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A RESTRICTION OPERATOR SPECIFIC TO PERIODIC
MEDIA

by

Dan POLIBEVSKI* )

Let 4Zi, ie%l,Z,...63, be the side faces of Y=[§,1E?,
and let I be a surface of class C2 includéd in Y, which cross
the boundary of the cube following some regular curves which
are reproduced identically on opposite faces. We assume that
B separate Y into two domains, YS—the solid part and Yf—the
fluid part, with the property that repeating Y by periodicity,
the reunion of all the fluid parts, respectively the solid parts,
is connex in R3 and of class C2. The origin of the coordinate
system:is set in'a fluid ball; thus all the coxnere of Y are
surrounded by fluid neighbourhoods (see Fig.l).

Let 0 be an open connected bounded set in R3, locally
located on one side of the boundary ol a maniteld of class C2,
composed of a finite number of connex components, and let
CP:E%w%ﬂp,l[ be the function which associates to any real number

its fractional part; we say that a function f:R3~%~R is- ¥Y=perio=

dic if f=f¢@ . Also, for any €&(0,1) we define
<5;
Pr(x)= ((1/g)%)

e -
&f:SVXQ \1' ix)e Yf§

\v



Bigae . 1

Remark 1. If a fluid flow is considered through this g¥-
—perigdic media, that is in J?: , and if the homogenization
process is studied, one has to remove the fact that the velocity
and the pressure are defined only in jl?. While the velocity can
be naturally continued with zero in Slz , the continuation of
the pressure to Ll is not so obviocus, and it needs a special
restriction operator. from gé(ﬁ) to Eé(“Qi)' A const;uction o
such an operator can be found in Sanchez-Palencia [13 Appendix,
but from the physical point of view it is valid only for bidi-
mensional flows, YS being strictly céntained into Y; :also any
problem at the border there was avoided, defining &L? as the
dbmain obtained from Q by picking out only the domains g¥g
which do not intersect 3.

Here, the above mentioned Tartar’'s construction is extended

to the present case which is obvicusly tridimensional, with

connex phases and biphasic boundary. [



Lemma 1. If ue& }\{'1 {Y) then there exists f(—:éf(gl )i gl/z ('an)

such that _
(a) £l =0 on F
(b) If g=g in YS ;, then f(g)=g.
(c) For every ia{l,Z,...G} Thie holdé

(1) S £(u) -V 4 =S usy dr

where Y denotes the unit outward normal on Zl, and Z;=Z‘lﬂ'§f .

Proof. First, for every ve C(Y) we will define an element
f(X)Gg(?)Yf) satisfying the properties (a), (b) and (c).

% o
Let FH=I%[\Z}, where Zil is the face x,=0, and let f&

be a convex component of fﬂl. Let X& be the curve obtained by
1 O( .
5 nior Sl et e Pl on the normal, of thickness e 0

0
sufficiently -small, such that, if we denote with Z‘M the part

A
of 2:% contained between X

-1 & ¢
and ‘ and with Z: = szi , everv
i 1 M & !

e O
connex component of EiM is, for some X, 4 M (see Fig.2). Let
X~=g (s)
2 ¢!
& A
x3=h(s)

be the parametric equations
j &
of the regular curve Pl 2
that is gﬂlécz and
2 2 :
(gl)-F ") =1, where s is
oy 04

the arc length on | 1

Denoting with .Lz the

&
fength. of Fl ; We assume 0

Xy

that t. < ds also such small

Fie. 2.



o O “
as the transformation of (x2,x3)(§::}_M into (s,n)el(0, L )=0,t ),
given by
x2=g(s)—nh'(s)

x2=h(s)+ng’(s)

has a strictly positive Jacobian determinant:

-D' (X21X3)

— = 1+n(g”h’—g’h”)> 0
D (s,n)

: 10( =
Here, we have to remark that if f-l attaing an edge of Y,

o .
then the normal of Fl in that point is the edge itself, because
of the assumption that repeating Y by periodicity the reunion
ef all the £1luid parteis of e¢lass C2.

e
Then we put in 2M

f(v) (g,n)=y(s,n)-P(n/ty )v(s,0)

where P(x)=—10x3+182~9x+1.

- ] £
In Zf\ZM we put
Sk Q© S

o i

NI

where C()E:a@( Zi.x XM) and

3 ¢ dx,dx;=1.
1SS

With the following calculation



S f (v) dxzdx3= S (v+@
1 Y e A
Zf Zé\?M

1 l

RVE:

el e

de

by
Svdxdx+

V
3+A.s
X

NS

2dx )dx dx

gf(v)dx dx3
o .
fxzf
SX (v(s,n)-Pn/t, v(s @)
Q0

\Ne7i

shy i ¥y <
2 1\2 \).f
Tl
9 (%, ,%5) S SS B(XZ,X )
e —dsdn= vdx dx ————e——dsdn -
‘B (S’n) = S,n )
7 \ZM 00
L ) L L
7 &7
_>__‘«, S X(S,O)ds P(n/t, —)__ SX‘(S’O) (g"h"—g’h")ds nP(n/t
« \Q / o ¢ O 5

and because

% Ty
SP(n/tb( Nidn= gnP(n/tO< ) dn=0
Q Q

the property (c) is checked for i=1. Using the same method we

define f(X) on the other side faces. As the property (a) require

= :
f(z)=Q on [ ;, we have the whole construction of f(x) on BYf

and it is easy to verify that f(Y,) &C(o Yf) (we remark here that

B(@)=1 =nd (1)

on (Zl\Zé) and hence f(
1

=0) . , then Xz.Q,

We see also that if v=0 in Y
N A S

v)=yJ from the definition.

~

Bimad by = let EG’ H (Y) ; because
\f (v) l <G v <C y\)[
X El/Z (37,) = El Qv 2 El )

for any X@ g(?), and as g(?) is dense in Hl-(Y) 15‘),

we define f(,

and v, —» u strongly in Hl(Y) 5

Asthiel lkmilt S el f(yk) fon ykcz g(Y) e



@ovieusly (Ul is well-defined and ‘everytiing holds at the limie

also. D

Lemma 2. If ’;},‘«E @), Ehen there exist 4 unigue ve /Iil (Yf)

and a unique gé& LZ(Yf)ﬂR, solution of the problem
(2) A qu—llgv in Y

3) div X=div o l/((Yfi ) S div udv in Yf
N Y P4
S

(4) v=f (1) on DY, (f given by Lemma 1)

v i

Moreover,‘ there exists a constant C(Yf) such that

(5) lxi . <CY>’,VlH .

(in! is the measure of Yf) .

Droef. Ucing the result proved in €attabriga [2:gwe have

only to check the compatibility condition

(6) S de"’*Sdivde
BY Yf :

which follows from

¥ 6 [ 6 :
& £ (u) -Va¥ =§_:gf (= dly = 7 g e dn = Su\? aj =
™~ 3 NV ,aY ;

g i=l>_L i=1 -
AS_
Sdlv u dy= S (div a+l/( f‘ Sdlv u dy )dyf
Y Yf S

where we have used property (c) of f. D



With these two lemmas we can prove our main result.

Theorem. For any & >0 sufficiently small there exists a

restriction operator Rﬁﬁi&ﬁgé(ﬁJ,Eé(SZ;)) such that

(R e gezﬁé(ilf) is continued with zero jm152\52f . then
Re=u.

(8) Tf ueH (D) and div y=0, then div(R,u)=0.

(@) Eoriany géigé(ﬁ) the following estimations hold:

(7) B o e (lu e )
(8) l'\’?R u e e ¥ Vu\ )
ohaeg \”!gz () | 1% ()

Proof. Noticing that every (€Y)-cube is of the form

il =
gYQ = ]{Lgn., En.+zil-with n=(n,,n,,n )é&ﬂB, then the (&Y)-cubes
1 ak al A efoes Dilie 3
which intersect £ can be indexed following

Ze "‘“{{1}’51’23 ‘eY%Q. #0 ?

For the (¢&Y)-cubes which are cutted by>5£l, we shall denote
~J :
by 0) all the parts of them which are still contained in L. .
Reminding that o0 is of class C2 and that all the corners
of Y are surrounded by fluid neighbourhoods, we choose £>0 as
ava
small as if 92 has an intersection with an (g€ 3')-side face
o) : s
such that ‘tZLf =0 then the adjacent g£Y~-cube, outward to‘ll,
Ny
has ‘an1=0. That is always possible, because the tangent

plane to (el yon (&P)f\(gZ;) is orthogonal to (Effi). (see

Big.3) .



Let ueH, L. ,Qié

we define

Or Rl
€
In .,,Q_f we shall con-—-
struct R&. in every zzY% ’

ne€%e . That is why we have

to consider two situations.

Firgt, 1 evic O

then we define

Elifer e 3

L€ : on
(10) Ra.% R"Xo@ in &Xf

Lz
where v is given by Lemma 2 for u(€ nt sl )0Ee ,H, (Y)
Second, if EYQ is cutted by 2.0, then we can repeat the

o] i : f\:i\ :
construction of £ on Zf as in Lemma 1, but only if >~f{%0.

Let pxé& %l (Y) be the continuation of %( £ n+ € (.)) with zero in

(Y \Y); we remark here that it make sense since %GE;(,&) . Thus

we can consider a system analogous to (2)-(4):

(11): —Az +Vq=—AEX in Y.

(12)  div v=div v+ (1/|y 1>S div u*dy-(l/}yf'{) Z_s g Y ar in v,
~N ~n f v N o \: ~ 3E
_ , =
yL

S S

1N,

v=f(gvx) on Zf
(13) - -
v=0 en be\ Xf



7
where Zws. denotes the sum extended over all those indices i for

1)

';(Xj_
which ,}_af‘ =0. Again we have to check the compatibility relation
(6) :

S g e g\ % :
diw vidy=idiy mie u ey dir =

L'

Yf N 3 ()

\ . S
=_Z j KX-Vd(T’— §ux.v dG‘=ZA ux.

am -

Y
S ey i(k) Qi~ -~ i (k%) TLIN o~
> 0l 2
v i
— e 5 Y orm) Pl e el -
Ao A o~ I~
=z
where </ _» denotes the sum extended over all those indices i
i(ﬂ{}%)},\,i :
for which fjmf #0. Hence, there exists a unique solution of
(11)-(13), X@Hl (Yf) and qe":L2 (Yf)/iR. If div }1V=O then, reminding
: 2 Al
the property with which € was choosen, for a face with 52’_;{:0;

. N
we have in the outward adjacent gY-cube

Oz‘gdivgdyt S u-\7d5’+g¢u->d5“'
s / N .tru-"v A~ qacy o
gy , (32)n eY EZS

and as u€ H. (Q) it f£ollows

/

Then from (12) we get



ey

L
c i@ o”
Zs

Morcover an estimation analogous ke (3) hold:

*
e [n ] 1 :

(14) }VlE}(Yf) Al

n
But v=0 in Y \\g and thus (14) becomes
NN~ it 5 ;

(15) g(£g+e(.)\)

ey

Hl(QI)
N

/\J} 1 v
)

o

The definition of the restriction operator in ng

follows

now naturally:

(16) R_ iy o€

where v is given by (L 18) S0 )i

It is clear that the properties (A) and (B) result strai-
ghtly from the definition of R& . The pronerty (C) can be proved
by evaluating the integral v .

1)
(17) T o= ) (Row 2+ (VR %) dx

& ¢
6]

Fhie

We decompose Ia on every fluid part of the gYQ—cubes,

making the following change of variables

(18) g(y)=R& g(€g+ﬁy)

Then using in gYQ the corresponding estimation, (5) or
(15), and recomposing the right hand side of the global estima-

tion we finally get



2
‘gz ()

(19) Igsgc(Yf)(lu

A

which obviously completes the proof. [
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