,K) {;ad Kic;K}

and I1%,%K)=13

L) ]
\i("\ 1\7é¢ Je

Let UcX be an open set and let (Lj) be a sequence of com-

ieN
pact sets such that L < L i and &m) L.«U Tt is not difrisult o
ien * :
construct a sequence of covor'nqt (el o FOT X, R (K]) and
1°1€eN JeN
a covering R=(R.) . for U such that:

j’ JeN
?(i and R are locally finite coverings of X, Yespectively

U, with Stein compact sets whose int riors cover X, respectively U.

b) for every ieN, Iqéii,Li)m 1761,Li), and furthermore, for

2 -

every éfIQ?%i,L.), KizR. (ive, the coverings R and K i coincide
on a neighbourhood of Li)°

c)farewmyieN,§@Hl4f%%amiﬁm<%imU.



We can obviously suvpose that G”QDC (X) -and has agyeclic com-

. oh
ponents ., et L2 @ be a resoliution of & Nith objects in Coh(ﬂﬁ),
For every 1€N, denote by ~CTI(R4rLi)), respectively C“(I(@,,Lj>)
ok ’ &
the subcomplexes of Cé@%i,ﬂfL&i), respectively Cé(@,kfkﬁ) determined

by the finite sets of indexes I(:ﬁj,Li), respectively I(@,Li) and

by Us o respectively v the inclusion morphisms.

One has C‘(I(?ﬁi,Li):C‘(I(Gith)L Taking inductive limits we

ebtainthe disgrams:

£R LI O Ry 2 I e e e e 4 B RSP R
o Rl R a0 g
P ; /u\
dnge-Tedam , Saneelidmiw
1 : : b
inj lim C‘(I(Ei,Li))”“awm e ing-1im CTI(@,Li))

Since all the spaces in the diagram are of type DFS it follows that
Ty ~“Lim vy is a topological isomorphism and conseguently that u is
continuous. On the other hand, u induces on the cohomology the usual

extension morphism: Hé(UFG7%~~M%wHé(X,@°),

Remark 3. Let E?%EDCOh(X) with components acyclic on Stein
open sets and let ‘ﬁﬁﬁi %'Wf?%z be lecally finite eoverings of X ,

?{l and K ., with Stein compact sets and Uwith Stein open sets. If

2

L= F'is a resolution of F° with components in Coh (¥ then

20
the commutative diagram of continuous quasiisomorphisms shows that
one can obtain the natural topology on H%(X,G‘) by working with open

coverings of X:

Yo, ey i ek (' i
CC(/\ rr‘f ) fcc\z\l‘:_% :7{1)

\5}, : g”,ft’
cL W)



Proposition 4. Let either a) % eD” ap ;
I St /] [4 coh (X) 4 G CDCOh (Y) or
e o~ TR b = x A X E i 5@ b L f
b) 2 CDCOh (x)y, & C'DC'Oh (X has F.i g or gl GDCO}J (X) has fetndi,
& €DCOh (X)-

1. There exists a topology. of type QFS on Extq(x;%’,ﬁ‘), called
the natural topology, such that:

2l RE ¢ él, o2ﬁDC p (X) and u:‘élwwﬂﬂfQ is a morphism, respecti-

«

vely if CFl)@ZeEDCOh(X) and v: @;~w@v@2 is a morphism then the in-

duced morphisms between Ext3-invariants ﬁ,.respectively v, are ‘con~
ﬁinuous. Moreovér, if W or ¥ are algebraic isomorphisms, they are
topologic al isomorphisms as well.

i)y 1f Ueitis A open set then the restriction Extq( X; ", 0" )
mwwwExtq(U;%“,@‘) L dontiniciiss

iii) if X is a Stein space then the natural morphism Extq(x;%f,ﬁ“)w
s [0, %af”q(%f,@“))isaitopological isomornhism when on the right
hand side term one takes the usual topology on- the sections of a |

coherent sheaf.

4_

2. There exists a topology of type ODFS on Pktq<X % ) Toallad

the natural topology, such that

i) same as 1 i) with compact suppcrts.
ii) if UeX is an cpen set then the extension Extq(U T ) —

”w*%Extg(X;%'Fﬁw) is continuous.

Proof. Let QAz(Ui)iéI be a locally finite covering of X with

Steln open sets such that for every LEE, Ui is a Stein compact set.

= : ’ o @ ) . Ay
We treat first the case ‘/LDCOh(X : @’QDCOh X). Let*% J

QFlwmweﬁ'be resolutions with sheaves acyclic on Stein open sets for

b(X)7 let £ ———> I"be a free resolution

C ana T, I er T eR
for J° in K (W) and M'—> Y be a resolution for 4" with components

in Coh (%) . As we have seen, Hom'(¥,#) is a representative for Rmmm%%,qﬁ



and is a complex of FS spaces (since, according to remark 2.1, every
_ 3 , e ﬁ
space Hom (£ ,m@ ig of type Es). dhe natural topology on Ext? (X; D)

is by definition the topology induced by - Hom'(€ ) .

Lemma 5. If %TED;Oh(X)y G”c’} (X) the natural topology on

Extq(X;%”,G') coincideswith that on Hq(X,RJ&mm’(%‘,@“)).

(’C.‘i

Proof. Ko (£ 4) , which is a representative for R%mmf(%', 25)
has coherent cohomology and components acyclic on Stein open sets.
Since for every peZ, p?&MW%xyﬁﬁ has the same properties (see remark
Ee2) it admits a ‘reselution d,lmw»ap%’m( YR gl kbR ss .8V Fdn

Coh (W) . Taking Cech complexes one obtains a continuous quasiisomor-

o

phism: CW&,%{I)~~w«wr (U, W”ka? M) ) which, according to proposi-
tion 4, 1.i shows .that for ppg the topology induced on Ext? (X; 4,6 =
=09 (x, Hom " (£ 4/»’:'))::Hq(x,]?’:ff;m"(.f",//f‘)) by C (U, Pl (5,40 ) et ol s
with the natural topology on Hq(X,Rth(%‘,@‘)Y.

On the other hand, the natural morphism: PHom® (X", M) =eri>
wmw>CT%,p?Qwﬂ(K)&U)) is continuous and 1nduc~ﬁ isomorphism on the
cohomology in degrees <p. Since Phom® (£,#) induces the natural
tépclogy on Ext q(x 27 . F") the @tdtgment £ollowg. |

Lemma 5 implies that the natural topology on Extq(x;%?,ﬁ’)
is independent of the different choices and has properties i, 1ii,
144,

Now in case a) the natural topology is introduced using lemma

1.6 in case b) lemma 1.7 and in-‘ecasec)lemma 3584

Remark 6. If ¢,%° are as in proposition 4, itiis easy to

deduce from the proof of this proposition that one has topological
isomorphisms : Exts (X3 ;47,97 ) Hq(X R(NMW(‘§ F°)) and Ext (X%, 5" )=

Ly H (X R#evin™ (L?’:,G.) ) N

Corollkary 7. If § 6D (X) then for every g€ Z2 one has to-
e - coh e



pological isomorphi smsHI (X, %) s metd (% 67 e Rl HE(X,%”)Ji:La

~~~-—~}‘>ﬁt C" S

Proof. According to corollary 3.2, there exists a covering U
and a free resolution of finite length &i"mwﬁéyy iR "KLy Tet

b
Y —=J"be a resolution of % with acyclic and j?c(x,a)—acyCW'

1l Using remark 3.9 it follows that the natural

sheaves (see
morphism ?@wﬁ(@x,?)m~%>?&wﬂxy}ﬂ is a quasiisomorphism. Since
ﬁfme(@Xr}f) is isomorphic to ¥ and since both complexes have

g - 0 : =
f'(X,¢)~ and I;(i,«)~acycllc components, the statement follows.

»

Cecrollary 8. Let X be a compact analytic space. If ¥ &D

coh

q(X,% ) are finite dimensional and therefore se-

4

then the spaces
parate in the natural topology. If £, © <§Dcoh(x) are in one of the
cases a), b) or c¢) in proposition 4, then the spaces Extq(x;%',GW

are finite dimensional and therefore senarate in the natural topo-

logy.
Proof. If o' @° are as in propositiond, thén R¥tepw( ¢ ,F") €
gDCOh(\) and according to remark 6 it is sufficient to'prove the

statement on the hypercohomology. The second drawer terms of the

pg
Ey*

spaces. This implies that Hq(x,ﬁa) admits a finite filtration with

regular spectral sequence Hp(\ ¥ (%)) are finite dimensional

finite dimensional vector spaces and so is itself finite dimensional.

Remark 9. Since the global hypertor spaces have been defined

as hypercohomology spaces, it follows from proposition 1 that if

¢ ¢ are as in proposition 1.14, there exist natural topologies on
Tor? (X; %” G ) and Torq(’-if,67), These natural topologies can also
be introduced using resolutiomswith s.s.s. for € and @°, as we did

in the case of the hyperext in proposition 4.



5. DUALITY RESULTS

Since the cohomological invariants depend only on the gquasi-
isomorphism class of the complexes involved (being defined on the
derived category) we shall suppose that all the complexes that

appear have components acyclic on Stein open sets (see 1.1).

Proof of theorem 2 (see the introduction) .

Making the identifications: Extq(x;(yx,ﬁ")£§auIq(ngu),

EURTLC RPN e YOt ) = ~ “aideri I 1 : %
Extc(k,(ﬁx,Kx) HC(X,K ) and considering: the functo? Ext,

X

one obtains a Yoneda pairing (see 1.4):

N i S O g ®
X ) HC (A ¥ I\X )

»

n (2,8 x Exe 3 (0 K

The pairing in the theorem is given by the composition of the

trace morphism T :HZ(X,K“)W“MGJQ defined in [JBJ,With this Yoneda

X X
pairing.

The proof has three steps: the first two are actually adapta-
tions of the proofs of the absolute duality theorems of Ramis.and Ruget
(see El?@ or iZ]); the third one establishes the identity between

the duality topologies defined at steps 1 and 2 and the natural to-

pologies.

Step 1. There exists a topology of type ODFS on Exﬁgéx;ﬁﬁ,x;)

(not necessarily the natural one) such that the statement of the

theorem is true when on Hq(X,G’) one considers the natural topology.

coh(k)‘le N

For this it is sufficient to suppose that F’&D
is not bounded to the right one takes a truncation PF* of G with

pzgq. The natural morphism P§ ——s @ induces isomorphisms:

u; BT (%, PE ) (2 259

IR s TN e e s By e
viExt " (X;F,K > Ext_* (X;'F,K)

which are one the transposed of the other with respect to the



Yoneda pairings. Since u is a topological isomorphism for the natu-

ral topologies (see proposition 4.1), if we have found the required

topology on Ext;q(x;p@w,K%) then its image through v'! is the

required topology on Extgq(X;G“,K%)u

Let Qi:(Ui)igI be a locally finite covering of X with relati-
vely compact Stein open sets -such that @’ admits a resolution & =—>C

where £*€D (W) and has components in Coh (24) .

o ) R 3
Let KP9=cP @, 2= | | j(Uwféfg)ﬁ As we have already seen,
{ell=p+1

-

the simple complex associated to k% is a complex of, . FS. . dpdces
which induces on Hq(x,ﬁ‘) the natural topology.
Let now LP9= G:&Q ExtO(U%;if ,K:) be the double complex ob-

Lol =-=(Q+l . & ‘
tained by dualizing kP9, 1o getithe resulf it is sufficientite pwrove

0

T

: T e S
that the cohomology of P9 is Exté(x;w ,Kf) (one can check that the
s o i DA Wclo o .
duality induced on the cohomology of P9 anda kP9 is given by the

Yoneda mapping and the trace).

Let K; —3%'be an injective resolution for K;, We consider
49 kY ,

the complexes:

qr = o0 g9 ~T
P I T (U Hore €3, F))
& =p+1
par_ I [ (U, Hom (62,F))
NE=S = (_.::»Lm:m} L C el 7 ¥ ra
fedl=p+1

According to the usual duality theorem for a Stein space, the

cohomology of MPar along the r-direction is:
0 for r#0

PN 1o o _. ;
I Extd (U4, k) =1PT  for r=0
{l=p+1 '
par

s |8
and consequently the simple complexes agsociated to P9 ana M

have the same cohomology. It is easy to see that the gquasiisomor-



: " o~ (T°s : . par S, :

phism X?WWMﬁﬁG induces a morphism NP s P4 whiteh, fipoander

are kept fixed, is a quasiis OmO“phlgm along the q~direction and
5 A , R z pgr par

so the simple complexes associated to M and N are guasiiso-

morphic. The cohomology of NP9E in direction i s

50 for p#0
IE(X,%%W,(@qIEF)) for p=0

tthisg falilows from lemma 71.3.94n [23, by remarking that the sheaves
tn.’.-_}? o @ o r P e -
&ﬂwuﬁl,} ) are flabby). It ls now clear that the cohomology of
o7 il - " . :
NP is Extd(x;@ 'KY)’ which ends the proof of step l.

Méreover, it.is easy to see that, according to a known result

of duality, the separation result of the theorem is true when on

1-——4

1(X,¥°) one takes the natural topology and on Exf “9(x;F°,K2) the

x

?

topology induced by L% =,

In a similar way one can prove:

Step 2. There exists a topology of type QFS on Ehu“q(h°ﬁ° G

(not necessarily the natural one) such that the statement of the

theorem is true when on H%(X,@”) one considers the natural topology.

Step 3. The "duality" topologies induced at steps 1 and 2
on Ext T (x:¢" K ) and Ext q(X;@",Ki) coincide with the natural to-
pologies.

Indeed, according to step 1 one has a duality modulo separa-

tion:

e @ i S ° re o T .m;....._..v—-‘.
A T Exth(x;@' Bl K ) >

and according to step 2 a duality modulo separation:

I~I;q(X,D(@"~)) v Ext? (X;D @ ,K',)MW“?HS(X,K;{)‘""‘“‘“*‘}* ¢



where H?(X,&") and H;q(X,D(@”)) carry the natural topologies and

Ext;q(x;@°}K%) and thq(X:D(SW,Kk) the "duality" topologies.

GI (k) -y y » g & A i 0 . .
Let wiH? (X,;9 )»»«yhxtq(X;D(ﬁ) K.,) be the isomorphism induced

by the isomorphism G ———»DD (@) (see [13], proposition 1) and

v:H;q(X,Dﬁy))wwwwwExt;q(X;G”,K%) the canonical identificdtion. It is

®
o

2}

o

'!
A

to verify that u and v are each the. transposed of the other

o

h respect to the Yoneda pairings above. According to lemma 1.4
=1 e ; ; , ;
[ 13} this implies that v is continuous and consequently, that

the topology on Ext“q(x;@”rK

C

;) is weaker than the natural topology.

On the other hand, since u is an isomorphism, it follows that v

i
pis) S| St 3 : ; 2
maps the closure of {01 in Hc*(X,D(v }) bijectively on the closure

\

i . w—cf-., s e . ) Rt ' . I .
L0y in Extml(k;GT,KY); this implies that v is a tonological iso-

F

(@)

' : : : ' SN e R : ; ;
morphism* and so that the topology on hxthJ(X;G ,hX) coincides with

the natural one.
Stmilarly,“since u is continuous and maps bijectively the

closure of {O} in Hq(X,@”) on the closure of fO} in Extq(x :D (@) ,K)

X
it follows that the second space carries the natural topology. In
particular, replacing F with D®") and using once again the reflexi-
-

“(X; F°,K.) carries

vityieti§ with respect  to D; one gets that Ext %

the! watural topology, which ends the. proof.

Proof of theorem 1 (see the introduction)

[+ D (X it dier easy to see that the natural morphism:

9 Hom* (¥, 1<’X) g

induces on D(X) a morphism %q;D’“)wﬁﬁmﬁwK%. As in theorem 2, the
pairing in theorem 1 is obtained by composing the Yoneda pairing
for the invariants involved with a trace mapping. This trace

mapping is given by the compositicn of mappings:



(€

G
o HC(M) o 2
Tor (X:D(5) 9 e eaa ] (X, K 0
c( D)9 ) » c( ; X)
fe . K o e g = " = ;
where ¥ is the one of the complexes € and &° which is bounded. to. the
¥

right.

The theorem is based on the following result:

Bemga 5. 189¢", Gheén_ , (X) arve in one ofiithe casesial, b)

or c) of theorem 1, then there exists a functorial isomorphism:

DG )R D Rflon L5

» r’\

-

Proof. Cases a) and b) are treated in {11}, prcbosition V.2.6
For case c¢c), let Kymmwm-gbc an injective resolution of K§ ., and

L ——=¥a free resolution of finite length Qkfln a suitable D ().

According to remark 2.3, ?”—mwni is still a resolution for Z° and

“\

since & has free components, £  is a flat resSlution. The morphism

in the lemma is given by:

-~ il

e p e . € % O 0 gy oy
How @, 5 ) QL — = Hon (Kow (&7,

L]

; <
L
Sl
St
~

(V8
. :
O

which induces isomorphism on fibers (this follows from remark
=
e . s .
and the fact that & has fibers free of finite rank).
Lo R i cze forold
If ¢, T are in one of the cases aly b) or el both ‘&b @)

and D (R¥mn° (€,6")) have coherent cohomology and so, the isomorphism

in lemma 5 induces a topological isomorphism:

B 2Torl (%D &) 2)——>Ext T (X R¥tom (€F) K3

when on the two spaces one considers the natural topologies.

Since in all three cases R#emw'(%¢,%) has coherent cohomology,
applying theorem 2, one gets that the Yoneda pairing and the trace
morphism induce a topological duality between the separated vector

spaces associated to the spaces:

i



C Siich e : ; s . . o
HY (X, R¥%eni(£,6) ) =Ext? (x;¢°, @) and E}:th(X;R%m (2767 +K,)

considered with their natural topologies.

Moreover, the separation result in theorem 2 together with the

b §
isomorphism P imply that Extq(x;g}@ﬁ is separated iff Torg“l

tg®

(X:;D@), ¢
ig.

In cases a} and c) the theorem follows from the commutative

diagram:

HY (X, R Mot (27, @) ) % Ext;q X Ritwt(S,€7) K"

e e

% X) B (‘"Kx}
(| ) I
/ o
l |

ExLﬂ(“;“, s Torq(X D (¢ ),%)"”"“MMWMM~WZTOTO(X7D(3),i?

1 <

in which u is the canonical identificaticn &nd the horizontal morphisms
dfe the Yoneda pairingscorresponding to the functors Ext;
respectively Torg(X;D(a),%)a

In case b) since ¢ is not bounded to the right, the space
Torg(X;D(%ﬁ,W) cannot be defined. In this case the theorem follows
treom a  eimilar diagram, in which Torg(X;D(%),%W is replééed by

O(X;D(@U,@ﬁ and the last Yoneda pairing corresponds to the func-

tor Torl(x, D@y,

The duality between Ex“q(X;ﬁyﬁﬁ and Toxq(X;D(W),%W can be

proved in a similar way.

Proof of theorem 3 (see the introduction)

We shall use the following:

12, F€b (X)-are in one of the cases d) or e) . of

coh

theorem 3 then there exists a functorial isomorphism:

R¥tom! (&, K) @€ >Rt (FE'Q K) .



e) ‘Let kaww%}'be‘an injective resolution for XKj [P g g
g £
~flat resolution for € , P@)—> 1 a resolution with acyclic sheaves

- &

1

) Ja A i % N . . -~ sarnes A - j .
for @Y andd —>0G"a free resclution of finite length for G, in
a suitable D).

The morphism in the lemma is given by the compositionof mor-

phisms:
Ko (£,3) @O ——= Yo (£, T @) ~—=Hom (L, T7)

where obviously the extreme terms arerepresentatives for Rflew(’ K ) @ %

and R¥Ew"F, €& K,).

b=
St X

Pa)
Since &£’ has fibers free of finite rank, it follows applying
remark 3.9 that the above morphism induces guasiisomorphism on every

fiber.

b

<7 i 3 e ' 2
Coh(A) has f.t.d: then, accerding to

Insdartieular, 1f "%Z &b

lemma 6 one has a functorial isomorphism:

<
§ :REan (€, K)) @€ ———>R¥Kom" (¢, €@ Ky)

Az in theorems 1 and 2, the palring i1 theorem 3 igiobtained by com=
posing the Yoneda pairing for the invariants involved,with a trace
morphism. This trace morphism will be in case a) the composition of

mappings:

O. el ; r
Oles ,cov ; Hc@) o o I‘X
Ext (X%, €@ K)~————=Tor (X;D(#) ) —H KK )——C

and in case b) the same composition with ¢° replaced by &° .
since R¥on' (¥, K,) @£ and RHom'(¢, ¢'@® K,) have both coherent
cohomology it follows that the isomorphism in lemma 6 induces topo-

logical isomorphisms:

¥ :Tord (X;D (@) fﬂg')MMwwExt;q(x;G', g K



‘when on the two spaces one considers the natural topology. The sena-

reition Tesult im theorem 2, together with the isomorphism - ¥ imply

d e St ey : ‘
that B (X8, %) is geparated iff Ext ™ (X; @"”f‘K ) Ths
o

The duality statement in case d) follows from theorem 2 by

reading the commutative diagram:

HE (X, Rftow(E,F) ) x Ext"q (X3 R (£7,§) , KE, ) oo > 7% (X,K7)

A X (@) TR
w; 1
i

= iaoy g e s ISR

Ext? (24,9 x ,Lorq: (X:D (&) ,) S Torg (XD (2) ,£)
3? fid ) ’ HE(S)

Bt (B0 ) Bxt LUGE, 2@ RE)mee Exfy (08, €@ K

(The upper sqguare of the diagram has app:at&d in the proof of theorem
L; the last horizontal arrow is the Yoneda pairing corresponding to
the functor Ext ;q( o, % @sR ks

Case e) follows from a similar commutative diagram and the dua-
lity between the spaces Extg(x;?,ﬁﬁ and Ext 2 (X; Fret@ K%) can be
proved along the same lines.

In the compact case, theorems 1 and 3 give:

Egiollary 1. liet X be d ‘conpagt anabytic _space and aj ¢ CDOjl(W
- b
- G Al - \ ot . 3 = ~ g .,
& ch p (X) or b) iy é;DCOh(X,, G &D on (¥) has f£.i.d. or c)ee COh()

; . o 5
has: £.otid s, §7<5Dcoh(X). Then the spaces Exti(X;%,@) and  Tor: W.D@? @r)
are finite dimensional and there exists a natural pairing which indu-

ces an algebraic duality between:
Extd (x;4,¢) and Tor? (x;D @) ,s).

N f D@ b - - ¥ € = e 7
5 F O S o & o y = o 2 = } - fon f,:
Moreover, if d) € € Coh(X) ol N CDCOh(X)cn e) & deﬁk)



(&

~and 9 ¢p

@’eD?Oh(X) has f.t.d. then there exists a natural pairing which

induces an algebraic duality between:

CI = 45 Iicae “ gt o 8% o o
Bxt*(X;¢,#)  and Ext q(X;%,%g@ KX)

Finally, in the Stein case we have:

Corollany B df: X idssa

a Stein space and a) %'aDCOh(X),
e - \ e e b e . ‘ e ® = b 2
& ﬁDCOh(X) Or-b) ¥4 €D (X)) “Dcoh(X)_hag telsdeiorie s &) (X)

ceh ™

coh

has f°t'd“’(;uéDCOh(X) then the spaces Extq(x;ﬁﬂgﬁ, Eth(X;%ZQW,
Torq(X;D(ﬁﬁ,ﬁ’ and Torg(X;D(??,EW are separated in the natural topo-

logy and there exists a natural pairing which induces topological

dualities between:

Extd (x;4,%) and Tor® (X;D @) ,%), respectively

Ext? (X;€,6) and Tor? (x;D () ,%).

g

if d) %‘ébgo bas f£.t.d., F €D (X), or. &) Zieb

Moreover X
’ h coh coh(’)

b , ; S :
COh(x) has f.t.d. then there exists a natural pairing which

induces topological dualities between:

Ext1(X; 2 ,6") and Ext T(x; @,

C

®K), respectively
A 7

Extg (X; ¢

;@) and Ext 1(X; &, ¥ oK
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