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A UNITARY INVARIANT FOR HYPONORMAL OPERATORS

Mircea Martin and Mihai Putinar

In this paper is established a two-dimensional singular
integral representation fof an arbitrary hyponormal operator.The
significant term in that model involves an operator vélued disfri=
bution supported by the spectrum,which turns out to be a complete
unitary invariant for. the pure part of the overator.The technical
tool in that representation is_a family of contractions,indexed
over the gomplﬂx plane,which arises naturally from the hyponorma-
lity assumption.Other invariants,as for»instanée the principal
function,are then recuperated from that distribution.

Let H be a complex,separable Hilbert space and let L(H)
denote the algebra of all linear bounded operators on H.We recall
Ehak eTain L] ds.caid tobesa hyponormal dpeﬁato& E

TT% < AT orequivalent 1y HT*hi?é ilThii,hQ e
The hyponormal operator T is said to be completely non-noimal or
pure if there is no'reducinq subspace far 1 on which it rest e

tion would be a normal operator.The introductorv texts E{} and i241
offer to the reader the basic princinles and a comprehensive biblio-
graphy for the theory of hyponormal operators.

Let D:ZT*,ijdenote the self-commutator of a hyponormal

eperator T dn il {H)} Tk eisen nonnnéqative semi-definite operator

which satisfies the relations

)
1l
=
|
>

N
=
|
>
i
—
|
>

*
3

|
>

for levery complex: number A im O . Consequently thewve exists for

any 7 in il 3 unigue contraction Clz) in [ (Hl = 56 that



(T -2z )*(z) =% and c*@)lrer(T - 2z )% =0, (1)

-

see for instance ggi . That family of contractions was introduced
by Radjabalipour [201 in connection with Putnam”s global resolvents
phienemeneon = 19  ,;and then it appeared persistently in Clancey s
work [4,5,61 .The present parner is centered around that object, too.

Since the L(H) -valued function C defined on € by the con-
ditiens (i) i=s loeadlly integrable with respect to the planar
Lebesque measure, its complex derivative 23C = 3C/ 3z in the
sensé Gl distributions satisfies on C thé identity

(G = T E T

ekt s introduece’’ X = | RanDl/2

1/2

operateor D

)* the closure of the range of the
.oinee: X s the actual domain of allieperaters C(z);

TheE fbllows that every vector x in X provides the globally defined

eigendistribuéion 3Cex of T . These H -valued distributions span

the pufe part of the space H ,with respect to the orthogonal decom-
pesitien of the operator T in pure and normal péft,as it follows

from the next

THEOREM A. Let T be a hyponoamal operator on the Hilbent
AP L e Ginecan span-of the veotors Clz)x: S with¥z 1n € and

Xon s tdonse dnotl Lf and only- L4 the operatorn T A4S puke.

That result was proved in the case rankD = 1 by Clancey (4].
Let us assume that T is a pure hvponormal operator.Then,

because of Theorem A,the general scheme of producing functional

18"\

!

représentations for the hyponormal operator T described in

(T

applies to the above generating family of eigendistributions.Thus
the separate completion of the space ?D(C) & H in the norm
associated to the distribution kernel §wazc*(w)c(z) is unitary

equivalent with the space H. In that identification the operator



T becomes

To = zg. o ADL/2 sa . o) » ~%m v @ €D(T) & H (i1)

C

while T* is represented by the multiplication o@erator Wit o
We have denoted as usually by ? the space of smooth,compactly suppor-
ted functions,and by " % " the convolution product of distributions;
see the preliminaries below for more details. l

Let us notice the close analogy between formula (ii) and
Xia’s one-dimensional singular integral model [221,where @ simiilar
expression appears for the real (or imaginary) part of the opera-
tor T,with the Hilbert transform instead of the Cauchy transform
above.A dual representation to (ii) was established recently
inthesease ‘rankD = 1,in ithe papers (23] ' [16i ,See also{lgl.

The positive definite kernels like Cﬁﬁw)C(z) ;which are
related to a hyponormal operator by a singular integral represen-
tation as above,are characterized in the sequel by tafirst¥orden
linear partial differential equation,together with a boundedness
condition.As a consequence of that compﬁtationS'we prove the
following
142

THEOREM B. The ddistribution = -D e tn D L6 Csia

complete unitary Lnvariant for a pure hyponormal operator T 4in L(H).

In this way one gets that the unitary equivalence class
of é pure hyponormal operator T is decided on the space
X = (; Ran Dl/z)—,a fact already known by the determining function
method of Carey and Pincus [ 21 .However the relationship between
thedr mesdaic and the distributien f = - Dl/23 © remaiﬁs to bé

discussed elsewhere.



e ]

A recent reﬁult of Clancey [41 states ,under the assumption
thaﬁ the operaﬁor Dl/2 1s ‘trace class,that the principal function of
“the operateor T ceoincides , in our noﬁations,with —Trace(Dl/Z& €
The principal function represents ,up to now,the finest and well
understood uﬁitary invariant for that class of operators,see @1,12 ,B5],

We prbVe that on the essential resolvent set of a pure
hyponormal opérator T,the complete unitary invariant T' coincides

&
with a smooth,finite dimensional projection valued function,not

necessarely self-adjoint.Moreover,the identity

remk Falo — a0 =], e e

Holds true. Thus,Clancey ‘s result mentioned above fits well with
this picture.This behaviour of the invariant | on the essential
résolvent set is also close related to Cowen and Douglas

theory,

All the statements below have elementarv,and,és a matter
of fack,independent of other references proofs.

The content is the followino. In Section 1 we discuss a
few facts concerning the function and distribution spaces which are
used in thé sequel.

In Sectien 2 one présents the basic properties of the
contractive operator function associated to a hyponormal operator,
inciuding the proof of Theorem A

Section 3 is devoted to introduce the operator valued
distribution I" and to prove Theorem B. In nmarticular we emphasize
the behaviour of the restriction of [’ on the essential resolQent
set._of the operator.

Section 4 contain® the constructioﬁ of a two-dimensional
functional model for any pure hyponormal operétor,by using the

distribution I .
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Section 5 concludes with a discussion concerning positive

definite kernels and'hyponormality.

1. PRELIMINARIES

The purpose of this section is to recall the notations and
a few facts concerning the function and distribution spaces which
are used in the paper.A complete reference for that subiject is

Schwartz ° paper Ele

1.1. Let H be a separable,complex Hilbert space and let
L{H) be the algebra of linear bounded operators on H .
The trace-class ideal CI(H) of - L{H) ‘coicides with the predual @6

the Banach space L(H) ,via the bilinear duality pairing
(I,8) == Trace (TS) TeLiHl + S8 C i)

We denote as usually by z and z the complex coordinatés on the
complexeplione @, and byiy =g/ a0 o an 0 o i o corresponding
vector fields.

Let Q. be an open subset of @ and let E{ 0 Hl - El @ | & H
dendte the Fréchet space of smooth,H -valued fuﬁction en @ . The
EE s?ace of smooth,compactly supported functions on @ is denoted
ae usmeldy by (D 0 Ml g plag ) ug ol
The tepological dual of P Q. ] is the gpace D' (.0 )} ek H -vi-

lued distributions on @ .Since the space of scalar distributions



D'( $¢ ) is nuclear,the topological isomorbhism Dv(ﬁa,H) =‘D'(§2) éS H

holds for every complete topologicél tensor ﬁroduct. Let

- 3 DUELH) X DISLH) — €

denote the unique sesquilinear continuous map,which acts on simple

tensor products by the formula
<u®1LqM§k> =1M@)<h$> ,<where u GD’U}M?EDLQ)ﬂLkGH.

Let us notice that,in view of the natural embedding

PR e DG the equality

Z d;@(z)

e - | 9@
_ 5

helds true for every @ de D) where L stands’ for the
'Lebesque measuré en € . Thescompletion of the sbace DR H] with
resSpeckt to the norm H k? ” ; 4= <k?:‘€> is the Hilbert space

2 : '
L2
i

2 e L(H)_ ‘the

Banach space of [ (H) -valued,measurable and esséntially ‘bounded

1.2. Similarely one denotes by

functions on £2 .wWe refer the reader to the monograph flO] for the

ihtegration theory of vector valued functions.

~

We have denoted by " 8¢ " the complete injective tensor product.

Similarely " ﬁT " stands for the complete projective tensor product,
9
see [21}

For the convenience of the reader we sometimes denote bv

L(H)Q. or HG« the respective s?aces endowed with the weak-star

topology ( with respect to=wthe predual snace, C, (H) 5, respectively H ).

1

The Banach space L° (f) g L(H) is identified with the

dual of L}LQ) QW Cl(H) .56 that LR &, L(H] ,2with the poinwise

multiplication,is a von Neumann algebra.
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1.3, The operator valued distribution space is denoted by
Dlilbsga) & L(H)O . It is the topological dual of the LF space

Doia-] -8 Cl(H) » Or equivalently,the set of linear continuous ope-

rators from D0 )= dnto LT

1

We point out the natural embedding of Lloc

(20l CHE ) S inteo U4 O loail (15
We simply denote by u« ¢ = m(u, ¢ ) the unique continuous

bilinear map

m: (D' (Q)aL(Hlg ) X ( ElelaH | — D’ (0)a&H g
wﬁich extends the application

milcus e T gmh ) —lpuelim ol i)

where u¢ Peiql,«p e (R}, TeL{H] and he .
Let us point out that the evaluations u- ¢ ,with an arbitrary ¢ as

above,determine completely the distribution u

1.4. The 3 derivative in the sense of distributions gives

rise to a. continuous operator

bR R

Lloc i

=
&3]

where - E stands for a Banach space ( E = H or E = L(H) in this paper').
The fundamental solution of the differential operater § e the

function - n—l S neae (L) that Ss; B () == 55

SF % (-wl/z) =F (1)
holds true, whenever
- Qlioc<¢>ﬁﬁ3r 3F € D' (C)&E, supp (3F) compact,, lim [IF(z){l = 0

i21~v00

Notice that supp (3F) is compact,so that F is a smooth: function in the



o e

“neighbourhood of infinity. Welrefer“to (1U1) as teithe (deneralized)

Cauchy-Pompeiu formula and to the convolution operator with - n_l/z

as to the Cauchy ‘transform.

; : =) r ;
ihie Coauchy transform u =v * ( ~.qp  /z )}.6f a compactly

supported E-valued distribution v,is the unique solution in D’ (C)&E of
the equation gt ="Vv ,vanishing at infinity.
Similar statements for the operator 3 are obtained by

complex conjugation.

We mention also the relation
(sF)o = 3(Fop) - F 3¢ {152)

which will be used in the sequel for F din L' (@) & LI{H) and

-~

oF S s DO I in addition ‘gupp( b F) “is‘compatt,then

i

-1 -1
ol £ ( =n l/Z) =B {8 ol *(n 2) b2y
so that the right hand term contains only pointwise multiplications

between operator and vector valued functions.

1.5. The identity (1.2) follows by an approximation by regu-

‘larization argument.

Lettus " recall Fimally the notations concerning the ‘regularization of

distributions. Let p be a non-negative element of “UH(E) =0 that
f plz)od iz .= 1,

and let P, beliehe function  p_(z) = s gilale) ey 0.

We denote as usually the regularizations of a distribution u in
e B by B = 0 pso, soothat all u, are smooth E-valued
€ € 3
functions on € 'and * lim u_ = u in the (weak) topology'of the space
g0

D’ (C)BE



2. THE CONTRACTIVE OPERATOR FUNCTION

In this section we give the basic properties of the contrac-
tive operator function associated to: a hyponcrmal operator and we

prove Theorem A

2.1. Let us begin with a few conventions and notations.
&
Let -T denote throughout'‘this seetion a hyponcrmal operator on the
separable,complex Hilbert space H ,and let D = [T*,T] denote its

. Self-commutator.For any complex number A , T. .and T* stand for

A A
Ehie expressions: T ~ A andl (O Diseaa) k. resmectively.
Since . Dl/ZDl/2 £ T; T for every A in € , there exists

by a well-known result of Douglas E9] a uniague contraction €(A)

ine L) < 80, that

1/2

T e@r =Bt o) frenmk — 6

>

A

It is straighforward to: check that the function € de.an element of
the von Neumann algebra L““(m) @6 L{H) and,moreover it is an
antianalytic function on the rgsolvent set D) oL T,

Consequently thé distributien . gC=in “D'(€)"& L{H)] ‘is supported by
fhe speetrum c(T) ‘éf the operator T - \ |

In fact we have the formula

L N
CA) = Somlim T ae. (Gl )k (2.1)
A A
=0 Ee
where E) stands for the spectral measure of the self-adjoint
er ikl
operator S

: : 2 ;
2.2. We also denote by T and i the correspondina operator
Ll I

valued functions belonging to the space

{ns]
5
=
<5
2
R
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Because of the natural,continuous,bilinear multiplication map

r)y & L] X (0 & L(H)O-«mﬁ'ﬁ’(m) & L(H)o ()

the product T; g, with:u in . D'(€) & L(H) 6 makes a good sense.
By taking the derivative in the relation of definitionseof C we get

* —
TZ 3 € =70

in ‘D' (C¢) & L(H) .However,we need in the sequel a slightly stronger

result.

LEMMA . For any functions o 4n D(T) & H and £ din

L?( C,H) . woe have

(00 e R B =0 (28)
Y0
PROOF. We use the notations introduced at the end of
Section 1. Recall: that C€ T sa(@ Tk QS
Since
eis 2 - -
) Dl/ - (z=-w) Cw)
we get
i ‘ 152 _ : e Ji CEES
T, aCF&Z) =D ! Spe(z—w)d‘u(wg = f(z—w)c(w)dpe(2mw)d uw(w),

But f 0 pe(z~w)d )T =0 ang by sefting = (z-w) /€ ,we obtain

0 (C)d.p (C)

) = = £C)E 3
T, 8C_(2) el e
Thus,for a given function ¢ in D(C) & H the set

)
is bounded in L (T, #) , hence its closure 1is weakly compact.



(£5

...ll....

As- o lim Tj BCE =@ an D’(@)@L(H) woit follows that
€0

LimsT* -k ye o =0
e20 e -

- _
in the weak topology of .the Hilbert spage . L7{C,H ) ,.dnd the proof

is complete,

2.3. Let ) be a complex nurber brom the inequality

&
TA T; é‘T; TA it follows that there is a unique contraction
Y
(A) whichsatisfies
rn"“'___' 1 S0 | * H
Iy = K T, KQ) |ker 4 =0

As in the case of the function ¢ ,the functien: "K = Hs%alao. an

% : ; 0 e \ .
element of the von Neumann algebra L (@)&EL(H} . A link between

the functions C and K appears in the next identity from EGl 2

T BV~ COE (M) = K OIRG) =0 % eu = e

: e *
where P(A) denotes the orthogonal projection onto  Ker TX
/

To verify (2.4),we note that the self-adjoint operators

vanish on Ker T; = ( Ran TA ) ,hence (2.4} i's equivalent with
Il I P —Cc@iet () - IR0y ) = e )
But T; (AT~ PR ) Ty T;TA ,
& bonrt oyl in s Dl/znl/? = T, - TKT;v, and
T Cxthiko) - mnk

thus relation (2.5) is obvious.



As. a consequence of (2.4) we have
Lo e (2.6)

so that,in view of lLemma 2.2 it follows the next

LEMMA . The ALdentity
-
Tz( 9C) eo0 = lim CDl/“ 3C o (27
e 0 5
holds in the weak topology o4 the space D’ (T)gH ,.4{or any function

o 4in Dic)sH

2.4. Next we restate and prove our first main result.
THEOREM A. .The hyponormal opgnato& T s s L 8 paie
L4 and only A4
H = 'span { C(z)x : z€ @ , x€ Ran pl/? }*
PROOIG. Tt suffices to prove that the.space
M = span % C(z)g v ik o Ran Dl/2 }

reduces T. Indeed, thie operators C(A), A in @ ,take values,by their

~

deffinition,only i

—

1 the pure part of the space H
Let us remark that

lim ZC(Z) == B
[z o0

‘ 1/2 ; ) T
hence Ran D ¥ M . Because Ban C({A) ="Ran C((A)D for

Mo

every. A din @, it follows

)

M = span {C(Mh coh e 5_1”}

The space M is obviously invariant for T

=)



By Lemma 2.3 we have in the space D’ (Q)&H the formula

T §(Ch) = z D(Ch) + lim cp /29 (C, h)
£ - (8)

torievery - h-dn H . Therefore,after a Cauchy transform we . get

s

¢ (M = D/ Ph +acn + 3 i) @) - 77 1imiep 1/22)(c R)t= ) (A)

¢ QO

N

for any. M in @, _ : 3
This shows that the space M is invariant for the operator T,

and the proof is complete.

2.5. We end this section with a technical result.Its meaning

will become clear in Section 5.

PROPOSITION. Let A be a complex numben.Forn any function )

in DICI8H , the nelation

(z-2) D € M) -@= /e - 1in ¥y D, @ (2.8)
E~5O ?

holds trhue in the weak Zopclogy:of (C}JH

PROOF. At the operator valued distribution level we have

(z=A) D@ = @y 7o e = sl %60t o

The proof is completed by substituting in this equation the relation (2.7).



3. COMPLETE UNITARY INVARIANTS

As indicated earlier,our main goal is to construct an appro-
priate complete unitary invariant for a pure hyponormal operator T
by using the associated contractive Operator. function “C .

In fact we exhibit in this section two kinds of invariants,
both of them defined on the closed subspace X = ( Ran LT*,T} Jos
Although these invariants exist in a general context,it is worthwile
to remark that,in_two relevant situations,they naturally arise by a
gecmetrical approéch.

Therefore,it is reasonable to begin our investigation by
studying these two nice cases.

SLL. Pirst, let us ‘assume that thHe self-commutator
D = {T*,T]_ of the pure hyponormal operator T is of finite rank.

A-well—known result of Clancey and Wadhwa [6] asserts that
the restriection of the contractive operator function € .on the
Lesolvent sat o( of T 15 a eompleie unitary invariant for 1.

By the '"rigidity theorem" of Cowen and Douglas [7] e
follows that T is determined up tc unitary equivalence by the
hermitian anti-holomorphic vector bundle defined over p(T) by
the correspondence

P(T) 3 A ~————s Ran C{A), (3518

' Moreover, the results of Cowen and.Douglas prompts one to compute
the curvature operator of this vector bundle.By a direct computation

one finds,as a more or less expected conclusion,that the L{X] =valued

real-analytic function © defined by
B s LK) e =t ucy o e

is a complete Ul tary invariant for T .,

)
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For example,the unitary orbit of a pure hyponormal operator
T having the self-commutator D of one dimensional ranae,is determined
by a scalar function.More precisely,if one denotes D = hazh ywith h in

H ,then the complex valued real-analytic function © defined by

e

B (T) ==« sl =l e i i) (3.3)

is a complete unitary invariant of T, see [4] ,L6] .
&
3.2, Our next example is based on a different assumption.

Let p = (T) denote the essential resolvent set of T. Since T is .
ess

a pure hyponormal operator, for any A in peSS(T) the operator

T;t’.{‘)L is invertible,hence we find the formula (see for instance Kll )

Clali= mo@tn) Eple ¢ (3.4)

Thus the function C is smooth on p)eSS(T)«

We suppose furtherion that

span { C(M)x : A€ol WL e Gl i =y

Let Q denote the union of all bounded connected components of

o) (T) ¢ 50 that Q. is a subset of the spectrum O (T) of T. A simple

ess

Cauchy transform argument gives that (3.5) is equivalent with
spml{gC(w)x P WE I e pr } = #H ; (3.6)

IThe results proved in Section o show that for any ¢ in

we have
span{fbc(w)x $ox @,X} = Ker TS )

and the eigenspaces Ker T$ caracterise the unitary orbit of T.
More precisely,from the already mentioned work of Cowen and
Douglas [7ﬁ] it follows that the generalized hermitian anti-holomorrhic

vector bundle ET defined over @ by the correspondence



=l

i el =3 o Ker T; = Ran 3C(w) ¢ H (3.8)

is a complete unitary invariant for T.
Let. v tbe 'a vector in Ker T; roroa-fized point @ in @ .
Since Tw is injective,the vector v is unilquely determined by its

image va .But we have
= 5
+o K lw) T (594

A 1 2 v . -
and consequently va = C(w)D / v ,s0 that the vector v is uniquely

determined by its image Dl/zv iR X

Now,let I' denote the [ {X)-valued function on © defined by
et = - Y e e e

From the last remarks,we obtain that the vector bundle E T defined
by (3.8) is equivalent with the hermitian anti-holomorphic vector .

bundle defined over Q@ by the assignement

Nip

G9@  —e 5  Ran.I"(0) & X . (Cehealaly)

We may resume by asserting that if T satiafies the condition

(3.5),then thefunctien T is a complete unitary invariant for T.

=

E o velevant to point out two inportant properties of the
invarlante B - Fiyst wetnote ‘that: the Tunctieon I' is projection~valued.

Indeed, from (3.7} and (3.9) we find. the -equation

1/2

T5@ () = C (w)D 5C (w) -
Q) %

By differetiating it,we obtain

8O

142 M
= 3C(w) + Tw a2c(w) = BC(m)D“/ 53C (w) + C(w)D / 3

(@]
€

<)



e S
From TZBC(m) = 0 we also have Ti aZC(m) = 0,and by using again (3.9)
: U
. wWe get
>
T Re el el B o a2

Thus

‘and consequently

Tilo) = Tl e, i

Second ;in~connection with our earlier comments about the

vector bundlesg ET and Mg sWe point out the egquality

rank I'(w) dim‘Ker>T$

which implies

il

Trace: Plw) ol olobTs (R T (CBeaks))

Let us remark that both properties ' (3.12) and (38 de
not depend on the assumption (3.5). This assumption reflects only
the fact that.r 4is a complete unitary invariant for T.
Moreover,let us mention in passing another important
consequence of the condition (3.5).For detailes the reader is advised
“to. consult [7] or [13] . AS we already noticed, the condition (3.5)
_implies that the hermitian anti-helomorphic Vecﬁor‘bundle Nip
defined by (3.11) ecaracterises the unitary orbit of T. The ecuivalence
class of the vector bundle n p Can be described in terms of a finite
numbef ofbderivatives ofeilts candniéal curvature operator.
But a direct computation shows that the derivatives‘of the canonical
curvature operator éan-be‘expressed by using appropriate-derivatives

of ithe® function I

R e o L



It turns out that two pure hyponormal operators T and T’
which posses the same essential resolvent set and which satisfy

the assumption

« 1 3 $
span imj Ker T; =~ 8pamn twj Ker T ¥ S (3.14Y
©E N

J W & Q

are unitarily equivalent if and CRlRFEEE “Eqh any Poiht gl tn T

there exists an unitary operator 2
% - x""" i | i [ I%‘ ¥ 5Nty
Uo? (Ran [T7,7] )" — ( Ran {77, 7°])

such that

= P54

|96 o 1
U950 r(wu) B g T ) (3.15)
ferrall 0 2p, 0 % din Rer Tg = dim Ker 35* .

3.3. The remaing part of this section is devoted to
@establish the existence,in the ‘general case,of the invariants intro-
duced above under aditional assumptions.

We use the same notations as in Section 2.

o

PROPOSITION. The germ at the infinity of Zhe L(X)-valued

’

, & . , .
function © = C° C 48 a complete unitary invariant OR a puie
¢ K Y 3

operaton T

PROOF. Let T and T’ be two pure hyponormal ownerators

¢ = = s
bm - and let D, C , and D' , C" denote the self-commutators"and
: : - P et - e 7
the corresponding contractive operator functions of " Tiand T

et X°= CRan D ) and %' = Ran D" ) Tand 1ot s

Uu: Y - —> X' is a unitary operator such that

U er(z)cib) U =0 CfE e Cr (z) (316



Glong e

Fomnizisintalneighberheod of infinity.By identifying the power

expansions,from (3.16) it follows easily that

gpl/2phFmp /2% L /20 ng ey, 1/2 (3.17)

for all non-negative integers n and m.
On the other hand,we have the following bracket relation

-1 g-1

& : 12 d N W

e e e
=0 s=0

p ] opd-l-s Hp-l-r
pAiG] I P (3.18)

By using an obvious inductien argument,from (3.17) and (3.18)

we obtain

1, X D - i 4 :
upt/2ph Ppdg¥mpl/20 % 0, 1/20 00 P Qg Amy, 1/2 (3.19)

%

slneer T and T’ are pure,we have

g
(e
>
f 2

=
o

i

o~

4 /9
span { TqTmel/“x Ci g me=
and

1/2X" : < %' % = H 5

Span }l n'l-nqur mDI q,rﬁ S O z XI (,

Now we can define the unitary operator V on 4 by setting

m i/2X

v ( 97 Mp ) = prdpFmp,1/2 g (3.20)

By (3.19) the equations (3.20) really define a unitary
eperator -and , moreover, - V. T =W Thus- T and T are unitarily

equivalent.

3.4. Our next task is to prove the second main result

of the paper.



THEOREM B. The L(X)-valued compactly supported distnibution
I i S : . i : o
L= D @ C 44 a complefe unitary Lnvariant for a pure hyponormal

operaton T

’PROOﬁ. et T and T ‘be two Dure hyponormal operators
o 4l TWefderiad v pis @Rl S landy PieL Cr AT uia g IR v oot
ot ‘Eroposition 3l | ¥

et -1 "= ~Dl/27)c and [t = ~D’l/223C" ané&let us

suppose that U : XK ->,¥' is a unitary cperator such that
U T ‘ (3.21)
By aéplying the Cauchy transform one finds

1/2 1/2

; & :
D Ciy =D e (3.2

But by Lemma 2,3 we know that

il

2DC- ¢ + lim ¢ DY/29) Cp 2 5P

-0

TG P
for any function in Dwie X -, Then'it follows that

Dl/Z el e 12

70 (o =R D e s £ Tin p/217cpt /2% c.-

€% Q)

New,by :an induction argument,frem (3.22) andithe last equatibns we
obtain

1/2

%
up./ Pl . = ol 2eiieegy o o)

But for any =z “in a neicghberhood of infinity‘weican write

the power expansion

% 2
el = pt

Z

T : *
ana o =imilar e¥presion for C" (2] .



By (3.24) we find

P .,{‘zv
U c (z)c(z) U = c'F(z)c! (z) (3.25)
for darge values of Yzl thus T and T aresunitarily equivalent

by -Propesikion. 3.3 .

4. A FUNCTIONAL MODEL

Paoxing  -Xia .was the first who remarked , and since then
his paper {221 is a basic reference of the theory , that every pure
hyponormai operator can be realized on a direct intewral over the
real line,as a combination between multiplication operators with
bounded measureable functions and the Hilbeft transform. That
approach was intensively and succesfully used in the study éf
this class of operators ., cf. {215§151,[241~

On the other hand,most of the concrete hybonormal and
especially subnormal operators,act naturally on function spaces
defined on a domain of the complex plane.However,only the last
years_brought some light in the two-dimensional reﬁresentatiOn
problem for arbitrary hyponormal operators ( with rank-one
self-commutator ),cf. [41J}G}, @?],[23] :

In a previdus paper [18] it was developed a general frame-
work for producing two-dimensional functional models for arbitrary
hyponormal operators,by starting with a generating subspace of
eigendistributions of the adjoint operator. Theorem A above provides
a canonical and,in a generic sense,minimal subspace of such eigen-
distributions.This section is devoted to its corresponding

two-dimensional singular integral model.



4.1.- We recall a few of the notations introduced in'the
preceding sections. Let T be a hyponormal operator on the Hilbert
Space  fasandeletr "Di= ET*,Tj stand for its self-commutator.

C is the associated contractive operator function,with the initial

; - 5
Shaca X = RanD ) and I = - Dl/“ NG e

4.2. In virtue of Theorem A above,the closed linear span

in the sapce W;2( H ) of the elements "DC-x,with x in X ,is a
generating subspace G of elgendistributions, for the pure part
of the operator T, in the terminology and with the notations of EISI >

: : - ; t5 . :
Consequently, the compresion K> of the distribution kernel X

T s

to this space is

TG o el
KT( W,z ) = B0 Celwiciz) .,

The remaining part of this section is devoted to restate-
in a more precise form Theorem 4.6 from [l8l.,in the case of

this generating subspace. For the sake of completeness we avoid

the references ko that paper.

4.3. Let us assume in addition that Tiig 'a pure hyponor—v
mal operator.
Let H be the separate completion of the space D(T)mX

with respect to the seminorm

}}@@iz = Ilj Clz) swizldy (z) Hﬂ2 (0 € D(T)mX (41
H {
It is plain.to check that the operator U : H - =3y § defined by

Ui e JBC(Z)B olzldqite) =5 o e Di(T) 8X (4.2)



is an isometry. Moreover U is onto because of Theorem A and of'
the assumption on complete nbnfnormality ( comﬁare with the proof
etsnCene Lbaryia 525 wErem L18§ Yok ales also . stradchtforward to
Verify that the multiplicatioh operators with =z  and ‘2 on

D(C)m X dinduce two well defined bounded linear operators on H ;
which will be denoted by the same-symbols,res?ectively.

The maln result is the following.

4.4. THEOREM . let T be a.pure hyponoamal operaton on
the flifbert space H , and Let U : | —> H be the corresponding
unitarny operator, defined on the function space H

The following Adentiilies

%k &
a) UT U(p) = zo
b) *, - -1 =
) U T W) =izl =um Esgs)ve Lz
c) us [T*,T] Ul iz eon =l f Dl/2C(z) St idau stz

hold thue fon everny function o in D(@) m X

PROOF. Let ¢ denote throughout this section an arbitrary

element of D(C)m X

a) We have successively by Stokes theorem

T*U(p) = [ T"C(z) so(z)dyn (z) =
= f pl/2 b olaldmuia). + - f-Cl2) 8 2o Ja)du (el =

i

Ut 2o )

b) 1In order to prove the identity b) we recall the
relation (2.7) ,which combined with the observation - (l1.2) from

the preliminaries yields



TU{0) = [ TC(2) 2 g(z2)dy (z) =

i

RGeSt e A mimY - g T3Cp } (1) =
P D) alawe [0 () wilzidyilz) =

2= U( Z(p ) =T U': lim ( T (€] )'k 1/2 ) i

. Because U(p) = O whenever supp(p) is disjoint of o (T),
we put by definition
ARl R R Y e E(@)al X (4.3)

tor ‘any-~function y din ~D(€) with % =1 in a neighbérhood of

Fh

the expresgion U Pwpidd /z ) while
o == =

ORI S

[&)]

> meaning o:

<

the last equality is a:convention of notdtion.

¢) Before to compute the self-~commutator of the operator
e o S L2 ot e (o L > : :
-U TU ., let us remark that the ididentity b) can be reformulated in the

rollowing non-distributional form

b)Y UrTU(0) = zo - DJ"/ZCU) a0

Therefore we get

u ", ot = [v*T*u,u*tu] (o) =

= ot oM %@ se@an @

and the proof is complete.



L

4.5. We remark finally that the range of the operator
U* [T*,7] U consists of classesof constant functions like X3
with x in X . Moreover, a short computation which will appear in

the next section showgs that

Uil R )= Dl/zx ; x‘E X .

5. POSITIVE DEFINITE KERNELS AND HYPONORMALITY

The functional model of a pure hyponormal operator T in
L[#{} ywhich was described in the preceding section,relies on two

operator valued objects, namely on the kernel

, & 2
K(w,2) = C wic(z) € L™ (@) a_ LX)
andion the unitary invariant distribution
9 P
rils o 206e piia) iy

ey were related by the equatioen (2.8) . The pirpose @f the it
part of this scction ds tovcharacterize those positive definite
kernels KG"LOQ(@2) R e which produce as in Theorem 4.4

at the.level of an associated first order Sobolev space with respect
to the operator 0 ;pure hyponormal opérators.

Roughly speaking,the kernel L = K tusns ouE te be , in o
weak sense, a generalized analytic‘ function (in the terminology ef
Vekua ) off the diagonal of the space EZ ;> subjeect to a uniferm
beundedness condition., The equation of definition for K is precicely
(2e8),with the distributieon [’ as a given data. This equation was
studied for the first time by Clancey [4 ] in tliciecalad cacol o

.hYponormal operators with rank~one self-commutator ).

We should mention that the kernel associated in a similar way to a

: . 2 : : ety
normal operator is,off the diagonal of € ,an analytic funectien in the



_,4()-“

first Qariable and anti-analytic in the second variable, cf.{la] »
In the last part of this section is described the procedure

of recuperating the operator T, and implicitely the Hilbert space

H ,frém ﬁhe kernel C%(W)C(Z) ;wWith |wl,lz( >> 0.It turns out that

the central object in this construction is also a positive aefinite

kernel,which depends on a pair of discrete variables. It is characte-

rized by a linear equation together with a boundedness condition.

5.1. THEOREM , Let X be a separable Hilbert space and Let

K 0 —> L(X) be a measureable,positive definite function with

the polLowing propenties

@}t lene L5 @ constant M o ,50 that
EG,z) - = M(C 1+ iwz] )“1

o every palin (w,z) € @2 ,and

(o al)

bl There is a compactly supported distaibution [  in
D [e) & L(X) ,such that for eveny function @ s DGl ag G e

nelation

(w - z)l@ K(w,z)J<9(z) = P(z)@(z) - lim K(w,z)ff(z)(@(z) (55 2)
: / £-0 &

holds ftrue in the weak topology of D (@2) & X

Then fthere exist a Hilbernt space H and a pure hyponormal

operator T Ln' L(fl) and a cdnonical isometric embedding of the

space ( Ran Dl/2)_ Cpitore X8 0% that

* 2

Klw,z) = C (w)C(z) almost everywhene in C (5a3)

and
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PROOF. We divide the proof of the theorem in many steps.

L) The Kolmogorov facitorndization of Lthe kernel K

By a general well-known result due to Kolmogorov,see for
instance |14| for a proof in the scalar case,there exist: a Hilbert

space M and linear bounded operators

Cylzd Yo—s M z €@

so that

i

& 2 :
Kiw,2) C, (w)C, (z) . ) e@ (5.5

Moreover,the minimal space # with this property ywhich: s generated
by Elie vVectors: C o (z)x , 20 . e X s uniqueiup.to a unitary
isomorphism.

Then the properties of the kernel K are transmitted to

the function Cl.Namely,one gets from (5.1) the estimate

2

Fe i = ml b (ol )

& m e : {5 wb)

and since ¥ 1s measureable and the space /{ is minimal it turns

)

out that Ci is alse an operaton valued measureable funckion:

The equation (5.2) implies that Cl is an an£iwénalytic
funekion off the supporti of the distribution F .Indeed,a Fourier
transform argument,or an evaluation of Q)zK(w,z) in an a?propriate
Sebolev space, show that the distribution JEZK(w,z)up(Z) can not
be supported by the diagonal,for every ( in Vo & X

Because of (5.6) ,the function Cl has a power series

expansion at infinity of the form

- -n+ . : : S
Cl(z) = - R/z + Ej Rn/zn - e
nal
for large walues of |2/

-



=2

Lot s write the equation (5.2) for \wl large:
B ¥
(w-z)C, (W) 0C (z) @ (z) = [(z) P(z) - C () lim C, (Y [%(2) @ (2)

&0

By identifying the first term of the two  analytic series in w ,

: e S TR
with coefficients in the svace D (©)& X ,one gets

&
» e aclf* (58
& 0 S
fe put " H = =R C ;50 thet B e (E)&ﬁ LX) and
B (B
By (5.0) we have
: - - % <
lim wzK(w,z) = lim Zi Gz = R R (5 10
1z} (w2 {2]- o0

‘ : s :
Let us denote finally by A the square root ( R R )1/2 in L/%%] .

iL) The functional space associated £o XK

5

et Fi denote the separate completion of the snace

D@ a ¥ in the following seminorm

12 [ (xw,2)D0) Do > au mau )

S
29
i

Since the kernel K i< antianalytic in =z off the support O SEINE

distribution [ , we obtain N(P”4= 0 whenever the supports

i .
Supp(@) and supp (') are . disjoint.Consequently,the multinlication
operator with 7 is bounded in the above seminorm.We denote by

S% is extension to H ,and we write formally

* 2

S\g):zcy*

Unless otherwise stated, ® and W denote throuchout this

section elements of the space T (0)& X



A S

We.assért that thetadjcimtEas wof S * in L(}!) acts by the

formula:
Sipy.= 2@l = I LGl /e, (5ol
indeed,at the level of distribukiens, (5. 1L) Qs equiveifont Sypith

Osp) = 2B¢ vy + (@ Syl R

3 &
so. that

(Scp,ky‘}H = g {K‘(w,z)vfb(Scp) (z) ,Dww) > A (z)d pr ) =

= J‘(KULZ) z@w(m ,®gﬂw)>‘dflw)dﬂ(w) +

[ (rRmz) @) Dy )y ap@aum - +

lim ( ¢ Kw,z) 0 (2)p(z),R W) dy (2)d 4 (w)
£50 S < L g ¢ v G > / /
Here is implicetely used the convention,together the existence of -
the limit
RKw,z)(@ = lim K(w,z) (3 (2) ¢ (2)
4 gf.-\C) X &
which is asserted in the statement.

In view of the eguation (5.2) we obtain

(sp ) =[x, 2)0¢02) Owon D + e [¢ @er By ) =
: St :
= (@, s"Y?,
because ‘(/DQQ(W)d/L<W) i

In fact (5.9) leads to a functional expression for the

Gperator - S namely

1 Ay 2P (€ 1
Bl =iofaa il 1 ShidE ; ] BT d/(/ (3



Thus the range of the operator 'fS

o
: L = i ; :
classes 1in the space (l of identically constant functions in a

neighbeurliood of supp (- ) . Let % o
such a function, with b TP e 1 ond Cmuppin )

. ~F ' = E e = =
= an A selhe daldations (5.5) and (5.7)  imply

‘fK(w,z)Qi%(z)d/x(z) el Cl(w) iRl

Consequently we have

: 3 $
(‘X e C(‘J >l‘ = <‘>{ G fR Cl(\‘i)®(P(VJ)d/L((KV) >
4 ;

so that

F(2)0(2)d U (=)

il

<= oYy

‘ /&
< : J

In conclusion we have proved that the operator S on E%

is hyponormal. We shall prove that this is the expected operator.

It remains to compare its kernel @z with Kiw, 2%

LLL)  The {isometric embedding o4 H into M .

(]
the definition of the scalar ipreduiction the space H

shows that the operator

Ve = } (31(2)@(70(2)(1/3« ()
eXtends Up to a isometwy | WV F{«ﬁ f{ JLietius ideneote
¥
e :

.‘ . ; - v
B8O thae 1 s a hvpencrmal gperator on the Hilbert gpdece /( ‘

Moreover, T as well its adjoint T vanish on the orthogonal

complement of the space

o Se o consi o oF

be the representative of

and

(512



span

L

The formulae given in part ii)

bl( -
i f’Cl®@>d/l =

and
s ~ oy
[ ,ﬁﬂ[fclo¢>%a =
4
Hence rb( TZC} ) =
e o
LT je Dok 1/2 = A, By using. (5.5)
&
T, Cl(z) =

u ( RRHZ =

o
®
& =
79
i

g khe-operator R The partial

(cRanm 2 )" with a subspace.&f X

On the other hand, there

: P2 i -
& Ein et e e Ran B ) )
,%
so that fee e CF g ioniey I\ Therefore
r ‘5“ al
i Cl(z)
yane
S /V" = T yl
Lebl M= M S0 Mo be

. !
the Hilbert space M
hyponormal operator T.

pure subspace f{p

I &(CIM)%@(Z)%M(Z)

The ‘funtion:: i€

M31m.

: e

ee D @eX

ol the proof implw

/clEQ@dfz

35;"‘(1 et D ot
RR kfclbq i ‘f c, 00 it .

0O in the sense of distributions, and

oneLgets
R AL 5087
U A be the polar decompesition

isometry . U+ ddefizifies thelispance

is the contractive operator function

attached to the hyponormal operater T ,

we obtain from (5.13) the identity

AU (5 1)

The comparison of the two hernels

the orthogonal decomposition of

into pure and normal part,with respect to the

takes wvalues only in the

Let us define the opevator Walied:sfianeticon 4Hel: ¢~4‘L(%,J4}

as follows



%

b
Clar L otherwide .

i

Since the Hilbert space %ﬁ istseparable ,"the conditien

i
%

Ker T ﬂKerTZ;é )
helds only for a countable set of points z. in € ( on these subspaces
the operateor. T  1s normal ). Therfore the flunction C% is still

: Pl ’ ) 2] 2y 5 . e
measureable, and,moreover,its class in Gl (@)@il_(ﬂqfﬁ) coilncides
with that of C1 .

Then we infer from (5.14) that

g , i
G % ¢ | $ -
€z -~ Clz)0 % L(.A?Jﬂof, zob ol
|
PO }‘/ el ; i 3 1 4 H i CF
But uxp @ Pli, and consequentlyv , the space V is generated
: ? -4 % { b7 4
by the vectors of the form {( C'-CU )%Mpdﬁ{ and §CU $q9d/u -
' 4 N '
i $5 M = v U
sc that we conclude Fioa= R .

In other words, the hyponormal operator S ,as well as the restriction
of T +to the subspace V%{ ; are .pure.
The eguation (5.2) together with the Kolmogorov factorisation

(5.5) , imply the relation

~, “ ~ 2 -0 “ LR ,/
Lojetn s = adm el G v eDwma X (5.15)

€20

which holds at the level of distributions. On the other hand we have

i
vy b

a similarexpression for the function- CU ., namely

3 & e /D 'S : =
Al SRR e e B R _ (5.16)
7 .

€0



»

e

Because the invariant [ is completely determined by the

values of the operator function ® (z) = ¢ miciz) for izl 27 .0
( see 5.2 bellow ), we infer from (Biald) that

: ke

[ as UD-l/2’<) QU

Then by comparing (5.15) with (5.16) one gets

ng( el CU%)‘{_‘&D =40) > @&@(@)@X .

Thus,by respecting the inductive proof of Theprem B we obtain

n o
AT (eleiat @y ) = 0

for every non-negative integer. n
Finally we get in virtue of relation (5.13) the identities

AT L e sopNaaags s e

which prove,together with the observation that the operator. T 'is

?ﬁ’ g
1 rothats CH=uCl =, and thecErreoi oFf

pure on the space V

Tlicorem . 5.1 5 je complete.

5.2, «Our next mesult gives a constructive way of recuperating
the space # and the pure hyponormal operator * T . from‘the values
o cehe: function  BOiz) = ¢ (z2)Ciz) ;. for el S 0 0

This is the precise meaning of the assertion that the function ()

- determines complétély the invariant " ( see the last part of the proef

of - Theorem: 541 ) ..

x ; migE
In order to state the result, let ( = )7 denote the
semigroup of all paires of non-negative integers, with the generators

L= (12,0) , » = (0,1) and the zero element g = (0,0) v
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PROPOSITION. Let X be a separable,complex Hilbert space

avd Lot

be

Al
ana

a

fon

th

e e S f s LX)

positivedefinite function with the foflLowing properties:

a) There 44 a constant v , 40 Zhat

ey ? P 3 : 3 1 3 %
; G | : ] g > A Ny ;
2. { Niatu,B+u) e w S U PR G I CH) Xg o X, > (5.17)
t :

m,@ o,
3

any 4ycf0 nubéat L A G X
. . 10!

spenaton Eik kR

<

‘have to remark that,via

e ok

. s
B L) s N e

bl There s 0 function G i
' D=1
N{a+i,B) - N{a,B+u) = 7, Nia, ri) GB ~(x+i)c ) (5.18)

N(@,a) = N(m »,n %) = G(a) (3al%)

2
% 7 : ~ ; 7 sl ’ b 5‘,, &
anyg  e=fmm) and P= ’:{é‘z 2 ) dn 2

Then tRene exdist a Hilbent space H , a pure hyponormal
e o md a Cﬂn0°@0aﬂ isometric embedding o4

- 2= = ; .
hidde: % Ran D / ) o ks g Aueh o Ahat

1) n,ei:m IR o o1 lb“"‘l S

PRt o =, S el (5.20

N_((}’f%}} = 7 7 T z

REMARK, Before to begin the proof of Proposition 5.2 , we
equations (5.20) ,the arguments involved

s

the proof of Proposition. 3.3 lead easily - to a connection
between @nw positive definite kernel N with the properties

wl

9y -and the ﬁunation-QQ 2

£

€@
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PROCF. By the already mentioned result of Kolmogorov, there

. exist a Hilbert space H ,unique up to a unitary isomorphism, and

linear bounded operators

T ‘Jr 2
Rlc) o Xion e )
s0 that
: e ) S
Net,B) i= R*(a)R(B) v a Gripes GEZaN) _ (5,21}

and

{

H = span 4 R{BY x

(X

Bt 28 i aoidhs (5.22)

By condition (5.17) , we can define a linear bounded operator

T on H ., as follows

TeRIp b= BBt B Cal 2512 g

o~
un
=
D2
{3

e

Eron - (5, 0188 - (5.21)" “and (5.22) we derive , by a direct conmputation

, p-1 3
T*R(B)x = R(B+u)x + B GUB =)L ) i Belp el e, (B0
: ' o or=0 ‘ :

From {5.23) ; " (5,24} and (5.19) it follows that
[T*, 2T R(BIX = RGEB)x = RGIN(O,B)x = R(Q)R* (BIR(B) x

: -y 2 5 :
for every  B.in (7 ) and’ex: ilifent o

Thus D :}:T*,T"] = R(B)R*(@) hence T is a * hyponormal

operator . It is pure,because of the condition (B.22) . and the

eanakions . (5,23) , (5.24) .«
Let U be the partial isometry which appeares in the polar
decomposition

ll’)
RE(S) = U ple



=36~

b2 e

The operator U identifies the space ( Ran D ) with a subspace

of X ¢
Let us denote
£ T e el R s e B
I\é(f&p@-) = DJ/ ) ‘TA f:”.? % 1{*; { % > e (mgn) 7 B:: (;,)f(i)
2 L 2ty o 2
and Cla) = D / L / ¢ @ = (m,n),
: : =
We have to prove that g . : .
f & 5
3 ) Ny 7 ; Z: e 2
N{o,B) = U N{a,B) U* , osBe L) (5:25)
7 X ¥ s
A simple bracket identity shows that N is uniquely determined
5 N : e M 2
by G, and , moreover that -N and G are related by the equations
(5,18) , (5.19) . Since N 1is also uniquely determined by G ,it.
turns eut that (5.25) will be a consequence of the next relation
o : e } . 7, S5 :
Gla) =00 Cle)y UF 1y B e et (5.26)
In order to prove it, we remark that we have from (5,24)
5 80 s gt
T R{g) = R{mn) , e L
Therefore, for any & = (m,n} we cbtain
o~ ) " D
g Tty ut = opt/Zohpapl/2ys o
3 0
= R LgNE R PMERSR D) =
= RE(Dow) Rimu) = ¢
=N o s =T @) 5 b
which ends the proof.
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