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HOMOGENIZATION OF A SINCGULAR PERTURBATION
. PROBLEM

Horia I. ENE and Bogdan VERNESCU

1. INTRODUCTION

&

Homogenization deals with partial differential equations, in
media with periodic structure, studying their behaviour as & Qmp 6
where & usualy caracterizes the length of the period. Roughly
speaking, we can distinguish two types of problems Studied by
means of the homogenization method: the first one consisting of
problems that can be reducedAtd problems involving overators with
periodic coefficients (functions of g) defined in the whole domain,
the second inc¢luding the problems involving Qperators with constant
coefficients, but in periodic structureddomains depending on E‘

8 P R R ) P

The problem that is studied in the present paper is in a way
simmilar to the‘second type ones the difference'éonsistina in. the
dependance on & of the coefficients. If the éomain hadn’t had
a periodic structure, the problem ‘counld haye been recarded as a
singular perturbation problem in the sense of [7] .

In the second section of the papver we prove fhe existence and
uniqueness of the solution of theproblem for a glven & "

In order to obtain the homogenized problem in the third
paragraph we use two-scale asymptotic expansions. The corresponding
convergence theorem id proved in the next paragraph, following
the qéneral procedure of the homoqeniiation method "¢ Fadw . (o] ),

The last paragraph deals with the mechanical model that has

inspired the mathematical problem. Thus for a given & , problem



foide
(2.1) - (2.5) describes the Stokes flow in the presence of porous

bodies. Therefore problem (3.14), (3.16) can be considered as

modelling the flow in a porous fissured medium.

2. A SINGULAR PERTURBATION PROBLEM

’
Let .. be a bounded open subset of RN(Nxz,B) of “class C’

and Dﬁ an open connected subset of 2 so that'ﬁéc £ . We denote
by Dlz 1o -5;, .=9X.. and s= :)Dz. Let £ be a given

function of Lz(JL).

We consider the following transmission problem:

(2.1)~ '5_’2 O v= -grad ot+f in D]
(2.2)Kv =-grad p+f in D?
(23 ydiveve =05, 106 S
{(2.4) v=0 on.

(25) v n=0y . s lvend =0, [p] =0 on 5
where K is a symmetric and positive definite tensor with

oo :
components Ki4€§L (Ba ol i) denotes the Jump on the boundary
atlts | L >

S and n therunitary normal on S .exterior to D]. The first condition
of (2.5} must be understood as the v x n component of the trace
of v/D ?
1
In order to obtain the variational formulation of the problem
(2.1) - (2.5) we have to prove the following lemma (for another
proof see [61).

LEMMA 2.1. The Hilbert space

)
m-{v/vﬁ:L'(Dl), div veE L2(Dl),curl veiLz(Dl),
vixn =0 on Dl)l}
is equal algebraicaly and tonoloqicaly with:
{vefﬂ-ﬂl) R R e i
¢ 1" 1

Proof.

s s

Let kpﬁ‘ C.]'(Dl) so that P x n=0i.on :)Dl. We have:

- ”
(2.6) j (grad ) 2= [ (taiv 917+ (carlp)’) +
)

R “ ‘~,D. 4
(Ll =ddv - Yan
t { b b L div ¢ f : )



i 3 R :
By extending x ~»n({x) in a neighbourhood of 3Dl {23 and
observing that.*f =An, ion DDl'we obtain the following

estimation:

9P b _ : o
(2:7) \ S( =iap ~div @ P ~n)\ & ‘g P
LY 23,

and thus using the classical Lion’s lemma (e.q. {87 ):

Dé{\{’ tid %5‘ (qradnlo)?' + C 35 kPZ
we get: R i
‘ S(grad.f)? g @ J(tp ¥ @iv )+ (curl 9)°
Dy I
But the right hand side of the previous inequality
represents the norm of X and conseguently:
g iy &e Bapl
Using a density argument [ 2] we obtain the result.
If we denote by: :
HeH (Q.,D,)={ veL’(R)/ veunl(p,), div v=p in &,
v=0 on ¥ ', v ¥ n=0.on S }
and we consider the equations (2.1) - (2.5)-in the distribution
sense then the® variational formulation is:
find ve H such that:
(2.8){ a{v,w)= (f,w), for all we¢ H
where a: H x H —»R 1is given by
a(v,w)m:eg .S curl v curl w + g Ryw
By 5 :
and (,,,) denotes the scalar product of Lz(SL).
The equivalence between problem (2.1) ~ (2.5) and prﬁblem
(2.8) may be obtained as follows.
First we have to remark that:
(2.9) - Av= curl (curl v) -~grad (div w)
{2.10) (curl v,w) =(v, curl w) - <4v,w x nS>

for all v,w€ H, where &< ;- 7 denotes the:duality product



S/ 2(s). Ths | (2. B)itsyobbatnad.

For proving the converse implication we have to get, in the
classical mewner for thé Stokes equations (€.q.:(41] )y the
existencé ef p, by writing by means of. (2.9), (2.,10) the problem
(2.8) in the form:

(2.11) .;:-? g7 AV -£,w > + (Rv-£f,w)=0

and by choosing divergence free vectors w in 9 (D) _ D (D,)

respectively, We get in fact the existence and uniqueness, up to

.constants, of i - L2(Dl) and P, & Hﬁ’(Dz). The only

boundary condition that is not'a consequence of the definition of

H is (2.5)‘3; this can be obtained in -thé followinag sense:
(VP> = j‘_pz wWen for-all w. € .H

and assuming that the sconstants have been chosen in a suitable

way .

THEOREM 2,1. There exists a unigue solution of problem (2.8).

Proof.
The existence and unicqueness of the solution vields from
the Lax-~Milaram theorem. For proving the coer¢ivity of - &(v,w)

we have to prove the next lemma.

LEMMA, 2.2, There exists € 0.ge that:

L Clifcusl sell,

(2:12) vl
| LZ(DI) L‘(Dl)

Fer-all - ‘g s = { v e X|div v=0, _gv'n-:o}

Proof.

By conty¥adiction there exists a sequence ('Vn) ¢ X so that:

1 :
curl-y, ; L= by =1

.~
Thus (vn) is bounded in X and hence weakly convergent to
oo e
an element v & X that satisfies:

2313) divov=0 gv‘n::(j
3

(2104 cuRlive=0 , v % n=0 on 31)]
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Next (2.13) and (2.14) yield rvespectively fal

s
VEicurid H& (Dl) v Vé&lcurl Hl (Dl))

and thus v=0; but this contradicts (2.15),

REMARK: 2, 1. The.set DlmJI —67may“be also supposed multi

connected, without any change in the proofs.

3, TWO - SCALE ASYMPTOTIC EXPANSIONS
In the general framework cf the homogenization theory we

consider a domain $L with a periodic structure. We denote by

Y the parallelipipedic cell formed by two parts Y, and Y?
separated by a smooth boundary S. We also denote by Yl, Y, . the
1 N W e R ey o e

union of all ¥, and Y, parts. If a ﬁi-gl‘j ¢ where

Jl'%iz %x W gYi % i=1,2, we consider the problem:

(BN find vg ¢ BlL), J?-tl)

a{vt ,wy=(f,w) for all weH(Q, L1 El)
where a: H{{], _Jl_f 1) x B0 -glgl) —» R is given by:
(3.2Ya(v,w) = éz curl . curl wk g K v w
S Then
As we navye proved in the previous section the above problem

is equivalent to a transmission problem of the type (2.1) - (2.%).
In order to study the asymptotic behaviour of the solution when
¢ <» 0 we introduce the two-scale expansions:

(3. 30y ¢ (x)= vo(x,y) 4 £ vl(x,y) i

(3.4) p & (x) = ‘po_(x) + P G ek

By a formal matching of the powers of f we obtain the -

local problem

t

{
{3.5) —zﬁyvn = - gradxn) +f- aradypl in ¥

: . - : _
8GR Kvom ~qrad“nj A fF e Uradﬁwﬁ Blbaltn i

P A



05,7 Vv v 0 iy

(3%5:) vo, pl Y-periodic functions

(3.9) VO X w":ol [:Vognj 7:'0, fplj =) on s.

Introducing the Hilbert space:

H per (y, Yl) = {;v € L2(Y)/V¢EH1(Y1), div v=0 a2

v x n=0 onis, v Y—periodic}
the variational formulation of the local problem‘is:
(3.10) ‘gcurl vO- curl. W + S‘Kv w = (f -~grad po) o
The left ﬂﬁnd side of (3.109 de%lne& a bilinear, symmetric and
coercive functional and hence the local problem has a uniqué
solution (the coereivity can be proved by contradiction., as in lemma
2«2, using the pefiodicity condition and the fact that curl v=0
inplies v=grad ¥ ).

If we introduce ﬁfl € Hperli,yl) the solution of

5 $ i : i i T, oo ‘- b
‘3,11) gcarl ﬂg GUEL Wit { K‘? W= 8 L @) wc;hper(Y,Yl)
R/ % o ”

" then the solution of (3.10) may be written in the form:

0_ ?p
(3.12) "« -—(fi- ..._..._)\‘9

By applying the mean value operator:

! 1
(3,13} "“—w-{
_ : LY i
to (3.12) we get:
0
40 0 i Q
(8314 Vj = Lij(fi 7§£i
where
5 - rE
350 L,, =
( ) 17 ‘f 3

2

On the other hand from equation (2.3), written for v ¢ using

(3.3) and (3.13) we deduce:



0
(3i.16) divx Vi =0

and thus from (3.14) and (3.16) we have an elliptic problem for

0
=D,

REMARK 3.1, L is a symmetric and positive definite tensor.

For proving this we have to use the symmetry and coercivity of K

and a2 (2.12) type inequali#y for Hner(Y’Yi) functions.

4, A CONVERGENCE THEOREM
If ?l C Y we have the following:
THEOREM 4,1, If v &, pi is the solution of the transmission

i and VO, po thewsolutions.cof -(3.,14),

probiliem: {2 . 1) =(@a 5 in ,m-a

(306) then: .

v € o {;0 weakly in L° (1)
¢ 0 : daal o
P e o) strongly din L (A‘l)/p

when ¢t tends to zero.

Proof.

By using lemma 2.2 we deduce from (3.1) that:
(4.1) fd e L
g o

(4.2) leuzrl v Q-H LG b

e

i . \ 1 ; By
Considering test functions w & HO(Jl) in the transmission

problem equivalent to (3.1) we cet:

| < grad pE = B 15‘2 g curl vt curle w o+
+ g Kiv. W= S fw} ¢ C jw il +C ¢ Jleurl wh?
and therefore, for £ sufficiently small:
(4.4) ngad pf [ 2 <. ¢
: B8

(4.5 ey g

2 Rt
L (Sl)/R

Out of (4.1) and (4.5) ¢ ts v¥ 2 1°(0) and

(o5
3
o
=
®
®
5o
-
e



S
Y e L?'(IL)/R. so that v & _s v ¥ weakly in Lz(ﬁ-) and pg‘w‘; i
weakly in Lz(.ﬂ )/’R. respectively grad p‘g.—» grad p%weakly in
e G )
Choosing W via weakly convergent scqﬁence in _?{10(17.) to w’

and using. (4.3) we get:

[doradipt jwt s oilarad p¥, w5 4

Sligrad pi > wi -w")—] & J'<grad pg -grad plF ,w*>] <
&0C T i 5 +C ¢ llcurk (w£ -w ¥ )1 il
LT (SL) L (5%1)

+ l(grad p& ~-grad p& ,w"{y'}

Because the right hand side terms of the previous ineguality
tend to zero we have the strong convergence of p £ to P £ in
2y gy
il 6. )5 1 28
(ALY /5
)

: 3 v #* 0 e
We have to deduce next that v =v and p = p . For this we

consider the equivalent system of (3.11):

5 A 2 - graa N e in'y
A hel 5 in ¥,
¥ 7 i oy g - < i ‘
KW = \,rady L + ey in ¥,
(4 6‘Ad1v %i =0 in vy
@ 7 :\“, -
k{/l, s Y-periodic
k{l x n=0, \'\ﬂl-n] =0, [%*] =0 ons
K!
By denoting x= £y in (4.6) we get a system for the functions
b i e i RN
LD ST e

g i i ;
and because Y~ ,w7 are independent of ¢t

i 3 i R, i
R BRSO el Ty Wt s

As it is usual in the proof of the homogenigation process
f107 ,swe kake § v€  , with ¢ € Q{5 ), as test function in the

variational formulation of (4.6) and hence as ¢ —= 0:



; 5 ; ; i
(4. 7) 52 g curl ‘\(0(3‘ curl (7 vt)+ g K ﬁlﬁvﬁasﬁvi
4
“Q‘&i "n‘ii. -

On the other hand from+{3,1):

(4.8) 52 g curl v¢ curl (g %21) + S Kol %%l e
"Ri'l a
A 3 . £z
o j (f}¢ + p r;%+
5 b

By subtracting (4.7) from (4.8) we observe that the right

hand side term vanishes; this yields: ®
¥ ¥
v, =L, (f = — fs oG
3 ek 3 f@xj)
: ¥ .
Ay v =0 iniae

Wwhich are in fact (3.14) and < (3.16) .,

5. A RELATED MECHANICAL PROBLEM

The problem studied in the previous sections may be considered
as the mathematical model of the motion of a"viscous fillid throeug
a porous fissured medium.

Thus by taking gzvzét in the problem.(Q.l) == 2,58) 3 wo
obtain the equations describing the flow in the presence of a
borous bedy. In this case f2‘l) is thé Stokes.equation, (25.2) the
Parcy’s law, (2.3) the continuity equation ‘and (2.4), (2.5 ave
the usual boundary conditions (e.g. |5] -). Then the theorem 2.1
gives us the existence and uniqueness result for this mechanical
problem, The same result for the case of motion in the presence
of several bodies can be proved analogously. The small parameter

¢ 1s related to the characteristic dimensions of “the pores. In
fact X of equation (2.2) is the inverse of the permeability tensor,
and it is known (3] that the permeability tensor is proportional.
to the square of the characteristic lenght of the pores.

Problem (3.1) can be thus considered as modeiling the flow of

a fluid in a fissured porous medium. In the periodic model



- 10 =

1 4

part of the period. The model implies two hypétheses:

considered Y. and Y. denote the fluid and respectively the porous

i) the dimension of the porous cells are the same as the dimension
of the fissures
ii) the ratio hetween the characteristic length of the pores and
the characteristic length of the cells is:the same as the ratio
between the dimension of the fissures and the dimension of the
porous body.

If we denote by 1, lf the characteristic lengths of the
pores and of the fissures respectively and by L the dimension
of the poroﬁs body, then the small parameter involved in the
probleﬁris: 1

£ o 1 £

. L
L

il

‘The study of the local problem yields a Darcy’s law (3.14)

11

‘or the flow in such a medium, but with a permeability tensor
(3,15) which differs from the classical one. This new tensor
is a genuine permeability tensor, because by considering

dimensional quantities in the definition of Lij we obtain that

Ny

e : i : :
it is proportional to 1° and g ( o being the viscosity

h

coefficient, that in the mathematical formulation of the problem

was considered 1 for simplicity).
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