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ALGEBRAIC SINGULARITIES DFFINED RY C_.VCLIC RRNIP
ACTIONS
by

Serban Bdrcanescu
3 X

0. Int:odgction

The theory of the finite degree, complex linear represent:
tions. of finite (eyeclic) gromps is particularly simple, due f
the automatic fulfillment of Schur’s Lemma and of the Theorer
of Maschke. The parallel invariant theory for their symmetric
extensions to polynemial rings is, in dts general lines, Fih
hed.

However, various problems appear when passing to particul:
classes of groups and to particular symmetric actions, in fhe
attempt to characterize the algebraic singularities which so
appear. e
One of the simplest such particular case is considered in thi
paper, namely the one of the arbitrary (up to similitude) ac-
tions on ?olynomials of finite cyclie groups.

Our main result (Thm.l,% 5) gives a partial answer in this

direction, asserting the "linearity" of certain algebraic 1
gularities, which appear as invariant rings for cyclic group
actions. Although it could be perhans proven in a quicker‘wav
we choosed, in reaching it, a path revealing the deep connec-
tion of the subject to the diophantine linear eaquations (over
the positive integers) and to the classical ennumerative thec

in combinatories.



This paper naturally extends [3],-where only the simplest
action of a cyclic group was considered (but where the "gene-
ral" abelian case was also nartially characterized).

The aufhor expresses his gratitude to N.Manolache, L.Badescu

and D.Popescu for helpful talk.

1. Cyclic group actions on polynomials

Let G be a cYclic group of " (finite) order gal, realized as
the unique subgroup of this order in([jX (the muitiplicative
group of the complex fieid), i.e. Gzagk/k=0,l,...,g—l} with §
a primitive g root of 1. Let:V be an arbitrary C - linear re-
presentation ©f G, of finite degree n>0. 'Up to similitude, V
is diagonal (since G is abelian) and the homotety of the aene-
rator ¥ mniguely 'defines the Grmogule structure'bn WS
Therefore, the algebraic extension'of this linear representa-
tion to R=Sym(V):¢(Xl,...,X5X, is given by a certain linear

form in n variables, with coefficients. from %0,1,...,9—13.

Precisely, if 5 acts on the variable X_.l (=12 s ) By
a. 1.5
(S,Xj)k~a—ijj, then EZacts on every monomial ng Xllx e R

5n : o
.Xn (w1th'%—(§l

R B FE) e, witn
L(g>=algl+...+angn.
We shall consider only non-degenerate actions, i.e. we impose
from the very beginning the reasonable restriction: aj#O,
Sl 200 S nis Thilshmedns ave don’t allow absolute invariants of
G on linear forms, avoiding thus én unnecessary digression
on Segre products (suited to actions of finite "general" abe-
lian groups).

More than that, if d=(a1,...,an) is the greatest common

N
divisor of the coefficients of L, then L'= Z:.,(aj/d)Yj is the
j=1



order g/gcd(d,g). However, since a Veronese selection (cf.§3)
into the ring of invariants of G’ on R, re-establishes the
ring of invariants of G on R, we do not loose generality by
supposing that ayjrec.,a_  are coprime in ansamble.

With these cautions already taken, we consider the correspon-
ding G-module structure on R.

Let GX=%1k/k=0,l,...;g—l%lxzthe dual of G, indexed bj:
'Xk(3)=5k, k=0,1,...,9-1. The isotypical component associated

the irreducible characterj{k, is (in our special circumstance

the module R*) of all. semi-invariants of weight}fk, for
Kx0, Ly« wwp g1 dniparticiilar, R(O) is the ring of absolute‘in
variants (of G on R) and every r &) is an P‘Q)—module,such that:R;QQE;%R(}

this R(O)mmodule decomposition of R beina consistent with- the total dearec
grakﬁions.EbreJR&)#anork#Ll;.,q%hbemmme(?is finite. Thus. ¢th
G-module structure on R (given by the above action) coincides
with the R(O)—module structure of R.

Certain properties of this structure are known from the gener:
theory of invariants for finite groups. For instance, R(O) is
a finitely generated {:—algebfa and every R(k) is a finltely

(0)

-module (the Theorem of Hilbert -Noether), so

0 m s riniie ln i

generated R

the ring extension R

(0)

)=n.

The i ring 'R is an algebraic singularity as soon as 3 doesn'

act as a pseudo-reflection on V (Chevalley-Shephard-Todd) .

This algebraic singularity is a always Cohen-Macaulay (a fact

proved by Hochester for general toric actions) and every R(k)

is a Cohen-Macaulay R(O)—module, tor k=1,...,9-1. The canon ie:

module of the Cohen-Macaulay singularity R(O), is the isotypi-

(k) 1

cal component R . associated to the character det = of @

(as a subgroup of GLC(n)), i.e. 1t s the discriminant of the
action of G on R (Eisenbud). In particular, the singularity

R(O) is Gorenstein iff 3 is identified to an element of

SL_(n), by its initial linear action on V (K.Watanabe).



Remark

The Theorem of Burnside~-Chevalley-Serre shows that the

(0) allows the recovering of the whole theory

knewledge of R
of the (finite degreée) linear Leprccentations 'of "G, because
a certaln non-zero multiple of the reqgular representation

Q}[G] may pe realized as a factorving of R(O).

Epecitiec Eoilour groeups, is the following pronertv of the G-mo-
dule structure of R, obtained by mere translatieon of general

definitions:

1. Propesition

Em——

In the above setting, let_Mfk):{gezi/L(g)zk (mod g) e Een
L0, o '

(i) M(O) is a finitelvy generated submonoid of the free abelian
itely g bmonoid
(k)

monoid;i? and every M is a monoidal M(O) - submodule of222

(i.e. M(k)+M(Oé; M(kD, such that:

20 2Tl K g D g o Ak
k=0

{15 R(O) is the monoid € ~algebra of M(O) and severy R(k) is

e

is Spanned over C by all monomials with exponents in M(k),

0)

k=12 sng—0 In particular, the R(
(k)

-module structureron

R 1s given by the M(O)—module structure on M<k),k=i,2,..,q—l.

This property puts into light certain combinatorial structures,
which we have to consider in order to characterize the singula-

Taisty R(O). The next two sections are devoted to this. We turn

back ‘to invariants in 85,



2. Gradations on ftree abelian monoids

Let n»2 be an integer. We consider the free abelian
groupzz? (the direct product of n copies of the additive grou
z) and fix on it a partial order compatible with the group
law. This comes to selecting a basis E={el,...,en% ofz™ (cal
led "canonical" in the sequel) and order Z" as the product—

lattice of the linearly ordered abelian grouos{Zéﬁ/j=l;2,....

.,n}, each havingzz o= k.ej/k=0,l,2,...£ as the set of po-

S
sitive elements. (3=1,2, J.+,¥) .
: n
The free abelian monoidZZi=GD ‘Z}eﬁ,_ordered by the restric-

tion of the given order on;zp (denoted bv £_, , or simply by

E
< if no confusion may arise), becomes the poset of all positi
ve elements in;zp and the monoid embedding;zig;zP (given by
the canonical stfucture of;zn as the universal abelian group
of the cancellative monoidzzi) eniovs the properkv: for
55’67, and 3+5'=0 in 2", it follows 5=3'=0 (cf.[4]).

By the universality property onLn, everv monoid homomorphism
f:Z&**?QQ uniquely extends to a group homomorphism E:ZZQ~9»22’
(i.e. the dual ofgzi (as a monoid) is canonically embedded by
nmeans of E into the aual 67 = lasia group)). The monoid homo
morphism f is unicguely defined by its values on E: putting
a.=f(ej), J=ly 2, o, e thesefifeet of it §n any%6L232 is given

J

by f(§)=Lf(§), where L. is the linear form in n variables:

£

We consider non-degenerate forms only, i.e. we sunpose that .
aj¢0 Eome Sl Do
In this case, all fibers of f are non-empty, finite subset
onZ? , cgiving a gradaetion compatible withe the monoid striuecsl
o)
re onZ+.

Conversely, any fixed non-degenerate linear form L=a,Y.,¥....



————— = B e o T I S D S SIS ST TR 1 T S R

AnEa

! S
fibers fL°4Z+

n
+

-?Z; y reffered to as !the L-gradation” onZ .
Its unique extension to;z? yields a group homomorphism
EL:ZZH<>ZZ, such that, denoting by G, (L) its kernel, the exact
sequenée:

£
O—e>GO(1J_;>31n ,_~EL>:Hn(fL)——?()

&% \ﬂeing
splits, Im(f fvﬁon~zero and free. Therefore GO(L) is free and

L

rkGO(L)=n—l. Since Im(f:) is.a subgroup of Z , it ds of the

L
form Z.d, with d equal to the greatest common divisor of the
coefficients of L.

We may therefore "normalze" L, by working with (1/d)L, whose
coefficients have: theliged equal to 1.

From now on, we fix a normalized, non-degenerate linear fqrm

in n»2 variable over}Z+, namely: L=§1Y1+...+anYn, calil i ngiist

"basic" in the sequel. We study the associated L-gradation on

ZZ? (Becm. on 7).
Since Im(fL)=ZZ~for a basic L, the above exact sequence beco-
mes: =

0 we ) 770,

splitted as well. The free abelian group GO(L) (of rank (n-1))

iis hiete ealled fthe divectional group" of L.

The image of the L-gradation onZZi, is the submonoid onZ+,
generated by the coefficients of L. It will be denoted by L),
its main property being the following well-known one (whose

proof is left to the reader):

2. Propesition

Let L be a normalized, non-degenerate linear form in n22 varia-




bles over Z . Then {L)» is a numerical submonoid of Z;, JeNere

e —_

ted by n elements.

Let us remind that a "numerical" submonoid NQJZ+ is sueh thet
there is an integer mz0 and{m,aﬂ=%ﬁ€iz+/kzn%gN. The least suc
integer is denoted here by p(N). The finite setgz+\\N is cal-
led "the gap set! of N.

An “ideal! I of a numerical monoid N, is a subset Tc N such
that IT+N<I. An ideal of a numerical monold obwviously remains

a numerical monoid.

For a basic linear form in n variables L, the integer p(L)=

-

=p (CL}) is not easyly computable, even in particular cases.

re is a sample:

Proposition (Herzog, {5])

Let al,...,aﬁaZ;\{Og generate in Z a numerical submoncid N

(Lee ged (al,...,anysl). Supngse N has the property:

_'m -
Tbvn p(N)—ij:l (}}j aj?+an%1'

A numerical monoid N having the enounced property is necessarn
ly Ysymmetric", ise szeNsiEfop (Nj=1l-zEeNEfor auy zeza, (Monoid
algebras of symmetric monoids are Gorenstein énd monoid alae-
bras of monoids as the one in the Prostition are complete
intersections, cf.[S}).

Thus, for a "general" basic linear form L onZZi, the corresnc
ding L—gradation'has finite fiber over any mEJZ#, but thisifi
ber is void as soon as m is a gap of {L>.

The gap set of (L) being finite, the fibers of the L-grada-

tion are non-void over all integers from (P(L),“%.



O L G e s 1) e S R e s S A T u:dlx 'f"...-ranxn, we denote by:

it

}_:

Fm=45%2%/ 151, = n}

the fiber of the L-gradation over me;Z;.
Thus 1«“(0)2{075, F(m) 15 finite for all mzl and F (m)#0 iff
me s .

v oui: — I s i 4 o v ENES < ’ o
Obviously Z LJme(L) F(m) and F(m) N F (m')=0 when m#m’. More:
Bl (e SR b ) Fom s 1 L m,m%aZ+;

Now, having fixed an L-degree me<L§, to any element}e F(m) we

associate the following subset of the directional group of L:
(29 A(%)z%o{_eGo (L) /3+« 20 in zn},

where <« is the fixed partial order oz .
i gQGO(L)) denotes the set of all finite subsets in GO(L),

(2) gives a ‘functiion:

3. Propesition

Let medI>™0 be an L-degree.

() Bl =5 SN ) - S o anyass” € i(m)

(11) A(5)=A(3)+(3-%") for anv%, 5'€F(m)

(11i) A (3)=47-%/7€7 )} for anv 3 € F (m)

N , ; : n
(iv) The functionzﬁ:limv?gQGo(L)) is increasing, where;z+

has the lattice structure aiven bvlthe restrictionsol < from

> and ?QGO(L)) is ordered by inclusion.

Proof

=\t

; n 23 7 S
(1) IfdeA(y), then g+weZ  so|j+w |\ o| =m+0=m, giving

I

%+¢€F (m) . Conversely, for anyﬂUEF(m);d.=%~§6A(§), because



’Q=§+d20, SO M € g+A(g).
i ) B (i):F(m):5+A(g)xg’+A(g') and the assertion follows.

(11i) By (i):F(m)=3+A(3), so A(3)=F(m)-% in 7z P.

n

(iv) letgcn ing

ThendéA(g)_e>5+q/ >0 ce Naos Bbai ()

showing thatcxeA(%). Thereforezﬁ(g)gzﬁ(y).

Since E(m) is finite ((for mélz;), it follows fromill), Prop.
that A () is finite For any e F(m)  and more A () =¢F (m) . On
each fiber F(m), the correspondence A (of (2)') takes F(m) &:

ferent wvalues, therefereiits restriction A ) is injective

F (m

More, Antakes_the clutter (F(m),4) into the clutter
(e
QB0 o)
In general, the monotonous correspondence A(of (230 1s - aok
Strict, i-eegé'ﬁ'in;ZE and A(%)=A(y), doesn’t imply 5:7’

However, it has the following useful property.

4. Proposition

Let me(I>N0 be an L-degree and 5€ F(m) an element. The

subgroup generated in GO(L) by A(3) depends only on m and not

énrg.

Proof

s e e et

Let g,g’,g"éF(m) be any elements. The identity:

Bl B,

together with (iii) of Prop.3, shows that any-element off Ao
belongs to the sﬁbqroup generated by A (') inside GO(L). So
<A GBS CA(Y' )Y , where (MY denotes the subgroup generated by
the set. M.
» The converse inclusion. is a result of (iid), Drop.3 and of &l

identity g"—g’:(%"_%)_(ggz)_



Ll LEDULL PULS LOIwara tne groups :
(3) G, (M) ={A( DG, (L), m0 and3eF (m).
These groups are free subgroups of GO(L), therefore rkGo(m)S
< n=1s for ‘anys me<i>N 0,

They have the following remarkable properties.

9. Proposition

(T Eeor any T-degree me s, S 08 Eliere s an’integer ‘g(m)> 0

stlchy tthat:

e e

(4) 9 (m)c G (ZT}Q...éGq(km)=G9(P)Hforv§ny’kzg(m)

and g(m) is the least integer k, such that G, (km) =G _ (L)

(1) Thewe 15 an dnteger g(L)>0, sueh that g mi=l for any

mag (L) .

Proof.

Soree

(1) By the definition (3) of“GO(m), together with (iv) of

RProp. 3 1t felliows" that Go(m)Q;GO(Zm)éu..QGo(km)é...glG (L)

k21, sincegsg2§£.,:§k§$...(kzl) is an ascending chain in
222. This sequence of groups must stabilize, GO(L) being a noe-

therian Z-module. So, let g(m) be its least stabilization index

(L) and Go(km)=Go(g(m)m),

e e Gy (ME. . .S Gy, (g (m) .mIS6,

for 'kzqg (m) .
Let<ieAGO(L) betan arbitrany clement ‘and consider its coondi=
, nates in the canonical basis E ofzzn:%;(dl,...ﬁxn). Put

.| means the absolute value of‘Xj,

EZ::UQJ},...,\er) (where\dj
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j=1,2,...,n). Thena 20 and more o +dz0 inz soaeA(a) s Put
k=l?lL, the L-degree of of. ThenweA@)C A (m.o)C G, (km) , so

G_(km)=G_ (g (m)m), Ey ().
e Ukz i -

Therefore GO(L)Q;GO(g(m)m), Ehils giving e (4) .
Gt Let_Iz{me<L>/g(m)=lg. We show that I is a non-void idea
of LL), this yielding the conclusion via the pronerty of <L>

of being a numerical monoid. So, we prove the assertions:
(@) 7575 and Sllo) sl e Fhie T

Proof of (a)

e £ $ _F .
Let B %ﬁl"f"gn—l% be any basis of the free abelian group
G, (L) . Consider the coordinates of the vectors el""’€n~l

) »

in the canonical basis E of;Zn, namely : Ejz(éjl""’ajn
G912, < avpii=ly awith 615621. We construct the element ofzzn,

having the coordinates:

W= lemase dabies et o mans Ve
- l<ijen=1 32 lejopati 0

where\iji} is ‘the absolute value of the integer Eji Lt

all j,i. ThenW ;20 in 2" and, by its very definition,

WB+5j>~O iz forl il 2 s e e Thicrorens byt £ JEAMWR)

for si=lyi2ac. . sn=l, s BQC«WE), which by 803 teiives GO(L)Q Go(m

with m=]W_| . such that Gy (L)=G, (m) and meI.

Proof of (L)

Let mel and he<L> and pick EGSF(m),ﬁfaF(h).
Then A (3)SA(Z+9) by (iv): of Prep.2, so Co(l)i=6_(m) is comtais
ned in G, (m+h) (=CA(%+%))>, by Prop.4). This gives G @)=

=G, (m+h), i.e. m+heI and the proof is finished.



The interpretation of the integers.{g(m)/me<L>}, defined at
(i) Proposition 5, will be given in the next section.
Now, we go into more detail in deséribinq the fibers of the
L-gradation ongzi, i.e. the finite sets_A(g),gezzﬁ , introdu-
cediat i2) above. To' this end, we first remark "(cf.(ii) of
Brop. 5k thiak ifinog (L), thedA(g)iigenerates the directional
group GO(L), for dmvzie B (m). ThentA(Z) also generates the
@svedtor icoace GO(LJQ%ZQJ which means that A(}) contains a
O-basis of the free abelian group GO(L)°
Converseldy, 1f me > 0 " and s eF(m) are such that L) teons
tains a O-basis of GO(L), then anyzxeGO(L) has a natural mul-
tiplier p, such that pdeGO(m). This 'p may.be taken the ‘same
for allde&Go(L), because this groun is finitelv agenerated.
This means pAGO(L)gGO(m), iR GO(L)/GO(m) is finite, of expo-
nent p. In particular pA(%)C Alpg) generates GO(L), so gl(m)ep.
Thus, at least for myg (L), we mav represent all elements of
i e in ascertain @=basis Ba A(z) ‘of GO(L). Thic s
however, too general for our purposes and at this point we

force enter into play the coefficients of the basic form L.

6. PEopesition

Let L= a1Y1+ +anYn be a basie linear form in nz2 Zgriables.

Tiet wedlin=: 00 "be "an-L=degrce with the property:

Gy el 2, ion} and mekia, with kemaxda, /149 .
L : J ;

Then there are: an element Ezg(m)eF(m) and a Q-basis Bxts

:{Ei/iei;,...,n—l%\j§ of G, (L), such that:

s
(ii)A(g):%a‘.l(Zj, £/ 82 ror all | and 20 aix }
' I i i#]

Proof

B

For convenience, suppose j=1, such that m=k.al, with

kzmaxgai/i=2,3,..,,n%.
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We choose the element g(m)=§€F(m) , having in the canenical

basis onZn, the coordinates:
£ =000, . 0.

In GO(L) we consider the natural 0-basis B, made - up by the

vectors 52,...,5n, whose coordinates in the canonical basis ¢

n
v are:

82=(—a2,a1,0,°,.,0), €3=(—a3,0,al,0,...,O),....

..,,a§<~an,o,...,o,al).

Our assumption on k shows that 52’""’EHEA<3)’ for the above
chosen%’, so BEA(Z) and W(i) is fulfilled.

Now, any element d€A(z) may be uniquely written:

1 il ik
oA = =X €+ =% E t...t =—x € ,
al D). al B al R
with x2,...,xné2ﬁ.

In the canonical basis of Zp; every such « has the coordinatse

n
ek
ol =( .gm(z;_ xiai), x2,x3,...,xn).
1 i=2
Thus, the definition (3) of N(5) givest o) 1 EE ais =l

n
in22n¢$ k - iw( /. xud i 0andex 20 for =080 L o liin
a ; 1L g ]
1 i=2 :
This is precisely what (ii) says.
The representation (ii) of Proposition 6 is important, becau-
se: it ldentifies Alz)awithea hemotethicall imageofi a cenEaim

order-ideal in a monoidal poset, provided (5) is fulfilled.

This' identification is:meanimgful in.the study of the moneild:



In view of future application, we aive a name to the condi-

tlion (5] “0: Prapecition 6, saying that: "'m is standard for [,

1 eneetiion T ias soon as (o) takes place.

Let usg remark that any mzmax{ai/iéj% is standard in direction
S EoE ke e aj=l.

As Proposition 6 shows, there are many integers m, which are
standard in direction 7 for L, for each je{l,Z,a..,ng.
el 1 standayd for L i every direction ﬁe{l,2,.,.,n},

we say that " (lL,m)  is a stapndard pair'. This obviously comes

ton méO (mod = ‘lLem (a.) ), where "lem" is "the lowest common
lejen

multiple".

In order to give the announced interpretation for{A(g)

(

oy

eF (m) and m standard in some direction j for L), let us

consider the subgroup of GO(L), generated bv the special Q-

basis Bﬁ?[ﬂi). LetliBﬁ§ be this subgioup. -In it ., B becomes

an integral basis, so B canonically defines a partial order
X7 1 :Z/ osE (e ;

on LB 5, hav1ng<<B£>+ é i#jxiéi/xiez+% as the set of all

positive elements. Zn Yorder ideallin a poset .is & subset

which, together with an element, contains all elements below
1 (e d subset which is "filtered below"). Now, in

- = yiE 2 . i i
<Bn>+ , the set: Q (%) { T2y X4 i/ i#jaixiim} 1s'obv1ously

an order-ideal, connected to our set A(%) by:
(6) ‘ a, A (5)=0(3),

(cE.Prop.6, (ii)), where ajA(g)={aﬁd/deAA§)}.

Since © (8) is fipmite, it ds finieely generated (a "generator"
ef fan order fideal beinq one of its maximal elements) and (6)
allows on A(%) several conclusions valid for © (3) (see below,
$3).

Now, we consider a standard pair (L,m) and prove its main

property, under the following form.



T Propositiqn

Let LzalY +. 4a Y be a basie linear form in n-2 variablcs

vonema

and let m>0 be an wnteqer such that m=0 (mod lem: (5 ).
lejsn
For any integer kxl, consider The Tincar equation:

(Ek) L(Yy,...,Y )=km.

Then dny solution fLomg? to (ék

) is a sum of k solutions

fromzz to (El).

Proof.

We proceed by induction on k, the case k=1 being trivial.

Thus, we suppose the assertlon true for anyilalcl k and proye
THhe matn tool in cur prof (s the following decomposition theovern

it for kXfor latticially ordered abelian groups (cE£.[4], 51,
10) : '

(D) lew o ) and (y.)

be two finite seaquences of
L l4l/D gelas 1 j q — L o :

positive elements in the lactic 1allv.ordered abelidn group G

oUCh Lha Z: l e ly}

Then there is a_double Sequence (7" )

: : ‘0of positiv
Lyileiop ., lo g ol BEE

elements %n G, such that:

for all i and y, Zl

L

= :
. j:l Forall il o]

=1 1'

l,...,xn) be a solution from

222 to (Ek). Since (L,m) 15 a standard paire, m/ajeZa for ever

Conmimg: baek to our proof, let (x

je{l,Z,...,n}, so there are non-negative integers Yyrer=tVy

and r such that:

e
[ en

(%) x-=(m/aj)yj+rj( Ogrj<m/aj QX gl 20 oo, e

But (xl,...,xn) is a.solution to (Ek), Selwe get tha
(f1,...,r.) is a solution fromZ® to (£ s with kil=k-
1 n + k
§— - = = = = R . .
—(Z? lyj). If kK'=0, then ri=r,=...=r =0 and X (m/aj)yj,
Jelgie o, 0. We apply to Z- e .=1+...+1 (k times) the decompo-

aitinn +hanram (MM FAs n:'W T A Al N R R e s e AN e R s B



T R e I O e e A solutiong fromzzn
Co e
If k50, then K'ek ang the induction hypothesig applied to
(Ek,) shows that there are el solutiong from;Zf to (Ei),say: h'
ll,...,rln),...,(rk,l,,..,rk,n), Such that

{4
(%) rx=2£k Toseas IEghE j=l,2,,..,n

Now, applying the (Dr) for Z;to 2: lV Tk!=]r, s o bl (k times),

sk :
(a) _yj*zf=lzji Hehe ol 9
k
f =
h) E 21 e
(c) t+§‘n =L Fer e

— Fhat
e relation (c) Shows that there b partition of.{l,Z,....
.,k} with two Hon=void bleocks: A,B, such that:¢§A=k-k',

# B=k’ ang: (e S 1@_13 Z 1 2=l e e
respectlvely s G EE and t SRR

Using (@)t follows that y —Zw o for ol s so (%) beco- -
iea’ Jd
mes ;

sy

5 iGA(m/aj).zji koSt j=l,2,...,n.

J

Also, (b) becomes: xr= %E%tl, which allows us to write (k%)

under the form:
(k%) ¢ L= Z:«r.., for j=l,2,...,n.

Therefore we obtain the followinq dQCOmposition into k veec-

B o oo DU

L
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tors fromZZi O] (xl,...,xn):

= 3 :‘Z:—z -+ j.\ ==,
(k) Xj ieA(m/aj)zji A £§Brij’ Rors Sl P e am

A

)

The defind tionof shdshoys sthae - (Clm/a )iz , is a solutio
e illasian

to (E]) for ieA and the definition of B (toadether with the i

duction hypothesis) shows that (r is & selution =0

Ll e
(£,)

Thus (%%%) is a decomposition of (x

for leB.
o) : intol a sum of 'k
Telajen

solutions fromzii to (81) and the nroof is finished.

One easily verifies that m#0 (mod aj) for‘sbme je{l,...,g},
even when m is standard for L in some other direction +§'#7j,
makes untrue the assertion of PrOpositibn 7, inferecing Ethe
seemingly true fact that the converse to Proposition 7 alse
holds. We close this section with the remark that little is
known, in general, about the cardinalities of the fibers
.{F(m)/m7Q}, in terms of the coerffficients of the bocile form L
One may give an upper bound to evervF (m), m7y0, in these
terms, provided such upper bounds are given for the component
(in the canonical basis ofz™) off everyas e i)l (cf. Ao 0. Gl
fond and Yu.V.Linnik, Elementary Methods in the Anaiytic
Theory of Numbers, Pergamon Press (1966), chc2, & 3) . The
Hilbert series technique (see below) perhaps allo@s further
information, but we won'’t stop doing this here since our iim=
teres grows into qualitative algebraic properties of the ob-

jects described into the next section.



B Veron@se submonoids of free abelian monoids

We keep into force the definition aﬁd notations of §2.

Let L:alYl+..,.+anYn be a basic linear form over‘Z#, ikiol

ny2 variables.

For any L-degree ge<L>\0 , wé consider the principal submonoid
Z;g of}Z+. Tts pre—image: by the L=-gradation ongzi, is a sub-

monoid Of222l dencted by V(L,qg) and cdlled "the Vercpese mo-

noid, associated to the pair (L,g)". As a submonoid on{ﬁ :
V{L,g) is "the g-th Veronese selection into the L-gradation
onZZE'". The Veronese monoid YV (L, 5], fTor =>0, is calkled
"the oS-t Veroneoe selection” into ViIL,g) and is denoted here

(s)

py V'°’ (L,q). The monoid V(L,q) is naturally graded by L,

namely:

(7)  V{L,q)= LlézOVm(L,g), with V_(L,g)=F (mg) (cf. (1)).

Welsrcizex £o (7) as ‘the inner cgradation’ on Vm(L,g). The

main algebraic "invariant" of the graded monoid V(L,g), is

its Hilberl series, defined by:

(8) H (z):L(#Vm(L.g))zméZ[[ZB.

mz0 :
(It represents a rational function with integral coefficients,
since the monoid algebra V(L,qg) , whose usual Hilbert series
is (8) (when graded by (7)), 1is finitely generated overC).

(s)

For any s»0, the Hilbert series of V (L,q) is connected

to (8) by:
v (s) - s-1 5. L/s
© 8oL/ i @),

cdbeing a primitive s—root of 1 in@ .

In order to clarify how V(L,g) embedds intozzz sl B shortly



remind an important notion, essentially due to Hochster ([E]
On any abelian, cancellative monoid (M,+) (with unit 0) ther

Ls a natural poset structure < compatible with the algebra

M’
gtructure ;" namely: “fors o vie M xéMy iff (3) zeM and x+z=y.

If x+y=0 in M implies x=y=0, then £  uniquely extends to the

M
universal abelian group GM) of M, such that G+(M)={z€G(M)/
/27,0 } is identified to M.

If NeM is a submonoid, then it carries two noset structures:
the inner one SN and the restriction oféwy

We say that "N is normal in M" if these two peset structines
coincide on N.

This comes to N=G (N)NM, where G(N) is the universal abelian
group of N (canonically embedded in G(M)). In general,

N=G (N)AM is the least normal submonoid of M, ‘containing N,
N is called "the normalization" of N.

The importance of this notion may be underlined by quoting

the following result of Hoechster (lec.cit):

fIE M dsa finifelyigcnerated, mormall submoned d of a ifece

abelian mqnqidZZi, then its monoid algebra(f[M] is a Cohen—

Macaulay domaint.

Now, coming back to Veronese monoids, we may prove the follo

wing

8. Preposition

With L,g as above, the Veronese monoid ¥ (L,g) lsia finitely

generated, normal submonoid onZE.

Proof.

Let %7€V (L,g) and L»m inZ} (i.e..inZ", cf.52). Then

S—QEZE and \ngjL:}ﬂL “YQ\ﬂEO = 0=0" (med g); suech thiat
g—er(i,g), which means e in V(L,g). The finite generated

noce Af TIT ~) 4dc¢ conn ho 4Aantd Fririna i+e mannid aleoahra



°

of 2 filnite (evclic) group on@LZi] =Q{Xl,..,,xn] (eEEl ),

then applyina the Hilbert-Noether theorem.

Ihistresult shows that the canenical poset structure on YV (L,qg)
is précisely the one induced by the lattice (Zﬁ,é), so the
notation < for the partial order on V(h,g) mav produce no
confusion.

Let G(L,g) be the universal abelian group of V(L,g). Then
G(L e ds canoniéa}lv‘identified to an ordered subgroup of

Z?y,such that G+(L,q)=V(L,q) (where G+(L,q) is defiged as

G(L,g»nzﬂ), because of the normality asserted by PRome. o

Remark

The normaility of V(L,q) iﬁtozzi is essentially the consequen-—
ce o Lwo facts s fanstly whateblle coefficients of L are all
positive and secondly, that V(L,g) consists of all solutions

fromZZi tor L YV)=0 (modqg) .

Having seen how the natural poset structure extends from
Vi(L,9) to G(L;g), we must further clarify how the inner gra=
dation (7) does the same.

Since G(L,g) is the universal abelian qroup of V(L,qg), the

inner gradation (7), cbnsidered as a surjective monoid homo-
i
morphism V(L,q) _Hfﬂf;2Z+_(we remind that gec<hiy- 18 not aigap

ot « L3) » Imiguely extends o a surjeétive group homomorphism

e =ker (£.
fL,g,G(L,g)—4> 1t GO(L,g) ker(fL’q),

exacht. seguenece:

then the following

5
(10) 0 G (L,g)—> G(L,g) - .0,

splits, Z. being free. Therefore, rk G(L,q)=1+rkGO(L,q).

9. Proposition




(&) G(L,g)={&ﬂ?/\€\ﬁ£0 (mod gﬁ}

{di) GO(L,g) colncides with the directional aroup GO(L) :

(1) TfcueCll, g, then GreeXet s fior Somert elaV (T: o)

This means |%|, =(s'|;50 (mod.g), so(“ﬂL =45l “V%’\ﬁzO (mod g) .

Conversely, letawez' be such that FJEI?O (mod gt
Rt : : :
As z~ 1is the universal abelian group of;zg, we can write:

Soman ; n @
@e=V-n! - for some 7,Qfez;. From;«ﬂlao (mod g) we aget
5 ; C ]

= Y : 2
\b}LﬁQﬂLEk (mod g)., with ke{O,l,...,g—lg. Erom:Prop,2, 2, e
get an elementhezii such that\#lLEqwk (mod ¢) (for instance,
\V{ﬁsmg+g~k, for mz p(L)):
Then M +u, m'+ i both belong to;zf and |+ P =2lm " +p) mk+g~k=0
(mod g). Therefore’Q+}Land'7’+}kboth belong o V(L a) . Since
(UZQ_Q,:(W+V)M<7'+PJ' it follows that o e G(L,qg).
(ii) By the very definition of GO(L,q) Le-follows: thak

=G At n i nle s

G (I, 9) ={@€C (L, 9) /| @\ =03 c{oez"/ |0] =0} =6 _ (1) .
By. (i), we see that‘A(g)gGo(L,g) for any % € Vil,g) (cf. @),
§2), i.e. Go(kq)gGO(L,g) for anyoke b (af, (3) 620, givineg

by (49, Prop.5; %2: G

o ble ) Go§kq);Go(L,g).

k21
We shall be further concerned with an imnortant prdperty anpe
taining to graded structures, namely their standardness.

Let us remind that a graded monoid M= U) Mm is called
Sme @ e
"standard" iff it is generated by its first degree component

o ——p T —

Ml; This means: Msz +...+Ml (m times) in M, for any m>0 and

1
MosﬁO}e Denoting by <Ml> the submonoid generated in M by the
first degree component My the standardness of the given gra-
dation obviously comes to: M =(M;y.

In particular, this triviallv-dmplies that Meis tbhe mormalie.

tlentef LM inside M. When onlv this weaker condition holds
It -
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ven gradation. Now, coming to our particular case, the follo-

wing facts may be proven.

10. Proposition

Let I, be & basic linear form in n>2 variables.’

Then there is_an integer g (L) (precisely the one defined at

Glat ) o Prop.B,% 2) =uch that V(L,a) iquuasi-standard_in its

inner gradation, for any G

Proof

We use G, Prop.5,§ 2 and reduce the assertion in the enoun-
ce to the proof of the following equivalence:

(a) V(L,q) has quasijstandard innerrq;adation

(a) means that V(L,g) is the normalization inside itself of
the submonoidw(vl(L,gf>, generated by its first degree compo-
nent.

However, the monoidélvl(L,gﬁ>>has Go(g) ()ZZ.E as lte winiver=
sal abelian group,?ﬁiF(g)=Vl(L,g) beina an arbitrary element.
(Indeed, the universal abelian groun of QVl(L,g)> consists

ot alllifdif ferences (insidezzn) of elements from<(V1(L,g»>.
But<<Vl(L,g)> is itself standard in the induced inner grada-
' tion of V(L,g), so, fixing an element"gcgvl(L,g), we see that
anwa6<V1(L,g)> is of the form:M =m%+f , with m>0 and
pe&(m%):mA(g). So, any difference 7 -%' of elements from
<<V1(L,g)>, is oithe form:?-—Q’=(m~m’)g+(@—p’), with

m,m’eZ, andV%ﬁﬂA(g), prem’A(%). This yields the conclusion).
Then V(L,g)=<vylﬁ,/g)>=(Go(g) ®ZEN\V(L,g), sO V(Lpg) ©
cho(g)éBZlg. By tﬁe definition of the universal abelian groun,

it then follows that: G(L,q)gGO(q)<QZX%)Q;G(L,g) (the last



inclusion coming from<<Vl(L,gZ>§V(L,g)), SO thaﬁ:
G(L,g)=GO (gl Bz,

The exact sequence (10) readily gives: G(L,q)=GO(L,g) D7,
so G, (L,9) @2@=Go(g)<925. But G (g)c G (L) (cf. (3)) and
GO(L)zGO(L,g) (ef.alids) ) Propa9)., =0 Go(q%;GO(L,q). Together

with G _(L,q) &z

= =Go(g)<@2§, this: last inclusieon ogives (b).

o~

Proof of (b) => (a)

Reversing the implications, we deduce from (ot Ehe (G (T )
(=G AL, o) ©L5, for any fixed T e F(g)=v,(L,g)) is the univer-
sal abelian group of(LVl(L,g»>. Then?{Vl?E:gﬁ>=G(L,g)nV(L,q)

L, ) sad e (A Bodide

This result shows that, for a fixed aradation L onzzﬁ, "al-
most all" Veronese selections V(L,g) are quasi-standard in

their inmer oradation (7).

Remark

The Integer gm) of (1) Prop.5,§,2 may now be interpreﬁed.
as "the deviation from quasi-standardness" of the Veronese
monoid‘V(L,m). <

About the actual standardness of the inner gradation of a Ve

ronese monoid V(L,qg), the following simple criterium clari-

fies the situation.

1l Pronosition

et L'be a basic forn is nz2 variables and ge{d)\ 0 an 1=

degree. The following are equivalent:

=V (l,q) has standard inner gradation

(1i) V(L,g9) has quasi-standard inner gradation andl;Vl(L,q)>

185 normal in V(L g);

fii) Fomn any'gevl(L,q) and any integer mzl, A (m%)=mA(%¥) in

CEmR{ERA



(1) =>(ii). Indeed, V(L,g) quasi-standard means that V(L,q)=

o

ZLVl(L,g)> and:(Vl(L,q)>~normal in V(L,g) means that
V(L gy =4V, (L,g)).

(1) = ({dii). Vi(L,g) standard means: Vm(L,g)=23TVl(L,g), for

Tamy izl e F(mg):ZlTF(g) for mzl. For any g € F(g), we know

Gt s Emg ) eme N (mE ) T mel . (ef. (1), Prop.3, £2), so megroms) =
=§:T(%+A(g)):m%+mﬁ(¥) and the cancellation property forZZﬁ

2

yields the desired conclusion.

T e

The explicit connection between (ii) and (iii) of Perosition
1, s the ‘following., Elirst, -remark that  (ii) sblits into:
(a)V(L,g) is quasi-standard iff A (3) cenerates G, (L) for any
5erF(g) |

(6){V, (L,9)> is normal inside V(L,g) iff A((p-a)§)< pA(3)-
=gl for any paqr0.

Bye (1 P )Fcf "PropLb H(a) iss coverediby. (111) of  Prop.ll and eob=
&idusly the same is true for (b).

The above general considerations on the standardness of the
inner aradation (/) eof a Veronese monoid V (L,q), do not give
yet positive examples, but rather provide cuick possibilities
forvcounterexamples.

For instance, V(L,a) cannot be standard when g is a ga@ of
(L> (which is obvious) , or when gell> but Go(q)#GO(L)

(as the case of L=3Y

+5Y,+6Y g=8 immediately shows).

1 3/
More, even when g is standard in some direction j for L (see
g2, the stamdardness of V¥ (L,qg) may fail, as it is the case
for L=7Yl+2Y2+3Y3, g=14.

A positive answer to this‘question is contained into the

next



12 Proposition

Let (L,g) be a standard pair (cf.%2). Then the Veronoss

monoid V(L,g) has standard inner gradation.

Proof
The assertion is a mere translatioﬁ of Proposition 7,& 2.
The next'stép we are takinq, is the characterization ef the
homogeneous systems of parameters in Veronese monoids. They
may not exist in genéral, however we are able to construct
such systems in "sufficiently many" cases, the methdd i

the expected systems in manv relevant particular cases.

. : s : = A gt
Let us first remind that a "monomial system of parameter

in a Veronese monoid V(L,g) is a family of n=rk G(L,a) eleme

gl,.,e,gn from Vil g)s such  thet ithe submonoid‘(%l:'*"gﬁv
they generate in Vi{(L,g), -has the propertv:

G oM e VL8 @ipeZ Mo ond  pme@ L)

\XIR&F'L 211--o"%n6‘7d(LIQ) ’ for some ler SUCh a'-system is calle

"homogeneous", of degree d.

13. Proposgition

Let V(L,9)€Z] be a Veronese monoid.

Py

an homogeneous monomial svstem of paramcters. .

e

lcm (ai) )

Such a system mav be chosen of dearee dz=0 (mod . .
uc / s aiteigs liicn, i#]

Ay evesay being the coefficients of L.

Proof .
We may take g standard in. direction n for L, sO an element

' ' S > foun
SGF(g)’ and a 0Q-basis B:{El""’gnelz ffO L (10(14) may be

such that:

i and 2 a:x:£9
Xﬁej)/xjeza faralle o 5%5

1 ‘ n-1 : ‘}.
e 1

ZS(%)={a;l(Zlf:






Precisely the same argument as the one in Prop.6,£2 shows
that, for any inteder mal:

i n-l,
(a}A(mg)«l (2 el jg )/x e Z for allay and?: ajx <mg§

For every mzl, we define the integers:
(b) rj(m)ﬂmax{xjezg/(ﬂ)deﬂ(m§) and prgj(d)mxjgf

where pr8 is .the projection on the gj~axis of G (L),
5 : O
We search for a system of parameters foxr VI(L,g), of the

following form:

= ==
s gd rnml(d)ﬁ

1
()} 5.,=a%, 5,=d5+a "r, (d)€y,...,5 -

where d»>0 is an integer to .be found.

In order that (c) be a system of parameters, thetre must exis
for any QegV(L,g), integers p'do'dl"°"dn— €Za ;- such sthat

p>0 ands
(%.1) py=oS + 5+t _GE

Let ky0 be the (inner) degree of Y-in VilL,g). Then (a)
gives (n-1) non-negative integers x],.,.,xn_l, uniquely dete
mined by:

= Tt n] /
(x.Z)Q —kgra (Z_ 1xJaJ) and Zl l 5 J” kg.

Replacing (ec) and (%, 2) dinte (x.1), we obitain:

1akg+<1(2;3 (Px4Ey)=d (2 0w rar T Z 8T rs (d)eL).



Taking the L-degrees and remembering that B is a @-basis in

GO(L), we obtain from here:

=l
pk:d(ZZLin) and pxj=djrj(d), fors=1,2,...,n~1.
i= :
n~lr (ad)o) = ithere wosultss ot i=p.r (d)"l
Choosing p=0 (mod d7?=1 g ' ere < S amhaL, ;
.xjéza for j=l .2, . ,n=ls (because p>0) . More: do: pdmlk -
n-1 : n-1 -1
-2l deJZ; We also need<¥620, LaesZ o ofzpd "l Usina thie
j=1 - =1 :
already found values oft%l,.w.,?%_l, this alves:
=
i 22
le___lprj (@) "xigpd Tk,
equivalent to:
i L ~1 -1
- / 5
(%) Zl“j=llj\d) Xjéd ke
for any  (x X )eZZn-l verifvinq'ﬁln—la iz ale
( ¥ preec i ¥ e rifying: 2. 1%4¢9k.
If we can choose d such that: dgéaﬁrﬁ(d) for all ﬁe{;, ......
..... < n~i}, then it will follow:
e -1 S '
cld)s etd == (d <d oo foroall
s e 1
: n=1 -1 n=1 oy ;
such that gJ. rj(d)xjgd 7 ajxﬁggd k, givina (k%) after
j::l : ; —}:l 3

‘division by g.
So, we are left with the problem of finding d>0, such that
dgéajrj(d), Tor Sln2 D aasyn=ls

1

But a; rj(d)Ejeﬁgdg) by (b) and (a) (remember that A(d¥) is

essentially an order ideal), which means, again by (a):

ajrj(d)édg.



Therefore, it SgnehiiaMadists Wit ihae tol yeriify:

(ks ) asry(d)=dg, for j=1,2,...,n-1.

A vt et e 40\» (L wow Ld be ad o (MQCI Lem Gl

AL 44 n-4

fﬁvﬁﬁ;rj(d)=(d/aj)g for =12, . =l g0 the onlyv prebilicn i
to show that this agrees with the definition (b) of the inte

gers § r.
gclsﬁlrj(m%

m>1°

OF;  Sor sudh "di werobtain: aﬁr.(d)=aj(d/aj)g=d<9, so (a)

4
shows that a;l(d/aj)q&j certainly belongs tozﬁ(dg) EEor ailil

J) . If this istnot the masimum along the Eimaxis, then the

actual max rﬁ(d) should satisfv: (d/aﬁ)q$rj(d). Since
1

a;rj(d)éjélxdg), we would then obtain: dq=(d/aﬁ)g.aﬁ$7rj(d)a
£49d, a contradiction. Therefore (#%%) is fulfilled by the

considered d and the proof is finished.

14, gprollarz

e

B (L,g)»is a standard Da;r,”then“ﬁhe Veronese moneid V(L e)

has an homogeneous system of parameters of degree 1.

Proof

(L,g)  being standard, g is in partienlar standard in direc=

tion n for L and more: g=0 (mod lcm (ai), where»al,...
1 aton=1 .

. ra, are the coefficients of L. Then already the choice
d=1 satisfies the requirements (%%%) from the proof of Pro-

position 13,

Remark

s e

Using the definition (b) from the broof of Propesition: 3l
explicit expressions may be found for the ﬁarameters of degre
L in Vili,g), in:the ‘case of a standoed pair (Lz}j?zlaiyi,g).
An easy computation shows that such a system of parameters ic

for instance, the followina:



"\FT‘{

(L2) 5 = (gle s 0, S

...c,En =(0, 80w, 10,0/ ),
where the coordinates are taken in the canonical basis onLn

The next step in the study of the Veronese monoids, is the
characterization of their defining relations. This cannot be
done here in full generality, but we shall derive some useful
information at least for the stahdard case.

To this end, we make some introductory considerations on qua-
dratic monoidal relations, restricting ourselves to submonoids
of ffee abelian monoids, in order to avoid unnecessary denera-
lities. So, let n»l be an integer and let ngi‘bela finite
non-enmpty subset.

Dor eny m2»2 and 4any sequence f:(fl"”’fm) over F, an "elemen-

tary cuadratic transform" of f is a seauence £r=(£ )

l"' m

(of precisely the same lenght) over F, defined bv:

(3 i,ke{},Z,...,m}, i#k such that £, +f =£!+£/ and

£4=f} for je{l,Z;..f,ﬁ%\{;,kg.

We write this kind of connection between £ and £’ as:

fJE", sifice it i3 obviously reflexive and symmetrical. The
transitive closure of this relation is therefore an eguivalen-
ce, which we use in the sequel.

The finite set F is called "guadratic" if the following holds:

(13) for any mz2 and any two sequences f=(f1,...,fm) and

h=(hl,...,hm) over F, such Lhathl 1£1 Z:l L there 1s'a
Family of t;2 Sequences f(d)=(ffd), f( )), d=1,2, e

(l) £ (2) (t)

over B, sueh that: f=F RS =h.



Lo. Proposicion

In‘the_gbovehsettinq, the following: dare enuivalent:

(i) ngi le o duadpaticicat

(i) for anyveamaly, any 5equcnce f= ( aE ) over . and any

l I ¢ ©
elements xel, hLCh appears in some decompos1tlon w1tb M terms
~m LG _ (2)
OEZJ ., over F, there are tz1l sequences: (f )]414t of m
4
= _; 22 t)
elcmontuvovpt L, WJth Lhe propeztv f=Ff anc

x=fy ") for some ke{l,... mi.

e

Tioot

(1) =>(i1) 1s obvious by (13) and (i) > EH ol lowe by‘induc

tion on m, using the cancellation property onZi.

1.6, Proposiﬁion

n
Let nl,nzzl be 1ntegers and F Zﬁ% F2§Z;2 be finite, non-
gmnty'.uadrctlc subqets Then Flﬁ 5 is a aquadratic subset
2 nl+n2

i ;
Proof, .

The assertion immediately follows from Proposition 15, whose

condition (ii) is consistent with carﬁesian preducts, sinece
n n

the monoid law on ZZ+;xZ;2 iis the direct product of Ethe moc:

laws on the factors and the elementary quadratic transforms

may be performed on each factor separately.

L7 Propesiticn.

For any”integer k>l ke interval [O,k1= {O,l,...,k} is

a quadratic subset of Z_.

Proof

Let m22 be any integer and (ii,:.+,i.) @ seguence with m



terms from Lo,kj, Any xé[@,kj appearing in some decomposition
with m terms éfZQSli , should be ieac&ed throuqh a finite num-
ber of elementary quadratic transforms over [O,k], starting
from (i):(il,...,im). In order to prove this, we first remark
that any transposition on (i1’°"’im) certainly gives an ele-
mentary quadratic transform of this sequence, thus we may
1Zi22“°'2iﬁFO‘

We now look at the position of xe[O,k] with respect to (i),

from . the very beginning suppose that kzi
distinguishing three possible cases.

I)k'?xzilz 1?7 E zi 2.0.

If il+i27,__xi then (illiZIiBI-onfim)(U (X, il+j.2'—x, i3’oa-,im)

' is enough, because 0<x¢k and Osil+12—x§i2§k.

If il+iz+ijzxzi1+12' then the following two steps are enough:

(11,12,13,i4,...,im)mM1l+iz,O,13,i4,...,lm)qﬂx,o,ll+12+13~

~x,i4,...,im), because 0<x<¢k and Ogii+i2+i3—x5ij§k.
ik ll+12+13+142lel+12+13 ; then the following three steps are
enough :

Bt el e syl #1500, 000 oty el Jldg +E41, 0,

0,i4,15,...,im)(U(X,O,O,il+i2+i3+i4"x, iS,c -t'im) °

We continue like this, the procedure eventually giving the

desired conclusion, because il+i2+...+im2x by hynothesis.

Pkt 5. Tl ool o 0l
-4

1 o for someéie{i,z,...,m—l}.

ml

Then a single elementary quadratic transform is enough, name-

ly:

CWERRVE IR TUCERRRRE Y [CRPRPRUE TR DR SURES TRRRIE MY

because 0zx<k and Qgid+i -xéidék.

o +1



II@)kzilZ.,.ziﬁszO

Here also a single elementary transform is enough, namelv:

(ll'°°”lm~1’lm)aj(ll"°" x 1m_l+lm~x),

because 0<4x¢k and 041 Sl =l ¢ k.
m—1 “m m-1

This ends the proof of the Proposition.

Remark

s e

Proposition 17 is also true in the trivial cade k0.

We remind, now, that a "principal order ideal" in a poset

(P,4£) is a subposet of the type O(x)={yeP/yéx}, For xeP
(called "the generator" of 0(x)).

A "finitely generated" order ideal O(Xl"°°’xn) im B, s whe
union of the principal order ideals O(x

1) ree =

lidecPropesition

. : . : n : .
For any n2>l, a principal order ideal in @z+,£) is a quadrasi

(the order onzzi being the monoidal one).

Proof
Let O(x) be the order ideal generated by x=(xl,...,xn)€Z$.
Then O(x) is the parallelotope [0,x£]x [O,xé}x...x {O'anzi

such that the assertion follows from the Proposition 16 and

17,

The next natural step would be the checking of the euadratie
property for finitely generated order ideals ingzﬁ. However,

it is not true that they are all quadratic for nz2, unless 1ii

- —- - - . b -



de s @ .E.L.\JtJ\JC)_Ll.,..LULI.

Let ngi be a(finitely generated) order ideal, having the

following property:

\D) for any integor my2 and for any demF and d,pcF, sa-

tisfying: d+demF and d+pemF, there areiclenents dlc (M=l F

andd ', e’eF such that: d’+q’=d+c and d'+p’ =d+p.
nld et S e - : \ i

Then P 18 g guadratic Set.

(ﬂeve mE=l o rF (m-times) injzi),

Proof

We shall proceed by indﬁction on the number of terms in decom-
pesitions over F, using (Ii) of Proposition 15, the case m=>
being trivial.

So, lek (al,...,a Jrande (b

i /b ) be two m-terms families

e m

over F, where my2, such that:

(%) BRLE L e e S
) m

: : n
17a, l+b2+...+om (1n;z+)

We must show that (al,.a,,am) and (bl,...,bm) are then guadere-
tically connected, if (D) takes place and Lf thig ds twie or
any m’<m. From (%), we obtain an element:

o s n
= bl+a2+...+am— al4b2+.--+bm€Z,-

0 . ' -
Let: d=sup(r,0), "sup" being the usual lattice operation innZ,

Then @ d el 4z e a g, doe by Ty b 9y

there are elementscy,ﬁezﬁ’,such that:
E1) d+m=a2+...+an 5 <1+F= b2+...+bn
Then, the definition of r gives:

4r2) d + ol = ¥ hi.'s d o+ e v dy



But E is an order ideal and al,bIeF, SO d,FéF.
Now, from the Decompostion Theorem in latticially ordered
abelian groups (cf.Bourbaki,[@ln see also the preof of

Brop.7, 82), from dga2+,nc+am and d,az,,..,aﬁézi, Lt ol leows

the existence of pogitive element$va’,.,.,aészi rasuechethat

: e : . ; :
dmaé+.e,+a$ and a%gaj 1n¢2+, £0X =2, geyMe iSince :F is an or

der-ideal and a2,°°,rameF, we derive from here that: de(m-1)
(with m~122, because m>2).

Then #2) shows that d,d,ﬁ satisfy the hypothesis of (D) dn

*

the enounce, so there are elements d'e (m-2)F and«x’,?’eF
and d+e=d’+a’, d+ﬁ=d’+P’.

From (%) and (4 1) we deduce:

= ; n
Ees) ol + a;=p+ bl (1n2+),
and more:

’+,f: ' 4 ’:r e ¢ o e
d ol a2+...+am ool +p bz+ +bn

By the choosing of d’,d’,p’, these last equalities are (m~1
terms decompositions over F, therefore the induction hypothe-

sis shows that there are (finitely many) elementary quadratic

transforms, connecting (a2,..,,am) oot d ) Tand (bz,...,bm}

£o (P"d’)' Then, by finitely many elementary quadratic tran:

forms, we may connect (al,a2,...,a ) to (al,u’,d’) and

m

(bl;bzf. L ek (bl,a’,d’). But then al+d!+d’=bl+q’+d’ in

Zzi, and ( 3) shows that a single more elementary quadratic

m

transform connects (al,qf,d’) to (bl,d':d')-

Therefore, "starting from (al,...,am), we can perform (finite-
ly may) elementary quadratic transforms on this seauence, obt
ning (bl,..a,bmj.

Thile ends: the:proof of the Propesitien.



Remark

B e —

The whole monoid Zﬁ (nzl) is a quadratic set, as the Decom-

position Theorem immediately shows.

Endendy 1F (a0, 0 )y (by,.-+,b ) are families ovvzﬁ

®

(m>2) and al+...+am:bl+...+bm, then the Decomposition Theorem

gives a double family: (z,.)

S
éij of elelonts From 7z -
T

leism, l<i<m

s m
e = o _' = - ""‘ 1 ) o A i f £
such that: as Z“j:l7lj for every i and bj Z}l:lzlJ or every
Sk
Then (al,,b.,am) may be guadratically connected. to (bl,o..,bm)

by simply interchanging 234 with ij in an elementary quadra-

tic transform and thus succesively recapturing b.,b.,....b
o s lr 2f 14 m

from Ayr8nr-ce @,
Such transfer may be performed step bv step, because no restric
tlon is put on the ai’s or bés (the Decomnositiog Theorem sim-
ply saying that every relation: al+'°°+am;bl+°"+bm may bé

obtained by rearranging the terms in convenient decomnositions

)

of (a ). This is equivalent, of course, to the

-
fdetormiality 'of the monvid algebra&ﬂﬂzﬁ]zi[xl,...,XAX.

A similar Decomposition Theoremwis not valid, however, over an
arbitrary order ideal ngi, S0 cenvenient restrictions f{as,
for instance (D) of Prop.l1l9) have to be Pt on Fin erder to
agsure at least its quadratic featiure.

Now, we return to Veronese monoids and consider a (basic) 1i-

o p’

any L-degree gedL) , and order ideal, namely:

near form L:alYl+..,+a Y pzl, which defines, together with

(14) O, g)Pezl/nmieql.
As we have seen before, for any integer myl:

(15) mo (L, g)cO (L,mg) (with mO(L,q)=ZIfO(L,g> in 20



e &

the egquality (for all m) being assured if (L,q) 1d a standa

Db,

20 Proposition

Let Lij?m‘a.Y. be a form in pezl variables, suech that 41>

has no gaps ian+ (equivalently, aj=l for some je{l,u..,pg).

Then O(L,g) is.a-quadratic set in;zf, for any geZ;.

Proof.

We. have only to check conditieon (B).iof Prepositien 19, sihce
O(L,g) is an order ideal already;

Let m>»2 be an integer, demO(L,g),ci,@éiO(L,g) sueh that:
dlemOiL, g’ ; d+@€mO(L,g).

We search for elements d’é(m—l)O(L,q),cx’,p’eO(L,q) verifyir
sl =d. by odl Bl e, -

Then d’4d +o and d’<d +p inz "

4+ SO d'4inf (d+«, d+p)=

=d+inf(d,ﬁ) (where "inf" is_the usual lattice operation on
Zzi). Therefore, we may write: ’ﬂd—§+inf(a,P), wheregzzo is
a convenient element fromzzz.

Then d’=d—d’+d=g+d"inf(d,§)20 and ﬁ'=d—d’+ﬁ=g+ﬁ~inf(d,p)zo
are uniquely determined by the same % . Thus, we only have e

2

£ind van element 550l such sthal

(%1) d -§+inf («,p)em-1)0(L,q)

(%2) ¢ +a-inf (¢, p)€0(L,g) and g+§—inf(d,p)eO(L,q),

and  (D)ewillbe ful £ lkad,
Thus, O(lxg) verifies WD) liffifor d;w,P as above, there is
an-element 520 satistying (k1) and (*£2).

According to (14) and (15),! the conditiens  ((kl) and (2) le=

4o e



(4¥) L(%kzLL(d)w(mwl)q, g-sup (L (a), L(p))| + L(inf(d,@))
Now, L(d) may be supposed not less than (m-1)g (or else d’=d,
o!=0o and ﬁ’zg% will be sufficient), so L(d)~(m=-1)gz0.

From @) we see that 3 exists iff the intersection:

(I:{‘L(d)- (m-1)g, g-sup (L) ,L(p) )n<oy

is nen voad, d.ey 1IffT de vot entirely contalned in the gap

set of (L). Since {L) has no gaps, the proof is finiched,

21.Proposition

Led L be arbasicrform in“n;@_ya;iables and_lépﬂqg(L} be an

L-degree,such that (L,q) is a standard pair.

Suppose further that (L) has no gaps in Z#.

Then the Veronese monoid V(L,qg) has guadratic defining rela-

tions.

e st e

Deoel.

Indeed, suppose a;=1, where-{;A{j=l,.,a,n} are the coefficierts
of L. We take the representatipn of Vl(L,g)zF(L,g) as an homo-
tethnical image of an érder ideal in someéZinl, with resnect
to another coefficient aj, J#l, of L (cf Propi6,82). Simce the
quadratic nature of a finite set doesn’t change by an homoto-
thy, we may suppose that Vl(L,g)=6(g)+§, for somé%éﬁvi(L,g),
where © (3) is an order ideal ianﬁul(this free abelian monoid
being identified to the set of all positive elements in seme

ordering of GO(LFEZPul).

Now, the definition (13) obviously
resi¢ls to translations, therefore Vl(L'q) Is gquadreatie si—
multaneously with 6(3). But ©(3%) is of the form (14) (cf.(6),

§2) and more, it is-in the conditions of RProposition 20, by

our hypothesis and our choosing of . Thus @ (3) is guadratcie,



implying the same for VI(L,q). But V(l,q) die standard, se i:

defining relations are precisely those over Vl(L,q),

22... Propesition

Let (L,g) be a standard pair, such. that L L> has no.gaps in Z
S = : ! -

(L,g) has standard inner ara

Then the Veronese selection V

dation and quadratic defining relations, for every integer

PRoofk

I ———

The assertion about the inner gradation follows follows from

e et b

(L,g)=V(L,sg) and (L,sg) is a standard
pair if (L.l Jds aueh,

The assertion about the defining relations follows from the
remark that (using the notatiem (14)) O (L, gl aquadratiec (anc

standard) , implies the same for s.0(L,g)=0(L,q)+...+0 (L,qa)

(s times)=0(L,sg), as the definition (13) readily shows.

e

(1) In the above setting, let us remark that the property of
CIy of not havigg gaps in Z#, already implies that L is a
basic linear form.

By multiplication with an arbitrary positive integer, one

immediately obtains a result similar to Proposition 22, na-

mely:
16k
HodoF L=Z:,anj has positive integral coefficients such that
, =1 i
one of them divides every othgr one, then»Proposition 22j:e—

mains valid for V(S)(L,g), with g=07 (meds - lens: (207)9) and S b

l<jen

This is true because the gquadratic property of a finite set
is preserved by homotety - (with a positive rational number)
and the same holds for the standardness (cf. Pron.7).

(ii) Ag we have alreadv observed (see the proof of Propesi=



e j 6 - = TR

tion 21), the guadratic property of a finite subset ngi(nal)
is not affected by translation (with-o vectorcxezi) and by
hometethy (with a positive integral (or rational) humber).
Thus E guadratic ﬁ>pF+o(quadratic, for p>0 in Z and <165222
(where pF:{peg/geF Vo

Iniparticular, forn=] > 1t follows from Proposition 17 that

. the submonoid of‘Z;, degerated by”anv finlte arithmetic

progression, has quadratic defining relations.

This particular case is "generic" in the senge that, in order
to actually find the (defining) relations between the elements
of a quadratic set ngi(nzl), one has to look Ffor all arithme—

tic progressions inside F, but havino their ratios tnZ .

4, Veronese monoid alaebras

We consider the monoid algebras over ¢ of the Veronese mdnoids
defined at &3, The above terminology and notations ave kept
inswhat follows. 50, let Lsz?slanﬁ be a basic linear form

in n»2 variables and let gé{lY be an L-degree.

We denote by R(L,q):C[V(L,ng the monoid algebra of: V(L q).

- From the:definition of Vil,qg)} it follows that
R(L,gkﬁ{ZE]=dﬂ?l,...,X;} and, as a € -vector space, R(L,q)

51

is -spanned by the monomials %}ﬁV%eV(L,g)% (where X§=Xl e .

5n
s

R(L,g) is graded by the inner gradation (7) of V(L,g), namely:

(16) : R(L,g)=@® Rm(L,g),
m20

| - . 55
with RO(L,g)—(E and Rm(L’g)_<3%€;Vm(L,g)¢:X :

Putting toghether the informations derived above for Veronese

monoids, we can formulate the following



23. Propesition

Let V(L,g)gzﬁ be a Veronese monoid (L,g as above)

(1) ‘RiL,g) 1s 2 finfitely fenordted<5~ gubalqebra ofC[Y

'l,oa'
°°°°° ’Xn'}*' Such that the ring extension R(L rq)gm[}{ly«”,xr&

is finita (hOﬁwO dim R(ij)—n)g

\1i) Rin,g) 1= a Cohen-Macaulay ring

(iii) The .gradatien (16) on RUL,g) s standard when (L,g) is

a standard pair. If, moreover, <L> has no gaps 1n.ZL then

RE(T;, ¢) - hias quadvatlc dei nq re] atiens.

(Lv) If g is standard in some di veloton flor [ then R(L,q)

has a system of parameters, consisting of monomials of the

same L-deq:eg, When the_pair (L) iﬁself“is s?andard, then

R(L,g) has a monomial system of parameters of L-deogree 1.

Proof

(1) comes frém Prop.S-and the remarkAthat X?éR(L,Q),for ever
Tell2y oot

(11) comes from.the normality of the monoid embeddina R(L,g)
Zﬁ:, together with Hochster’s result (6]

(iii) is a m@re-translation of Proposition 12 and 21, while

(1v) results from Propesition 13 and its CGemcllary 14,

Remark
Interpreting Ri(L,g). asa ving of lavariantstcfdat cyelic gnou
actin q

of order @V*ndﬂk Xﬂ}f the result of Watanabe (quotedat

Lrecce

él)f shows that R(L,g) is Gorenstein iff WL\ = 0 a.=0 (mod

=L
), where a;,...,a8  are the coefficients of 1.,
g 1 n

Important information about the singularity R (L,qg),

is contained in a minimal resolution of R(L,g)/R (1, qfé‘f oV
e : + (b

R(L,g) (where R+(L,g):63m>o Rm(L,g)).



(17) B T Sp ..... Jys : o oo Sl _r_l_>SO::R(L,g) f_> (‘J\?U

be such a resolution (y being the canonical homomorphism) ,
where. every Sp is a finitely generated, free R(L,g)-module.
The gradation (16) of R(L,g) canonically gives a gradation

on each term Sp (p>0) , suel that 'a fixed basis of Sp consists
of elements of degree zero in this extended gradation.

We grade in this manner the resolution (17) ;- its - minimal ity

R TSR ,‘\
ghEs o cFa el
p“"'J.

N

mean irgs  dals e R
P P -

The integer: bp(L,g)zrk

(L,

Ie

ey e e "the Betti

nunbers" of the singularitvy R(L,g). They are equal to the

coefficients of the "Poincaré of R(L,g), defined by:

= i TorP ., c)) P
(18) PL,g(Z) Z:B(dlm QorR(L,g)( TEL) tZﬁE—ﬂ :
P2 :
PL g(z) contains the simplest ennumerative information about
o

the singularity R(L,g), with respect to the Binkernall S oces

lution (17) (here "internal" means that (17) unties RI(L,a)

over itself, contrary to the "external" resolution of R(L,q)
over its minimal regular embéﬁding, which compares R(L,g)

to a non-singularity; the "internal" resolution is infinite
(éxcept when R(L,qg) iﬁself isAreqular), while tﬁe "external"
one 'is-always finite).

The ennumerative invariant PL,g(Z) 18 compﬁtable-in particular

nice situations, when it can be algebraically connected to the

uysual Hilbert series of the gradation (16) on R(L,q), namely

e . m,
(19)  Hy (2)= S (dim Ry (L,9))2 eZ[2]
Such a particular situation arises, for instance, when (L)

ig a linear resolution, i.e. when every differential dp(pzl)'

e anar e

is homogeneous (with respect to the inner oradation on everv

o



b/}

Sp) of degree +1.

'
H![ f
This comes to the fact that R{l,g) is & "Piggglﬂ.il'*
pe “|>"
i.e. its ennumerative invariants n g(z) and ET,H(”)
V3 B

connected by the relation:

(20) PLfg(z)HL,q("z)=l.
udle
We shall check this property on the graded gtruct !’ =
: im
here and to this end we first remind the general ““hJJl -
: i3
of the Poincaré and Hilbert series after factoriit S5 W
lar sequences in graded noetherian algebras ovef(/ o
field).
Lemma e
Tet - (ﬂszA be a noetherian graded algebra ?jf'.! %xfligz
1rrelevant max1ﬁ¢l 1deal A Hé@szAm and ch %eﬂw BREL e
neéﬁs-ndg;zéréréivizor, of deﬁlé“d7l
e
ST E i Jﬂ),lwh(
(ii) PA/XA )'(l+z)-lPA(7> when d=1 and DA/XA( l”(l'” o
when d 1. o
(The proof of (i) is immediate, while (ii) (CS”(”i!‘l,,(udV
to Tate) may be found in: T.H.Gulliksen £ G.Levlils "T( S
of Local Rings, Queen’s Papers in P. and Appl,MJl“" i
for inskancels o L fuace
In particular, the following result may be derlve! e
24, Proposition
Let A be as in Ehe eneunce of the dbeove Lemma»gHJ QM' G

.EQHS' !
: : ||,;| ! it
§x1,xq,.,.,xml be a reqular sequence in A, such !



is homogeneous, of degree 1.

The following are equivalent:

(i) PA(Z).HA(WZ):I
T o —z)=1.
e L ey

Proof

e s e

[ = £ e 2 i £ :
.1ndged, from the above Lemma, if ollgws that PAﬂXl,..g,Xq)A(z)

=(1+z) "P. (z) and Hy /o

Py (z)=(l~z)nHA(z).

s

Xl’°

This proposition says, in particular, that for a Cohen-Macau-
lay graded algebra A, with dim A=n, the checking of the Fro-
berg property (20) for A comes to the checking of the same
for the artinian graded algebra A/(Xl,...,Xn)A, {Xl,,e,xng
being & maximal regular sedquence, consisting of homogeneous

elements of degree 1.

Now, coming back to our particular situation, we prove the

following result about certain Veronese monoid algebras.

b Propositioq

Let b be o basic linear from in > variables ‘and-let gell>

be ‘an L-degree, such that the pair (L,g) is standard and ' L

has no gaps in Z .

Then the Veronese monoid alagebra R(L,g) is a Froberd ring

(i.e. (20) takes place).

Proof
Using Propesition 23, we selecct o particular system of para-

neters of degree one in R(L,g), namely the one given. by (12},

&3



PRESB ven My RO Bl Bt
Ayreeesay beingi the coefficients of 1:
Factoring-out R(L,g) by this system of parameters (which is

a regular sequence), we obtain an artinian graded algebra:
’ A(L,g):R(L,g)/(pl,n..,pn)R(L,g).

In virtue of Propa24} we only have to check the Froberg pro-

perty for this artiniam risc

Because R(L,g) is standard (in its inner gradation (16)), th

same is true for A(L,g). R(L,g) has quadratic defining rela-

tions (cf. (iii), Prop.23), so the defining relations of

A(L,g) will split into the followingitwe clacves:

(L) menemials relations ‘ofithe kind: ngﬁ’ where g,QEVI(L,g)

and % +?ﬂ% in }Zi , For some jé{l,2,5..,n§ , l

(IT) binomial quadratic relations of the kind: Xg};Z = X5 X°Z

where %,%n?,?‘é Vl(L,g) and '%+7:§'+7' in Zﬂ}, but g-fz

is not'greater than any.of "ﬁl,...,ﬁ% , in the monoidal ord

relation onZ,i°

Let UZ{}E,Q)/g(TeSVl(L,g) and give relations of type I? and

T:3<§/7)/§'nf3V1(L'g) and give relations of type I;}.

Then. /U/T/ is a partitien of v, (L,9)xV, (L,g) and each block

U,T is symmetric about the diagonal of this cartesian produc

Moreover, this partition of the defining relations for A(L,g

satisfies the following preperty:

(%) there is an element (g,yjeU such that TCW(Vl(L,g)x{%?#Q
and TIW(VL(L,g)X{?%)#G.

To see this, we choose, for instance:

L=, 0, 00l 0 050 e s

il A~ A -4/‘,('] ) L) i == i i > i 3 Cem



then we choose g’=(0,125,.=,in), ?’m(O,jz,,..,jD), with

i, 4g/ay jk4g/ak'for k=7 3, ... .0 (such that (5',f)e T and
(%’,7)6T)° Such elements always exist; by our conditions on

154

Now, this presentation of A(L,g) is enough to assure' its
Froberg property, according to a result of Kobayashi (cf.[ﬁ]).

This ends the proof of the Proposition.

The linearity of the (internal) resolution 7ot Rllyar,

asserted by Proposition 25 (under the circumstances that
(L,g) is a standard pair and <L»> has no gaps iniz4) allows one
to explicitly compute ‘the free bases of the components

(52 s )

“p’p21
Using the notations introduced above, we simply indicate the
resuit of such computations (for a monoid algebra R(L,g) which
satisfies the requirements of Proposition 25), in the follo-
Winge i it

() Sl has free basis (Eg)gevl(L,q)f

of degree zero in the inner gradation

consisting: of elements
(2129 S, has free basis{[}fg{lﬁ/g,g’ Vl(L,q)le(L,g)}, where

[g,%{]x is the "perturbated" determinantal linear expression:

T =:><7k(:><§13g,—xgl E)

with A € G, (L,g) and Aeg70 inZﬁ Je 0 in Z? (hence X
: A Aptr
belongs to the fractions field of R {@g) obuk X +Z, X =

actually belong to R(L,qg).

The basis of 5, consistis of all such "perturbed" determinants
which are linearly independent over & in the first degree
component of 8. v
) 83 has free basis consisting of all C - linearly in-

danendent (in the first degree component of S,) "serturbed"



P

determinants of the kind:

Ny

o %
(é,g’,gi} , Where (

F?’,g”)gvl(L,q)xvl(L,q)xvl(L,q)

s >\ RS ) ’7\ 3
P il

for ?],12,X36GO(L,Q) such  that, if X perturbae = v ko aive
: , .

f 1
Uy
G

[

- alx 3
e e B . .0 4 n S
P<5 1 then 11+¢+§zo and Xl¥k+5 50 ingz and so on.

e o ¢ 0 ¢ n @ # & 0 9 0 6 0 00 % e ¢ @ 69 0 8 6 © ® & 0o & H 0 4 @ 2 00 & ¢ @ @ ¢ 6 0 O 6 S B G G K6 V.0 O D W ¢ &

(2 Eom) Sm has free basis consisting of all @ -linearly inde-

pendent (in the first degree component of Smwl) "perturbed"

determinants of the kind:

> ¥ ,7‘4 v * 21 *
[}l,...,gél e [éz,..s,§mj +X {51,53,...,€m] A
‘ 2E

tn

- % =
oo-'*‘}\ lgj_,'muafgn_l_l—! ’

whereﬂkl,a.c,kméGo(L,q) are allowable perturbations of the
Fas

: A o |k 5
determlnants{}l,...,gj,,..,smj , 3=1,2,...,m, respectively.

Remark

Roughly speaking, a "perturbed" determinant{;l,.,;,im S e

is obtained as follows: one takes infinitelv manv copies of

the variables ?/Y_/gevl(L,g)}, namelv%_Ygﬂ)/geVl(L,q),n\z 1}

completing them with Ygg):xg for geavl(L,q).
5

These (infinitely many) new variablesilay inside the poly-

(m)

define:
Yzj J zé(vl [ a), myl’ W_here we defin

nomial ring R(L,g)[Y

where §]y=€ ieni e —IEe s nn s anddégik/i12, le<k sm are so cho-

k
= Xg'l{ Xi e "\
sen, that eachicbtwo-by-two minor deat X‘L X“‘ robe zerno i
: A o 5

& e S
ST e (K 4K



because the first line (gl,...,gm) g not uniquely extendible
(B quadratic cennec tiens ) to o determinant like khe 6ne abo-
ve. We gave it only in order to keep track of the procedure
and the underline its "monoidal" antisymmetric nature.

The differential dm:SmM*%wsm“l acts on such determinants by

31mnly lowering by one the upper index of each variable

YN replacing Y(O)

5.
’ okt i3 wherever it is the case, then
glj )Lj

developping the resulting determinant by the minors of its

Eirst line.

The connection between P, (Zh) and sl “(z)s dniease RO, gl s
L,g L,q :

a Froberg ring, becomes efficient only if HL,q
citely computed (or, at least, conveniently characterized).

For the very simple case of trivial basic forms (i.e. the ‘ones
having all coefficients equal to 1), this was done in Y?] and

[l]. In general, the Cohen-Macaulayness of R(L,g) allows us

to describe HI g(z) ag  dsrational flnetion ©f the type:
-y

0 (z)
(22) e

B TT§:1<1~gdi)

-where d ""’dn are the dearees of the elements in a homoge-

i
neous system of parareters for R(L,g) and QL,g(Z) is avpoly—
nomial with positive integral coefficients (cf.[Z]).
Of course, by (iv) of Proposition 25, we may take dl=...=dn=l
in eases @, g) is & standardipair, or dl:...=dn=dzl 1 £l i

at least standard in some direction for L.

The polynomial QL,g(z} in the numerator of HL,q(Z) is nothing
else than the Hilbert series of the resulting artinian graded
algebra, after dividing-out R(L,g) by the corresbonding homo-
geneous system of parameters.

This is why Q q(z) (hence H (z)) may be exhlicitely compu—.

L,g
+od onlv after carefullvy choosing homogeneous chistems @F Das

(z) may be expli-



R B e

rameters in each particilar case Separatedly (cf.{ll).
Starting from very general ennumerative pkinciples, we cap
ve another expression for H. (7 )

2 L,q
Namely, let al,a?g..;Fan be the coefficients of the form T
which is not necessarily basic, now.
Then, since . (z)= EZ"?W Ve (L a0 zm, directly from ths 5.
g m>1 m - : s

£imnition (7)), g2 , of the inner dradation onm V(L,q), it £51.

{ ]
_ Seiae ma :
#V_(L,g)=the coefficient of z * in the pPOwer serijieog
V(= = di s Q-
=N L~{*:-) 7 1 94 ik Ll )
Z___M; H z : == 2_._,-4-‘—"’ Z .
6 C—: [Z!.. (24) . k;; [} )

However, ‘dteds clearith-t:

a %./, e a/hg” P S it
e e

G » A4y <n

LAY

In order to select here the powers of z,. which are multipieg
of g, we only have to Av@%agﬁ 3boot the cvclic group of orde
g, this last expression. This yields the followinag form of

H :
L,g

Ta e gt -
5’}{2}{) ; .

. —leg-l—n 5
(23) "-HL,g(z)—g Zj=o”k=1(l

where S 18 a primitive fzoot of order g of |

Remarks , , .

(1) Of wouzse, (U3 i not easy to handle even for small wa-
lues of g. However[ (22) and (23) may lead together to valua-
ble numerical conclusions, in some ﬁarticular casess,

(e (250 0 s reminiscent of Molien’s formula for the Hilber+

series of rings of invariants of finite groups actina on PO lx



Molien’'s formula itself, is but a Verveparticular case of
the general ennumeration principle known to combinatorists

under the name of "Mac Mahon's Master Theorem".

54 Coneclusions

Let G bea cyclie group of order g0, indentified to the
grouprer dll g-roots 6f 1 in ﬁk, e, C={5k/k:0,l,,..,q—l§,
§ being a primitive such root.

o a0 e Pt G ito diagonally éct ondi[Xl,.u.,Xﬁ], by
(S,Xg)ky BL(E)XEI for'geZi, szz?glajyﬁ being a iinear form
with positive integral cdefficients knot necessarily bash e
As we have remarked at gl d(Proposition 1), the invariane alage-
hratof ¢ onQ?[Xl,..m,Xn], is a monoid algebra, namely the
Veronese one R(L,qg) (cf. g 4).

We are now going to translate our previous resulté into in-
variant-theoretic terms, using the fbllowihq terminology.

When the fofm L (giving the action of G) has equal coef-
facients, die, al=a2=...:an=pqé%,2,,..,q«l}, we say that

"G homogeneously acts onq:[Xi,...,Xglu.

Remark

e

Would it be true that anf diagonal action of G on Q{?l,...o
...,Xn] is a Segre product of homogeneous ones, then our

Hext vesult (Thm. 1) would be immediately proved by means of
general results of Frobera and Backelin, together With E31.

Although we did not check this, the,above-presented method‘

has some advantages by itself.

The invariant algebrg R(L,q) of an homoceneous action
L=p(Yl+...+Yn) of G ondl&xl,.‘.,xnl, is isomorphic to the
invariant algebra R(L’,g’) of the homogeneous action

L'=Yy+...4Y, of the cyclic group G' of order g/gad(p,q) on



Q[Xl, o ,xr:‘l.

However, such algebraic singularities are known to be Frober
{3}. Therefore, the initial R(L,g) is Froberg, by the re-

mark that any Veronese selection into a graded algebra over

a field, preserves the Froberg propertv (cf.I.Backelin, R.F

berg, Reports of the Univ.Stockbelm, 2(1983) ).

Adding thiﬁ remark to Proposition 27 of § 4, we may formulat

our main result, namely:

Let G- be a oyolie gy oup. of order g>l,; diagonally actifpg on

QL{X,,G..,X S by means of a linear form L=a.Y.+...+a Y , (wit
= 5 1Bk % ek SRl

positive integraJ coetflclggt“)

Let R(L,g) be the invarlant algebra of this action, canonics

ly gqued by L (iu & 4),

Suppe Je‘further that one of the followina hol&s:

(A) the actwon L 1~ 1omocen,oua, of some deq*ee D 6& 2,,.,9.

,ﬁ..,gml}

(B)the pair o(L,g) is starndavd and. (1> has ne (aps
DSl Er Rt S LR Lot e s aln % o dabe s

Then the algebraic singularity R(L,q) is a Frobera ring.

We remark tnat a non-standard pair (L,g) seems not to yield
a Froberg singularity R(L,q), s}nce it has not gquadratic dos
fining relations.

It also seems (as particular cases show) that the condition
cn1<Ib of not having gaps, may be retired form (B) without

changing the conclusion of Theoref 1.
Marehs, 11,1985
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