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The aim of this paper ig to illu=t rate how one
may obtain the rigourous derivation of constitutive res
trictions,as an example for the Navier-Stokes-Fourier

O
fluids, from the entrcpy inequality by using a new approcach

e
1

proposed by Suliciu in 12] . This procedure avoids the
criticisms onenmayido to.the pr methods of Coleman

o
: & r R Py = T SR 5
and Noll [1], Miller gb“llaﬂm ] {&

Introduction
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Coleman and Noll fl, (see also | 2,3]) developed a
general procedure for a systematical derivation of the cons-~

titutive restrictions imposed by entropy inequality.
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ection against theilir method
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The main ﬁupuOmﬂr
is the possibility to define thermodynamic processes by a suil
table choice of body forces and radiation supplies in the
equations of balance (which in general are regarded as assig-

ned in advance).
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Miller in {5~73 and also Liu
ticism constructing analytic thermodynamic processes from
analytic initial data, by using the Cauchy-Kowalewsky theorem
But, in order to apply this theorem they need additionally

tutive assumptions.

Thus, this procedure is not convenient because our

purpose is to derive logical consequences from the entropy ine



guality which, eventually, should serve to prove existence
theorems in mathematics and not viceversa.

Starting from this point of view, recently, Suliciu
[12} has proposed an other approach for the rigourous deriva-
tion of constitutive resteictions from the entrepv ineguali-
ty.

This new vrocedure 1epléces the netion of thermo-
dynaric admissible process with that of thermodynamic admis-
sible kates.

One means by thermodynamic admissible rates (as in
[12]) the time derivatives of thermodynamics fields at the
initial time compatible with the general balance laws, with
the constxtutlve assumptions under considerations and with
the initial conditions of an initial value problem.

We then require that

o

the entropy inequality in the
form proposed by Muller [4m,} with the entropy and the entro-
py flux given by constitutive equations, holds at every state
of the constitutive domain and for all thermodynamic admis-
siblerrates.

In the present paper, we apply this procedure for
the simple case of Navier-Stokes-Fourier fluids and we obtain
familiar restrictions (see for example Miller [11}, Chap. 1,
and Coleman and Mizel {2})¢ What is new here is the modality
to /derive ‘them,

Unlike Muller [5~7, ll}, we do not use the notion

an ideal wall but, instead, we use the following unanimous-
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ly accepted assertions: in thermostatics the Gibbs relation
is valid and the absolute temperature is a positive-valued

monotonically increasing function of 'the emp irical temperatu-

re.

Genaeral balance Oﬁ1ﬂ|JOﬁq and PONh LLuLva

The main objective of ‘the thermadvnamics of f£luids



ig the determination of the five' thermodvnamics fields

density ?(Xk,t%
velocity VLGt )

(empirical) temperature Q(Xk,tL

in.a body.
For this purpose it is:customary to rely on.the

five equations of balance of mass, momentum and eneray,

which in a supply-free body and under sufficient smoothness

assumptions have the forms

21 + Ny B bl =0

51&.

These equations must be supplemented by constitutive

equations which relate the stress ti" the heat flux q., and
J.

‘ T ; : i
the specific internal energy £ to the fields 9, Vi,@ for the

material under consideration.

In the case of viscous, heat-conducting fluids it is

assumed that the constitutive equations depend on

0

and they obey the principle of material objectivity.

we shall consider the special case

In +this paper,

of Navier-Stokes-Fourier fluids whose censtitutive equations

result by linearization of the most general constitutive

. VY

equations of wviscous, heat-conducting. £

form (see {or instance Muller [ll}, Chap.1l, and Coleman and



Mizel L2}
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The constitutive ftunetions tij’ Iy dndigrare ¢

real-valued functions, defined on the constitutive domain

§3=(O,ﬁﬂx(€@) o3 ) x R6x RB, where &,€R is the lower bound
. W

the fixed empirical temperature scale 6.
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Here, since "pEéij% %i¥§’@'0'0)' Pp is called the

2 A
equilibrium pressure, 85:5(¥,8; 0,0) the specific energy in

flor

equilibrium, A the shear viscosgity ; ) 4+ 24 the bulk visco-
. , 3

sity and W the thermal conductivity.

We also assume that

SELS6d. B ) | (4)
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X

for any (f,&mmjéw<)&(0,0®x R6x R3,

Thermodynamic admissible rates

After introducing the constitutive functions (3)

in

the equations of balance (2) we obtain a determinate set of

differential equations for the thermodynamics fields
o~ = g oo - &) L7 > -\ - s -~ Y
$(xp, B Vi (5, 8), O(%,t), (4, ,t)eDxI, where D is an open

5 ; 3 B
and bounded set in R, I=[to,ti), togo.

Every solution of this system of equations is called

usually a thermodynamic admissible process (see for example -

B - ~ - i
{120, <11y
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It is rational to suppose that evéry thermodynamic
admissible process is generated by an. initial and boundary.
value problem.

Let ‘us consider for the system (2.) ‘and (3)"an initia
value problem:

e - o = y e 5
$on e )=87 (), vy (gt )=vD (%), Oxy st ) =6 (x, ) (5)

where fo(xk)>0, vg(xk)GR, @O(Xk)é(ug, 3 for.xkeD.

Follewing Suliciu [12], we glive a precise meaning

\8«

to the term thermodynamic admissible rates for a Navier-Sto-

kes-Fourier fluid; these are defined to be the time derivati-
ves ‘of the density, velocity and (empirical) temperature at
the=initial time (tzto) compatible with the eguations of ba-
lance (2), the constitutive equations (3) and with the ini-
tiagl data (5).

Using the notations
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thermodynamic ad-

missible rates:

iR 0% 002, (7}
S))t = \/g 3,§ 3 \;iig ; J
(8)
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of relation (9) can be calculated by means of (8) and
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Entropy. principle

The engropyprinciple is considered‘as a majer Tes-
triction on the forms of‘constitutive functions which are com-
patible with thermodynamics.

We shall adopt here a modified form of the Mglicr s

_entropy principle (see for example [4~7})a
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We assume that in every body the specific entropy ﬂ'

and the entropy flux @i dare gilven by constitutive relations.

A %

The constitutive functions “fand @i are real functions defi-~-

ned on -a constitutive donmimléa according to the principles
of equipresence and of material objectivity.
: ¥ 3 o e & 71 - P ‘. o
The points of Dewill be.called states.

In our case, for the Navier-Stokes-Fourier fluids

. G
D=(0 oo)x(@e )oo)vaij

and

/‘{ = 4( ( gj) 9) dm&m) 6‘§~t> :/’V(E(glg) +£’/‘- (g'(}) Cgee

A (12)
(]B;f:‘i)i(f) &, Q!/mm.y qu\/ = melfliiB)6;:

(see for example [11], Chap.1l).

The specific production of entropy € in a supply-

free body, and under suitable smoothness assumptions is defi-

ned as
'
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Using the method suggested by .Suliciv in. [12] we

then require that the following postulate ke accomplished.
POSTULATE: The entropy inequality

5> 0 (1

et
i
~—

must hold at e

; rana e ) :
ery state of the constitutive demalin o0 and

for every thermodynamic admissible rates.

The present
of constitutive restrictions from the ghtropy inegualityiis

different for all previous. methods.

procedures - foxr the rigourous . derivation
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nodynamic admissible proecesses and-construct-them by a suita-
ble choice of body forces and radiationh supplies in the equa-
tions of-balance (although in general they are regarded as
agssigned a priori). This ar@umenthﬂﬁ been critisized by Woods
in [10} (ecording to Mulbler [11], Seetion. 5.4:2}.

Muller in [5~7] and ‘also Liu in [8,9] construct ther-
modynamic admissible processes from analytic initial data bﬁt
they need additionally a priori constitutive assumptions (i.e.
theranalyticity 'of “the constitutive functions) in order to
apply the ”auchv Rowalewsky theorem.

In contrast to this, we here consider (as in {12]),
that there is not an a priori reason to suppose that an ini-
tial value problem has ‘solution anmd thierefore, it is more-ra-
tional to replace the notion of thermodynamic admissible pro-
‘cess with that of thermodynamic admissible rates and, even-
tually, use the restrictions of thermodynamics ‘in' order to

prove existence theorems in mathematics and not viceversa.

k01oequence< of the entropy inequality

Let us consider the initial value problem (S) ser
the NavierwatokeSwFourier Eluids

After: introducing the constitutive functions (]_2)l
and (12),, for Y and @;, in the expresgion~ (13) . .of -T; énd
carrying out the indicated differentiations at the initial oy

me t=t_  and in an arbitrary point x, €D, we obtain the folle-

wing explicit form of the entropy inequality
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This inequalitiy must hold at every state P & §>

and for every thermodynamic admissible rates ¢ jgi and
Lt
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The inegualitiy (15) then becomes ofter substitutic

of () (8) angd’ (9
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where the gquantity /A has been introduced according to the

definition: >
>
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i“_/\;"&‘gié};d@nwtlé};k)m 3@ (17)
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and dmn - is given by (11).

By inspection of (16) one may see that ?:(x i
, ket tg
depends only on the values of the following guantities
el [} A (2] (] 4}
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which can be 1ndepﬂﬂqcnt3y and arbitrarily specified.

The postulate (14) is equivalent to the assertion

that "Zl be 2> 0 at every arbitrarily fixed state

p=(§°; 8° e B0 e oD and for all choices of
(m n) 2

0 Qﬂ. &' T i and - Vel s #)

Lk Dador Dicgas e i h ¥ i = et ‘

To derive the Necessary conditions for the validity

ofsthe Postulate, we first observe that (16) can be written,

) gi 4 is the antisymmetric pairt of the velocity aradient
Sl el S



by means of (L1}, in the form

« ; A
14 - ( C /\ v_.,ms\ri,. g¢ Damiky oy

Dt oo ne
e B . 3 : 0 > 40 .
i i 4t 8 J 674 3 Escy Veant ;,{g ’ v;‘:,,g)}:: ) \’zéic,l{)tl,{[g)ﬂ

1f we assign 3@, 6° 6° s

. L eio? g e
J B Ry ) S"' R v(i‘,,g)g,{)
5 ¢ . < _
VQ,,, and e as arbitrarily specified, then T{- :
(Llke e : (XK){:GD
is > 0 only if
A -
e .
RaeE e o e
B’C} bcg = s {19)
LTS 18715

Since the left hand side of the inequality (16) - de=

2 o 59 : : i
pends linearly on 3}5 and f%‘, and since the inequality has

Al :
to hold for any fixed })ﬂi(?e Qa N2 3 C;Qu) and
> St 15 lggy ) IR ,
for~an arbitrary choice of fi,é”“l'éfmi , the following

conditions must hold

> §; 23
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Tt 18 obvious that (17), (19)-(22) is a necessary
and sufficient set of restrictions on constitutive equations
(3) and (12) for the inequality (14) to hold for every thermo-
dynamic admissible process if this exists.

Now, we are able to derive the same coﬂsfitutive
restrictions as those cbtained by Muller [ll], éhap.l; using
the method of Lagrange multipli@rs (see aiso {2]);7

‘ If we introduce the constitutive functions (3)é and

(12)5 in (21) we get

ad

hod
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Assuming that »(§,8)#0 for any (f,6)e(0,00xR

follows . that-

Dol

A=[(5.6) a1 §.-Alea)d; (24)

From (24) and (20) we obtain that géx = 0,

Therefore,

Y

/\ﬁ/\{{/_)) and (EL:/\(@> ju

Since (19) ang (25) implies that ? /45 is indepen-

: d |
dent of qml, and assuming that ffﬁ =) for any @ekR . Ohe

obtains from relation -(17) , written in the form

B
26 vd

-\
that < f s ales independent of d.
: . 5
} : 2 5{“ »
Thus, % and £ gre both functions of § ana € only,

which means that the coéfficients A and h from (3)? and (3.2)l
both wanish.

i

We can therefore summarize conditiong L7 and

(19)~(21) for the Navier-Stokes~Fourier fluid in the form:
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Equilibrium properties and the absolute temperature

Introducing the constitutive relations (3)l and
(26%4‘, in the left hand side of the residual entropy inequa-
Lity §22)r we obtdin ‘the specific entropyproduction “for a
Navier—Stgke5~Fourier fluid |

1 :
r= (%, (3\)(4’&3;@ ):::-wg»« m)f(O Q,-z, -+

(27)

-&-[Zx(ﬁ)@f%a -M?cﬁ (P N®) + lh(%%g/\‘e LX)SLJ&%

We see that ¥ assumes its minimum value, namely
Zero, Lot dij:O and & i;O
2 7
The necessary conditions for this local minimum are

the following

,.,??:‘L. e Sk (28)
. {(3,6,0,0) da;5 |(3,6,0,0)
and
STy

- is positive semi-definite. (29

ARt eVt e e R

2’8’1;_ \c?\i.é

m

(3,6,0,0)

More explicitly, the relations (28) read

Y FEL ) (30)
= M- oon) _

Relations (29),and the previous assumptions that

¥#0 and OA‘%O also imply

e
yt »‘f; <0 M N(0)20 (39 +24)
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From: (170, and (30) we obtain the following integra

bility eondition

; A o) s
s ﬁ{ﬁi 0 _ 28 ; ‘ (32)
A®) d & gt ‘-
3% i

for ‘theitotal differential of the funetion '?“("E
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which we can rewrite in a more familiar form

d, .=0 and
1]

should hold

where T=T(0) is the absolute temperature of thermostatics. At

the same time, we know from thermostatics that the absolute

temperature lSc’% positive - valued, monotonically increasing fun:

tion of the empirical temperatiires0 1. e,

T(0)>0 apa 4T

o for any £&(8,,00), (36)

Therefore, we obtain from (34) and (35) that

/,\FA(E*) is the reciprocal of the absolute temperature

A (6)= — .ff;wm,‘. (37)



and from here it results that A=A(8) 1s a universal function
of ©, di.e. it is the same funetien for all Navier-Stokes-—
Fourier fluids for a fixed empirical temperature scale.

Using relations (31} and (36) we obtain the follo-

wing familiar restrictions for a Navier-Stokes-=Fourier fluid
. £] 2- S 5
Y >0, A0 SVl (38)

Alco the relations (25) and (37) imply

q%’:wmﬁg;h _ {39

which means that the entropy flux is the heat flux divided
by the absolute temperature and thus the entropy principle
implies the Clausius ~Duhem inequality in a supply - free

body .

Remark : Unlike Miller in [5, ll}‘we do not wuse the
notion of an ideal wall to derive the universal character of
function A=A(8).

We also do not need tc apply the integrability
condition (32) for the ideal gas (as Mﬁller dizd in {53,
p.15, and[11] , Section 1.3.2}4,althoggh}“3.has excluded it

by supposing that »#0 to derive (32)) in order to obtain that

/(&) is the reciprocal of the absolute temperature.
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