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0. INTRODUCTION

An algebraic singularity with linear resolution is a stan-

dard graded algebra A= @ over a field K=A_ , such that

nzOAn

between its Hilbert series HA(z)=2:HéO(dimkAn)zn and its Poincaré

series PA(z)=ZE%éO(dikaorﬁ(K,K))zm there ig the connection:.
PA(-z)HA(z)=1.

We call such singularities "Froberg rings" (after the
Swedish mathematician R.Froberg, who initiated their stﬁdy}.

In this note, we study certain such singularities, namely
the ones defined by a 6articular class of standard graded abelian
monoids.

Our main achievement is the revealing of the correct
combinatorial interpretation of the relation PA(—Z)HA(Z)=1, fof
graded monoid algebras (Cor. S5, par:3).

This is done by means of two ingredients: the characteri-
zation of the monoidal homology, due toaA.O.Laudal and the monoi-
dal version of the Mdbius inversion formula, due to G.Lallement
(whose remarkable proof to MacMahon’s Master Theorem inspired
this work). .

The combinatorial restriction on a monoid M, imposed by

the Fréberg relation for its monoid algebra K[M}, naturally leads



to Cohen-Macaulay finite posets, whose study was done by Stanley,
Reisner, Garcia, Backlawski, Bjorner e.a. Using their efficient
results; we provide examples of such monoidal singularities,
recovering, in particular, a class which was previously studied

in a joint work of the author with N.Manolache.

1. HILBERT SERIES OF MONOIDAL CGRADATIONS

Let (M,+) be a cancellative, abelian monoid with unit

element 0. An "ennumerative system" over M, is a pair (P,S) where

(S,ms) is a complete local moetherian ring and P :M—e>1+gs is a

monoid homomorphism, such that:

Hﬁ':ZZ:XéM?(x)

exists in S (1+£n_s being considered as a multiplicative submonoid

in S). The element HP is called "the Hilbert integral" of M with
respéct to the given ennumerative system.
The ennumerative systems of interest in Algebra are usually

yiven by "monoidal gradations" on M, i.e. by those rnonoid homo-
g ¥

morphisms d:M—é?Zi of M in some free abelian moncid (nzl), such
that d—l(ﬁ) is finite for every?fe,zi. Such a gradation is

1] " ) =
called "connected" when d - (0)={0%.

When n=1, we call d a "simple" gradation (some authors
call "multigradations" the ones corresponding to n»2).

Suppose M carries a simple, connected, monoidal gradation

dtM—=>2, . To this gradation one associates the ennumerative pair:

(par 2020

where {5d:M“e>1+zZ[szl is the monoid nomomorphism:

Pd(x)=zd(X)

? (V) XéM.



The Hilbert integral of this ennumerative system is usually called

"the Hilbert series" of the graded monoid (M,d) and it is denoted

by

= d (x)
(3) HM,d‘Z’“,Z%eM_Z :

or simply by HM(z), when d is fixed and no confusion may arise.
We adopt the following notations: a fixed gradation, as above;
Me22. . 1s wrdtten ') (u and, for any m20, we put Mm=§xeM/\x\=m}.
Thus: Mo=%0%, M, is finite for my»0 and the family|%Mﬁ%mzo disea o

partition of M, having the property: Mm+Mm,§;Mm ¢ for any

e
m,m’ & G
As an element of 7 [;]i, the Hilbert series of the graded

monoid (M, | |) may be written:

HM(z)=2

m
mzoh(m)z ’

where h(m)=¢FMm + for my0. The numerical function mE—>» h(m) is

called "the Hilbert function" of the given gradation.

We are interested in special gradations of the kind just
described. Namely, such a gradation is called “standard® IFf dts

first-degree component M, generates the whole monoid M.

1
Obviously, a standard gradation is a surjective monoid

homomorphism from M to Z,. If M carries a standard gradation, then

it is finitely generated and, moreover, has finite decompositions

(i.e. every element xe¢M defines only a finite number of sequences

(yl,...,yp), with ijM\v{O} For =l 25 v, poand x=2}§=lyj).

2. MOBIUS TRANSFORMS OF HILBERT SERIES

Returning to the general setting, let (M,+) be a cancel-
lative, abelian monoid with unit element 0. Suppose, further, that

M has finite decompositions.



On M, we consider the natural poset structure, given by

the partial order:
(1) for x,y M: x<y iff (3) zeM and x+z=y.

The Mobius function §b of the poset (M, < ) naturally defines
by restriction to the intervals [0,x[, a function f :M~>2Z, which

we call, abusively, "the M8bius function" of M. Therefore (by the

well-known connection between the M&bius function and the "chain"

function on a poset, cf. [11) one may define:
() ) xeMN{0}, p)= & x)-9) (0= (0,%)

where g;o’(x)( gl(x)) is the number of decompositions of x with
an even (odd) number of terms. We complete (2) with }L(O)=l.
Now, let (P,S) be an ennumerative system for M, defining

the Hilbert integral HP .

1. Definition

The "MObius transform" EP of Hﬁ is the elmentéof S:

(3) ﬁp = ZLxéM }&(x) B (x)

(where every product }L(X)F.(X) is taken in the natural Z-algebra

structure on the commutative ring S).

1. Proposition

Let M be a cancellative, abelian monoid and let. (B ,S)be
i

an ennumerative system for M.

If M has finite decomposition, then:

4 1'§=1
(4) }‘5 o

e ]




Proof

By By =2 px)) (Logem p¥) p (y)>=x'Zyl;M fLp ) p (y)=

=2 Py I k) P (2

X, ye M zeM xty=z

But, since M has finite decompositions, the Mobius inversion for-
7

mulas (cf. [1]) immediately give: Z:;J r—(y)= ) , ending
2 0, if 2#0

the proof of the proposition.

2. Corollary

Let (M,+) be a cancéllative, abelian monoid, such that there

is a_standard gradation | | :M—>7%_ , with Hilbert series HKFZ[éB.

Then HM(z)=Z:q’ z 1% is invertible in Z][zﬂ and its inverse is the
REM

o L= i = | x1
Mobius transform: HM(z)— e (x)z s

Proof

oply Proposition 1 to the ennumerative system associated

to the given gradation (cf. §1).
In the conditions of Corollary 2, we write: HM(2)=

= 4224( Z:J 1)zm ; respectively: HM(Z)= Z:,( 2 P%x))zm.

m20 - 4xl=m mz0 x| =m

3. MONOIDAL HOMOLOGY

We fix, now, a base field K and consider the monoid K-al-
gebra R[N}:=R of a cancellative, abelian monoid (M,+).

The main algebraic information about the singularity R, is



contained into the (homologically graded),K Tor-algebra:
(5) TorR(K,K)m(ﬁa Torﬁ(K,K) .
g mz0
The numerical object associated teo this algebra is the corresponding

"Poincaré series", defined by:

(6) B - Z:J(dimvTQr%(K,K))zntl4ﬁi[ zﬂ S o
il m>0 = I :

The coefficients of PM(Z) are the main topoloaical invariants of

the singularity R. They are called "the Betti numbers" of R, being

usually denoted by: (bm(R))sz .

MESise ot wveryiicasy Lo cenpntes Py, In generals

Iy

However, a general description of TorR(K,K), for monoid

algebras, was done by A.0.Laudal in [3], and ds thetfollowing:

Theorem

Let (M,+) be a cancellative, abelian monoid and let K be

any field., Put Rszﬁ]L the corresponding monoid algebra. Foxr any

element xeM™{0}, let A (x) be thé chain cornlex associated to the

subposet (Q\V{O,X},é ) of (M, <), where X denotes the principal

order-ideal § yeM/ ye¢xi.

Then :
K, if m=0
R ] 5
(7) Torm(K,K)= B, if m=1
® H o (A(x);K), if m22
xeMN{ 0% :

(where HpQﬁ(x);K) denotes the p-th homology group of.lk(x), with

coefficients in K), 5 being the number of minimal elements in

m'\{Oi . This result enables us to compute the components of

TorR(K,K) and to derive valuable information about the Betti



numbers, in some interesting special cases,

We beqgin by reminding some useful notions about finite
posets. |

Let (P,<) be a finite (non-void) graded poset, of rank
20 Thus, P has 6 (absolute minimum) and i (absolute maximum)
and every maximal chain in ?, has lenght r. P=P\{ 0,1} is the
‘proper part" of P, The degree on P will be denoted by "ggé". The
simplicial complex A (P), whose i-simplices are precisely the
i=-chains of P: yo< Yi< ...<:yi ofor-i> -1 (4 being also an (-1)-

-chain), defines over any field K a canonical "chain complex"

whose homology modules are denoted by:
qu (PR) s G=0. 1. . r

(since ﬁj(P,K)=O, for j4 =1 or 9> 1),

The "reduced Euler characteristic" of p is the alternating

sum:

o r sl =
L= g Gl e B Bk
A remarkable result is the following:
: N

Eﬁeorqg (Ph., Hall)

Let (P,<) be a finite (ﬁon-empty) graded poset., Then:

(8) L A= Bl

where JL(P)=}L(6,I) is_the total MSbius function on P.
/ !

An important class of posets is the following one (cf.[jQ]).

2, Definition

Let (P, &) be a graded (non-necessarily finite) poset.



Then P is "Cohen-Macaulay" over the field K, if for each open

interval (x,y) in P:rHi(x,y):O, if i#r(x,y)=2 (where r(x,y)=
=deg (y)~deg(x) is the dimension of the simplicial complex
IS when%}x,y): zeP/x<y<z§ is ordered with the induced

order form P).

It follows that, for each open interval (x,y) of a Cohen-
-Macaulay poset P, only "the top homology" is non-vanishing and

moreover, if g;(x,y)mr(x,y)~2, then:

; gty e
(9) dlmKH S (X'Y) ((X,Y),K)-—( 1) ° }’LP (XIY) 4

}LP being the Mobius function on P,

Now, we are in position to formulate our

©

3. Prepesitien

Let (M,+) be a cancellative, abelian monoid, such that there

isia standard gradation. | | :M—272, .

Suppose M has the following property:

(%) (M) xcll, Xm{yem/ysxf is a Cohen-Macaulay poset.

Then, for any field K:

K, if m=0

() iE

1 ’ m=1

(10) Tor ﬁ[M](K,K)= K

® H__,(AGK)K), if my2
| x| =m ;

where hl(M)mité Mt el l

Proof

e gve Qs e

Using (7), the only assertion to be proved is the one about

the homological degrees m22 (the elements {xeM/\x\=l % being

minimal in M\{O}).



However, by (%x) and by Definition 2, Hj([§(x),K)=0 for J#r(x,0)-2

(since ﬁz(p,x] in. (M, <)), inplying that

® m 2(A(x) K) reduces to (:) Hm—z(Atx);K)=
xeMN§ 0} x:r(x,0)-2=m-2

- @

x:r(x,0)=m

H o _ 2(Aix) K)=(since the degree of the poset (M,s)

is given by the fixed standard gradation)= &) Hm_z(A(x);K).
x| =n

4, Corollary

Let (M,+) be as in the enounce of Proposition 3. The

Poincaré series of K[M] is:

@a) Py . (x))z"
M \X\_mt* ’

mz0

P _being the Mobius function of the monoid M (ef. (2), & 2).
1

Proof

P

By (9) and (10), we succesively get, for m=x 2:

dimKTorﬁ[M](K,K)= 2 ,dimKHm_2(A(x),K)=

x| =m

= 2:1/(_l)r(x,0) rM(O,x)=(since the degree on the poset M

| x| =m
is given by the gradation | | )= Ll 1)is rLM(O,X)—(by (2),8§ 2)=
| Xl =m .
sennZ, pix)
| =m

For m=0, the unique element of degree zero in M is 0,
therefore )L(O)=l. Por m=1,: the elements of Ml={xeM/ ‘x\=l} are
the ones of degree 1 and each of them dominates 0, hence:

/\k(x)=)k(0,x)=—l, if | x|=l.

This ends the proof of the assertion.



5. Corelllary

Let (M, t) be as in the enouvnece of Proposition 3. Let HN(Z)

be the Hilbert series of the standard gradation on M and let P

(z)

M
be the Poincaré series of K[M| (K any field).

Then «the fol lowing holds:

Proof

The relation follows iImmediately from (11), Cor.4 tegether

‘with Corollary 2, & 2.

We call a monoid algebra verifying (12) a "Froberg ring" ,

such that our last result states that, if M has Cohen—Maéaulay

prineival eorder—ideals (cond. (%) of Prop.3), then K[M] is @

Froberg ring (which means that K has a linear minimal free reso-

lution over K[M]).
We are left with the problem of deciding what (%) of Propo-

sition 3 really means. We try tc do this into the next section.

4, MONOIDS WITH COHEN-MACAULAY PRINCiPAL ORDER-IDEALS

We begin by reminding some combinatorics.

To any finite graded poset (P,%) one associates its
Stanley-Reisner ring @{b , defined as follows: let 5={xl,...,xn§
be the proper part of P and let K{kl""'xﬂl be the polynomial
ring in # P indeterminates (over our base field K). Let I be the
ideal of K{Xl”"'xgl' generated by all the monomials Xin . such
that x. and Xj are incomparable in P, Then: 6{p=K[k1""’Xﬁl/I'

aL

The Inpertance of this ring lies in the following



Theorem (Reisner)

Piis Cohen=Macaulay (as a peset) if and enly ifithe vring

in is Cohen-Macaulay.

There is no really simple proof to this result (the gquickest
one is due to Hochster). Subsequent work of Stanley, CGarsia,
Baclawski, Bjorner, c.a. provided testing criteria for the C.,-M
property of large classes of finite posets.

We use here one of these criteria, suillted to our situation.

Namely, following Eé], we consider a labeling of each edge
¥»y in a finite graded ﬁoset B, say N x——>v)yer lor i ~y): in
any totally ordered finite set, which is the same).

Then an arbitrary chain of P: c=(xoé xle....é;xm) gets ‘a
natural labeling, namely: ).(c)=(7L(xO~9-xl),)\(x1~a,x2),...
...,1.(Xm_f~% x )), with X (c) € z™. Therefore, the chains of P
may be totally ordered, according to the lexicographic order of

their labels (written ¢1L here).

An "edge-wise lexicographic labeling" (called EL-labe-

ling, for short) is a labeling of the edges of P, with the follow-
ing properties:
(a) for every interval [x,y] of P, there is an unique
i . = ¢ o o = 4 H é écv
chain a %y X xog,x1 Loxe =V, such that .]‘(Xdﬁ% xl) ijl~>x2)

...Sl (Xm_l_"‘é Xm) in Z °

(b) for every other m-chain b in [x,y]:iL(b)?{}(a X,y ).
14

2. Definitién

A finite graded poset (P,< ) 1s called "lexicographically

shellable" if it has an EL-labeling.
The importance to us, of this notion, lies in the following

result,



6. Proposition

(1) Any lexicographically shellable poset is Cohen-Macaulay

(ii) A distributive lattice is lexicographically shellable

(The proof of this Proposition may be found in [2]. We only remark
that (ii) 4s immediate, in virtue of the structure of any distribu-
tive lattice, as the lattice of all order ideals over its join- -
—~irredueibles. (i) follows from the above quoted Theorem of Reisﬁer,
using a testing criterium for Cohen-Macaulayness, due to Garsia).
Having, thus, plenty of examples for Cohen-Macaulay posets,
we state two more properties of these objects, used in the sequel.
To formulate them, we remind that, for any graded poset
(P,<« ) of tank: x>0 and i for any non-void subset Sg;{o,l,...,r},

the "rank-seclected subposet"” Pg is defined as{_xeP/deg»xeS}, with

the restricted order from P.
Blise, if (P ,<0) and (@,5 ) are two graded posels of the

same rank r> 0, we define the "ordinal sum" Po Q as the disjoint

union [) ;=O(Pm X Qm) with the induced product structure of the
poset P x Q (here Pm ¢ Qm denote the sets of all degree m elements

in P, Q respectively).

7. Prepesition

(1) If (P, £) is a Cohen-Macaulay poset, then Pg is CGohen=

-Macaulay for any Sé:{o,l,...,x}, r=rkP.

(ii) If (P,4) and (Q,% ) are lexicographically shellable,

then Po (Q is lexicographically shellable.

((i) was proved in EZ]. (11) follows by coensideringithe
labeling:‘l_POQ((xl,yl)”—>(X2,y2))=(}~P(xf—%’xz),rkP¥1~Q(yl*9'Yz)):
where we consider the usual lexicographic order on the pairs

{(a,b) (a,be Z) and where 2‘? ,1— are EL-labelings of P, O respec-—

Q
tively) .



Now, we come back to graded monoids.,
Let (M,| |) be a standard graded monoid (cf. gl) and let

s >0 be an integer. The "s-th Veronese selection" of ) ) s

the submonoid of M, generated by its s-th component Ms (in the
given gradation). This submonoid is denoted by M(s), It is also
standard graded by (1/s)| | , the m-th component of M being>MmS '
1oy everv m >0, ‘
More, M(s) is nonﬁally embedded in M (i.e. the inner poset
Structure of M(s) coincides with the restriction of the poset

structure on M),

If (M, 1 V) and (M, \?) are standard graded monoids, then
their "Seqgre product" is the monoid (MoM’,)i 1| ) defined as the sub-
2 % \/ 4 4 4 : 4 S o
monoid tv)mzo Mm be Mm of M x M'., Mo M’ is also standard grade

by “(x,y)“ =m, if |x}=|y| '=m and it is normally embedded in M x ML

We prove the following:

8. Proposition

(1) Let M be a standard qraded monoids TE (M--< ) has Cohen-

~Macaulay principal order ideals, the same is true for any Veronese

selection Mls); s> 1.

(ii) Let M, M’ be standard agraded monoids. If (M, <) and

(M', &) have lexicographically shellable principal order-ideals,

the same is true for their Seare product Mo M’,

Proo@

(i) follows from Prop.7, (i), because any principal order
ideal in M(s) is a rank-selection into a principal order ideal
of M, .

(11) follows from Prop.7, (ii) because any principal order

ideal in Mo M’ is an ordinal sum of principal onrder ideals in



M, M" respectively.

9, Promosition

: ; : n
Let n >0 be an integer and consider the free monoid Z+ ;

“

gradei'by the usual total degree gradation (with respect to its

: ; : n ; ; S
canenical basis) . Then 7 has Cohen-Macaulay principal order ideals.
The assertion follows from Proposition 6, because any prin-
5 : e canl e 5 2 = s
cipaliorder ideadl in z+ is a distributive lattice.

Remark

It may be proved that any Veronese selection into a free

abelian monoid, is lexicographically shellable.

Putting together the above results, we derive the following

10. Propesition

Let nl,..c,nt;70 and sl,.,o,st>>0 be integers. Consicer the
.' nl nt
monoid M(nl,...,nt, SyrecesS Wl (sl)o...OZ+

(st) . Then, for any

field K, the monoid algebra K[ﬂ(nl,...,n sl,...,st{] is a Froberg

t;

rinq.
Proof

Thie tastertrons follllows from Propesitions 9, 8 and Coxr. 5 of

§ 3 ,(j't o.&o fgo{eq\u—’: &\"M H\a iota(). Aeh\\:moh?.cx\"fij(*) o_!r {&Q IPYl;mcL'PaZ JY'CI ey

deals of M(ng g 5h ., 4, a fact implying their  ahelto) Jzut\/,(cg.m),ﬁw, e CPress)
Of course, using the above developed technique, wider classes

of Froberg monoidal rings may be derived. In particulav this may be

() fﬁvexis semimodulocity (s 2 conSequence of the fact that Mln,  whe o
W Ae&hed by cevtain quadvatio ve Latians,



successfully applied to algebraic singularities arising from
(finite) abelian group actions on polynomials. Also, for standard
graded monoids with quadratic defining relations, our technique
eventually leads to characterizations of these relations,which

assure the Froberg property of the corresponding monoid algebras.
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