INSTITUTUL DE MATEMATICĂ INSTITUTUL NAȚIONAL PENTRU CREAȚIE ȘTIINȚIFICĂ ȘI TEHNICĂ

ISSN 0250 3638

A RESTRICTION OPERATOR SPECIFIC TO PERIODIC MEDIA

by
Dan POLISEVSKI
PREPRINT SERIES IN MATHEMATICS

No.1/January 1985

BUCUREȘTI

11. 101045

A RESTRICTION OPERATOR SPECIFIC TO PERIODIC MEDIA

by

Dan POLISEVSKI\*)

January 1985

<sup>\*)</sup> The National Institute for Scientific and Tehnical Creation,
Department of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania

ing Caraca and Caraca

## A RESTRICTION OPERATOR SPECIFIC TO PERIODIC

MEDIA

by

## Dan POLISEVSKI\*)

Let  $\Sigma^i$ , ie $\{1,2,\dots 6\}$ , be the side faces of  $Y=[0,1]^3$ , and let  $\Gamma$  be a surface of class  $C^2$  included in  $\overline{Y}$ , which cross the boundary of the cube following some regular curves which are reproduced identically on opposite faces. We assume that  $\Gamma$  separate Y into two domains,  $Y_S$ -the solid part and  $Y_f$ -the fluid part, with the property that repeating Y by periodicity, the reunion of all the fluid parts, respectively the solid parts, is connex in  $\mathbb{R}^3$  and of class  $C^2$ . The origin of the coordinate system is set in a fluid ball; thus all the corners of  $\overline{Y}$  are surrounded by fluid neighbourhoods (see Fig.1).

Let  $\Omega$  be an open connected bounded set in  $\mathbb{R}^3$ , locally located on one side of the boundary  $\partial\Omega$ , a manifold of class  $C^2$ , composed of a finite number of connex components, and let  $\varphi:\mathbb{R}\to [0,1[$  be the function which associates to any real number its fractional part; we say that a function  $f:\mathbb{R}^3\to\mathbb{R}$  is Y-periodic if  $f=f\circ\varphi$ . Also, for any  $\xi\in(0,1)$  we define

$$\varphi^{\varepsilon}(x) = ((1/\varepsilon)x),$$

$$\Omega^{\varepsilon}_{f} = \left\{ x \in \Omega \mid \varphi^{\varepsilon}(x) \in Y_{f} \right\},$$

$$\Omega^{\varepsilon}_{f} = \left\{ x \in \Omega \mid \varphi^{\varepsilon}(x) \in Y_{g} \right\},$$

$$\Gamma^{\varepsilon} = \overline{\Omega^{\varepsilon}_{f}} \cap \overline{\Omega^{\varepsilon}_{f}}, \quad (\partial\Omega)^{\varepsilon}_{f} = \overline{\Omega^{\varepsilon}_{f}} \cap \partial\Omega$$



Fig. 1

Remark 1. If a fluid flow is considered through this eY-periodic media, that is in  $\Omega_{\mathbf{f}}^{\varepsilon}$ , and if the homogenization process is studied, one has to remove the fact that the velocity and the pressure are defined only in  $\Omega_{\mathbf{f}}^{\varepsilon}$ . While the velocity can be naturally continued with zero in  $\Omega_{\mathbf{S}}^{\varepsilon}$ , the continuation of the pressure to  $\Omega$  is not so obvious, and it needs a special restriction operator from  $\mathrm{H}^1_{\mathrm{o}}(\Omega)$  to  $\mathrm{H}^1_{\mathrm{o}}(\Omega_{\mathbf{f}}^{\varepsilon})$ . A construction of such an operator can be found in Sanchez-Palencia [1] Appendix, but from the physical point of view it is valid only for bidimensional flows,  $\mathrm{Y}_{\mathbf{S}}$  being strictly contained into  $\mathrm{Y}_{\mathbf{f}}$  as the domain obtained from  $\Omega$  by picking out only the domains  $\mathrm{EY}_{\mathbf{S}}$  which do not intersect  $\mathrm{D}\Omega$ .

Here, the above mentioned Tartar's construction is extended to the present case which is obviously tridimensional, with connex phases and biphasic boundary.

Lemma 1. If  $u \in H^1(Y)$  then there exists  $f \in \mathcal{L}(H^1(Y), H^{1/2}(\partial Y_f))$  such that

- (a) f(y) = 0 on  $\int$
- (b) If u=0 in  $Y_S$ , then f(u)=u.
- (c) For every  $i \in \{1, 2, \dots 6\}$  it holds

(1) 
$$\int_{\mathbf{f}} \mathbf{f}(\mathbf{u}) \cdot \mathbf{v} \, d\mathbf{r} = \int_{\mathbf{u}} \mathbf{u} \cdot \mathbf{v} \, d\mathbf{r}$$
 
$$\sum_{\mathbf{f}}^{\mathbf{i}} \sum_{\mathbf{f}} \mathbf{v} \cdot \mathbf{v} \, d\mathbf{r} = \sum_{\mathbf{v}} \mathbf{v} \cdot \mathbf{v} \, d\mathbf{v}$$

where  $\sqrt[7]{}$  denotes the unit outward normal on  $\sum^i$ , and  $\sum^i_f = \sum^i \bigwedge^{\overline{Y}}_f$ .

<u>Proof.</u> First, for every  $v \in C(\overline{Y})$  we will define an element  $f(v) \in C(\partial Y_f)$  satisfying the properties (a), (b) and (c).

Let  $\Gamma_1 = \Gamma \cap \Sigma^1$ , where  $\Sigma^1$  is the face  $\mathbf{x}_1 = \mathbf{0}$ , and let  $\Gamma_1^{\alpha}$  be a convex component of  $\Gamma^1$ . Let  $Y_1^{\alpha}$  be the curve obtained by a uniform "dilatation" of  $\Gamma_1^{\alpha}$  on the normal, of thickness  $\mathbf{t}_{\alpha} > 0$  sufficiently small, such that, if we denote with  $\Sigma_M^{\alpha}$  the part of  $\Sigma_1^1$  contained between  $Y_1^{\alpha}$  and  $\Gamma_1^{\alpha}$  and with  $\Sigma_M = \bigcup_{\alpha} \Sigma_M^{\alpha}$ , every connex component of  $\Sigma_M$  is, for some  $\alpha$ ,  $\Sigma_M^{\alpha}$  (see Fig.2). Let

$$\begin{cases} x_2 = g(s) \\ x_3 = h(s) \end{cases}$$

be the parametric equations of the regular curve  $\Gamma_1^{\alpha}$ , that is  $g,h\in \mathbb{C}^2$  and  $(g')^2+(h')^2=1$ , where s is the arc length on  $\Gamma_1^{\alpha}$ . Denoting with  $\mathcal{I}_{\alpha}$  the length of  $\Gamma_1^{\alpha}$ , we assume that  $\mathfrak{t}_{\alpha}$  is also such small



Fig. 2

as the transformation of  $(x_2, x_3) \in \sum_{M}^{\infty}$  into  $(s, n) \in (0, l_{\infty}) \times (0, t_{\infty})$ , given by

$$x_2 = g(s) - nh'(s)$$
  
 $x_3 = h(s) + ng'(s)$ 

has a strictly positive Jacobian determinant:

$$\frac{\partial (x_2, x_3)}{\partial (s, n)} = 1 + n (g''h' - g'h'') > 0$$

Here, we have to remark that if  $\Gamma_1^{\alpha}$  attains an edge of  $\overline{Y}$ , then the normal of  $\Gamma_1^{\alpha}$  in that point is the edge itself, because of the assumption that repeating Y by periodicity the reunion of all the fluid parts is of class  $C^2$ .

Then we put in  $\sum_{M}^{\infty}$ 

$$f(y)(s,n) = y(s,n) - P(n/t_{x})y(s,0)$$

where  $P(x) = -10x^3 + 18^2 - 9x + 1$ .

In 
$$\sum_{f}^{1} \setminus \sum_{M}$$
 we put

$$f(y) = y + \varphi \int y dx_2 dx_3$$

$$\sum_{f} \sum_{f} q dx_2 dx_3$$

where  $\mathfrak{P} \in \mathcal{Q}(\ \Sigma_{\mathtt{f}}^1 \setminus \Sigma_{\mathtt{M}})$  and

$$\int_{\mathcal{L}_{f}^{1}} \varphi \, dx_{2} dx_{3} = 1.$$

With the following calculation

$$\int_{\mathbf{f}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \int_{\mathbf{f}} (\mathbf{y} + \varphi \int_{\mathbf{f}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_2 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_2 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_2 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_2 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_2 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_2 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_2 d\mathbf{x}_3) d\mathbf{x}_3 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_2 d\mathbf{x}_3 = \sum_{\mathbf{f}_{\mathbf{M}}} (\mathbf{y} + \varphi \int_{\mathbf{f}_{\mathbf{M}}} \mathbf{y} d\mathbf{x}_3 d\mathbf{x}_3) d\mathbf{x}_3 d\mathbf{x}_3 + \sum_{\alpha} \int_{\mathbf{f}_{\mathbf{M}}} f(\mathbf{y}) d\mathbf{x}_3 d$$

$$= \int_{\Sigma_{\mathbf{f}}^{1} \setminus \Sigma_{\mathbf{M}}} \operatorname{vdx}_{2} \operatorname{dx}_{3} + \left( \int_{\Sigma_{\mathbf{f}}^{1} \setminus \Sigma_{\mathbf{M}}} \varphi \operatorname{dx}_{2} \operatorname{dx}_{3} \right) \left( \int_{\Sigma_{\mathbf{f}}^{1} \setminus \Sigma_{\mathbf{f}}} \operatorname{vdx}_{2} \operatorname{dx}_{3} \right) + \sum_{\alpha} \int_{0}^{t_{\alpha}} \operatorname{vdx}_{\alpha} \operatorname{vdx}_{\alpha}$$

$$\frac{\partial (x_2, x_3)}{\partial (s, n)} ds dn = \int_{\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$$

$$-\sum_{\alpha} \left( \int_{Q}^{1} v(s,0) ds \right) \left( \int_{Q}^{t_{\alpha}} P(n/t_{\alpha}) dn \right) - \sum_{\alpha} \left( \int_{Q}^{1} v(s,0) (g''h'-g'h'') ds \right) \left( \int_{Q}^{t_{\alpha}} nP(n/t_{\alpha}) dn \right)$$

and because

$$\int_{Q} P(n/t_{x}) dn = \int_{Q} nP(n/t_{x}) dn = 0$$

the property (c) is checked for i=1. Using the same method we define f(y) on the other side faces. As the property (a) require f(y)=0 on 7, we have the whole construction of f(y) on  $\Im Y_f$  and it is easy to verify that  $f(y) \in C(\Im Y_f)$  (we remark here that P(0)=1 and P(1)=0). We see also that if y=0 in  $Y_S$ , then y=0 on  $(\sum^1 \setminus \sum_f^1)$  and hence f(y)=y from the definition.

Finally, let  $u \in H^1(Y)$ ; because

$$\left| f(\vec{y}) \right|_{\mathbb{H}^{1/2}(\vec{y}\vec{Y}_f)} \leqslant c_1 \left| \vec{y} \right|_{\mathbb{H}^1(\vec{y}\vec{Y})} \leqslant c_2 \left| \vec{y} \right|_{\mathbb{H}^1(\vec{Y})}$$

for any  $y \in C(\overline{Y})$ , and as  $C(\overline{Y})$  is dense in  $H^1(Y)$  we define f(y) as the limit of  $f(y_k)$  for  $y_k \in C(\overline{Y})$  and  $y_k \longrightarrow y_k$  strongly in  $H^1(Y)$ .

Obviously f( $\underline{u}$ ) is well-defined and everything holds at the limit also.  $\square$ 

Lemma 2. If  $u \in H^1(Y)$ , then there exist a unique  $v \in H^1(Y_f)$  and a unique  $q \in L^2(Y_f)/R$ , solution of the problem

(2) 
$$-\Delta \overset{\text{y}}{\nabla} + \overrightarrow{V} q = -\Delta \overset{\text{u}}{\nabla} \text{ in } Y_f$$

(3) div 
$$x = \text{div } x + 1/(|Y_f|) \int_{Y_S} \text{div } y \, dy \text{ in } Y_f$$

(4) v=f(v) on  $\partial Y_f$  (f given by Lemma 1)

Moreover, there exists a constant  $C(Y_f)$  such that

(5) 
$$\left| \mathbf{y} \right|_{\mathbf{H}^{1} (\mathbf{Y}_{f})} \leq C (\mathbf{Y}_{f}) \left| \mathbf{u} \right|_{\mathbf{H}^{1} (\mathbf{Y})}$$

 $(|Y_f|)$  is the measure of  $Y_f$ ).

Proof. Using the result proved in Cattabriga [2] we have only to check the compatibility condition

(6) 
$$\int_{\partial X_{f}} \vec{x} \cdot \vec{y} \, dr = \int_{f} div \, \vec{x} \, dy$$

which follows from

$$\int_{Y_{\mathbf{f}}} \mathbf{f}(\underline{\mathbf{u}}) \cdot \mathbf{v} d\mathbf{v} = \sum_{i=1}^{6} \int_{\mathbf{f}} (\underline{\mathbf{u}}) \cdot \mathbf{v} d\mathbf{v} = \sum_{i=1}^{6} \int_{\mathbf{u}} \underline{\mathbf{v}} \cdot \mathbf{v} d\mathbf{v} = \int_{\mathbf{Y}} \underline{\mathbf{u}} \cdot \mathbf{v}$$

where we have used property (c) of f.

With these two lemmas we can prove our main result.

Theorem. For any  $\varepsilon > 0$  sufficiently small there exists a restriction operator  $R_{\varepsilon} \in \mathcal{L}(H^1_{co}(\Omega), H^1_{co}(\Omega^{\varepsilon}))$  such that

- (A) If  $u \in H^1_0(\Omega_f^{\epsilon})$  is continued with zero in  $\Omega \setminus \Omega_f^{\epsilon}$ , then  $R_{\epsilon} u = u$ .
  - (B) If  $u \in H^1(\Omega)$  and div u=0, then div  $(R_{\varepsilon}u)=0$ .
  - (C) For any  $u \in H^{1}(\Omega)$  the following estimations hold:

(8) 
$$\left| \nabla R_{\varepsilon} \right|_{L^{2}(\Omega_{f}^{\varepsilon})} \leq C(Y_{f}) \left( (1/\varepsilon) \right) \left| \left| \left| \left| L^{2}(\Omega) + \left| \nabla u \right| \right|_{L^{2}(\Omega)} \right)$$

Proof. Noticing that every ( $\epsilon Y$ )-cube is of the form  $\epsilon Y^{\underline{n}} = \prod_{i=1}^{3} \left[ \epsilon n_i, \ \epsilon n_i + \epsilon \right[ \text{ with } \underline{n} = (n_1, n_2, n_3) \in \mathbb{Z}^3, \text{ then the } (\epsilon Y) \text{-cubes which intersect } \Omega \text{ can be indexed following}$ 

$$\mathbb{Z}_{\varepsilon} = \left\{ \underset{\sim}{n} \in \mathbb{Z}^3 \mid \varepsilon Y^{\underset{\sim}{n}} \wedge \Omega \neq \emptyset \right\}.$$

For the ( $\epsilon$ Y)-cubes which are cutted by  $\Omega$ , we shall denote by  $\widetilde{\Omega}$  all the parts of them which are still contained in  $\Omega$ .

Reminding that  $\partial\Omega$  is of class  $C^2$  and that all the corners of Y are surrounded by fluid neighbourhoods, we choose  $\varepsilon>0$  as small as if  $\partial\Omega$  has an intersection with an  $(\varepsilon \widetilde{\Sigma}^i)$ -side face such that  $\left|\varepsilon \widetilde{\Sigma}^i\right| = 0$  then the adjacent  $\varepsilon \widetilde{Y}$ -cube, outward to  $\Omega$ , has  $\left|\varepsilon \widetilde{Y}_f\right| = 0$ . That is always possible, because the tangent plane to  $(\varepsilon \Gamma)$  on  $(\varepsilon \Gamma) \cap (\varepsilon \Sigma^i)$  is orthogonal to  $(\varepsilon \Sigma^i)$ . (see Fig.3).

Let  $u\in H^1_{\mathcal{O}}(\Omega)$ ; in  $\Omega_S^{\epsilon}$  we define

## (9) $R_{\varepsilon} u = 0$

In  $\mathcal{Q}_f^{\epsilon}$  we shall construct  $R_{\epsilon}$  in every  $\epsilon Y_f^n$ ,  $n \in \mathbb{Z}_{\epsilon}$ . That is why we have to consider two situations.

First, if  $\epsilon Y^{\overset{n}{\sim}} \subset \mathcal{Q}$  then we define



Fig. 3

(10) 
$$R_{\varepsilon} u = v \circ \varphi^{\varepsilon} \quad \text{in } \varepsilon Y_{\widetilde{f}}^{n}$$

where  $\chi$  is given by Lemma 2 for  $\chi(\epsilon_n + \epsilon(.)) \in \mathcal{H}^1(Y)$ .

Second, if  $\varepsilon Y^{n}$  is cutted by  $\partial \mathcal{Q}$ , then we can repeat the construction of f on  $\sum_{f}^{i}$  as in Lemma 1, but only if  $\left|\sum_{f}^{i}\right| \neq 0$ . Let  $u^{*} \in \mathbb{H}^{1}(Y)$  be the continuation of  $u(\varepsilon_{n} + \varepsilon(.))$  with zero in  $(Y \setminus \widehat{Y})$ ; we remark here that it make sense since  $u \in \mathbb{H}^{1}_{0}(\Omega)$ . Thus we can consider a system analogous to (2)-(4):

(11) 
$$-\Delta y + \nabla q = -\Delta u^* \text{ in } Y_f$$

(12) div 
$$\underset{\sim}{\text{v=div}} \underset{\sim}{\text{u*}} + (1/|Y_f|) \int_{Y_S} \text{div } \underset{\sim}{\text{u*}} \text{dy-} (1/|Y_f|) \sum_{i \ (*)} \int_{\Sigma_S^i} \underset{\sim}{\text{u*}} \cdot \underset{\sim}{\text{v}} \text{dv} \text{ in } Y_f$$

(13) 
$$\begin{cases} v = f(u^*) & \text{on } \widehat{\Sigma}_f \\ v = 0 & \text{on } \partial Y_f \setminus \widehat{\Sigma}_f \end{cases}$$

where  $\sum_{i(*)}$  denotes the sum extended over all those indices i for which  $\left| \frac{\hat{\Sigma}i}{f} \right|$  =0. Again we have to check the compatibility relation (6):

$$\int_{\mathbf{Y}_{f}} \operatorname{div} \underset{\sim}{\mathbf{y}} \, d\mathbf{y} = \int_{\mathbf{Y}} \operatorname{div} \underset{\sim}{\mathbf{u}}^{*} - \sum_{\mathbf{i}} \int_{(*)} \int_{2\mathbf{i}} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} = \sum_{\mathbf{i} = 1}^{6} \int_{2\mathbf{i}} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} - \sum_{\mathbf{i}} \int_{(*)} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} = \sum_{\mathbf{i}} \int_{(*)} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} = \sum_{\mathbf{i} = 1}^{6} \int_{2\mathbf{i}} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} - \sum_{\mathbf{i}} \int_{(*)} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} = \sum_{\mathbf{i}} \int_{(*)} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} = \sum_{\mathbf{i} = 1}^{6} \int_{2\mathbf{i}} \mathbf{u}^{*} \cdot \underset{\sim}{\mathbf{y}} \, d\mathbf{r} = \sum_{\mathbf{i}} \int_{(*)} \mathbf{$$

where denotes the sum extended over all those indices i for which  $\left| \stackrel{\sim}{\mathcal{L}}_f^i \right| \neq 0$ . Hence, there exists a unique solution of (11)-(13),  $\chi \in \mathbb{H}^1$  (Y<sub>f</sub>) and  $q \in L^2$  (Y<sub>f</sub>)/R. If div  $\chi = 0$  then, reminding the property with which  $\mathcal{E}$  was choosen, for a face with  $\left| \stackrel{\sim}{\mathcal{E}}_f^i \right| = 0$ , we have in the outward adjacent  $\mathcal{E}_f^{\gamma}$ -cube

$$0 = \int_{\varepsilon \widetilde{Y}} \operatorname{div} \, \underline{u} \, dy = \int_{(\partial \Omega) \cap \varepsilon \widetilde{Y}} \underline{u} \cdot \overset{\circ}{Y} \, d\mathcal{T} + \int_{\varepsilon \widetilde{Y}} \underline{u} \cdot \overset{\circ}{X} \, d\mathcal{T}$$

and as  $\mathbf{u} \in \mathbf{H}^{1}(\Omega)$  it follows

$$\int_{\widetilde{\Sigma}_{S}} u^{*} \cdot \chi d \widetilde{v} = 0.$$

Then from (12) we get

$$\operatorname{div} \, \mathbf{v} = -\left(1/\left|\mathbf{Y}_{\mathbf{f}}\right|\right) \sum_{\mathbf{i} \, (\mathbf{x})} \int_{\Sigma_{\mathbf{i}}} \mathbf{v}^{\mathbf{x}} \cdot \mathbf{v} \, d\mathbf{v} = 0 .$$

Moreover an estimation analogous to (5) hold:

(14) 
$$\left| \underset{\sim}{\mathbb{Y}} \right|_{\overset{H^{1}}{\to} (Y_{f})} \leqslant C(Y_{f}) \left| \underset{\sim}{\mathbb{U}^{*}} \right|_{\overset{H^{1}}{\to} (Y)}.$$

But v=0 in  $Y_f \setminus Y_f$  and thus (14) becomes

(15) 
$$\left| \chi \right|_{\mathbb{H}^{1}(\widetilde{Y}_{f})} \leqslant C(Y_{f}) \left| u(\epsilon n + \epsilon(.)) \right|_{\mathbb{H}^{1}(\widetilde{Y})}$$

The definition of the restriction operator in  $\epsilon Y_{\widetilde{f}}^{n}$  follows now naturally:

(16) 
$$R_{\varepsilon} = \chi \circ \varphi^{\varepsilon}$$

where v is given by (11)-(13).

It is clear that the properties (A) and (B) result straightly from the definition of  $\Re_{\epsilon}$  . The property (C) can be proved by evaluating the integral

(17) 
$$I_{\varepsilon} = \int_{\varepsilon} ((R_{\varepsilon} u)^{2} + \varepsilon^{2} (\nabla R_{\varepsilon} u)^{2}) dx$$

We decompose  $\mathbf{I}_{\epsilon}$  on every fluid part of the  $\epsilon \mathbf{Y}^{n}$  -cubes, making the following change of variables

(18) 
$$y(y) = R_{\varepsilon} u(\varepsilon n + \varepsilon y)$$

Then using in  $\xi Y^{n}$  the corresponding estimation, (5) or (15), and recomposing the right hand side of the global estimation we finally get

(19) 
$$I_{\varepsilon} \leqslant c(Y_{f}) \left( \left| u \right|_{L^{2}(\Omega)} + \varepsilon^{2} \left| \nabla u \right|_{L^{2}(\Omega)} \right)$$

which obviously completes the proof. [

## REFERENCES

- [1] E.SANCHEZ-PALENCIA, Topics in Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin, 1980.
- [2]. L.CATTABRIGA, Rend. Mat. Sem. Univ. Padova, 31, 1961, p.308-340.

<sup>\*)</sup> Department of Mathematics, INCREST Bd.Păcii 220, 79622 Bucharest, ROMANIA

