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The classical theory of distributéd control systems is
mostly concerned %ith linear models in which control appears in
linear fashion either in the inhomogeneous term of the equation
or in the boundery data (see [7], [13], [17]). More recently
work has begun on nonjlncar control systems described by varis-
tional Jneoualltles motlvated by free boundary problems models
in fluid dynamics, heat conduction, diffusion procesgsgses and
linear elasticity (see [8], [9], [11] for basic results and
applioations of general theory of variational inequalities). In
£14}, F.llignot obtains a quite complete set of necegsary
conditions for optimality in quadratic control problems governed
by the "obstacle problem" and "Signorini problemf As a matter of
fact, the theory developed in [ 14] can be put in a more general
context and in particular in the case of control problems '
governed by parabolic variational inéqualities L15]. The works
of Ch.Saguez surveyed in [ 16] are on these lines with main
emphasis on approximation results for optimal control of free
boundary systems of parabolic type. (In this context we must als
mention the pioneering work of Yvon [19]°) A general theory of
necessary conditions for optimal control problems governed by

variational inequalities can be found in the author's book [5}.



Here we briefly survey some of these resulfs and use or adapt
them in order to get explicit description of the optimal
controls for some nonlinear models recently congidered in

1iterature (L6}, L[10], EIQEs f18§@)

1. OPTIMAL CONTROL OF THE OBSTACLE PROBLEM
Throug&out thig_gecfion szw ig a bounded and open subget
of RN having a sufficiently smooth boundary E o Let. A  be the
gsecond order ellyptic differential operator
: n
G1e1) Ay = - 2&;, (aij(x)yy )X 4 ao(x)y
i,9=1 S
where a GCI(;—Z) a 'Lw("l.) a = & £ ‘all iy &
; 13 ‘ L)y B €L \La), 5 g oxr Lsds O%»O
in () and for some > o

i,d=1

2= et} L M;gi bibe o5 mean

Pinally, let a:H'(Q)XH'(Q) —>R- be the Dirichlet form

asgociated with AO,

: n
.2 aly,a) = j%;;llg(aij(x)yxizxjmc(x)yz)dx . y,z@Hlm)a
(Here and throughout in sequel, Hk(il) and H%(ﬁl) are usual
Sobolev gpaces on_().) :

Let U be a real Hilbert space and let B be a linear
continuous operator from U to 12((L). For a fixed £& L2(LL)

and some input u€ U consider the obstacle problem assoclated

with operator (1.1)



L ) —
(Aowauwf)(y”§’) =.0.rliasesiing o

(1.3)  Agy-Bu-f3o0, y 2  ace.in (L

¥y =0 in 5"“

where ”%’@ H2(£2) ig a given function such that “%’é% o in
Under our assumptions, the free boundary problem (1.3) has e
unique sclution yé& H%(ﬂ“) N HEQ). .

More precisely, 'y is the solution to variational inequality

(Le4) alysy~z)4 (y-z,f+Bu) s zE€ K

where K = é"yég{%(ﬁ_);y%ﬁﬁi 8.ee in __(?;} and (eys) is the usual
| scalar product in Lgtil)e

| We asgociate with state system (le3) the following
optimal control problem

(1:5) g(y) + nlw)

on a1l y€ HE(Q)XH?(Q) and ue U gatisfying Bqs.(1.3).
Here g:Lg(il)-wme R is locally Lipschitz, h:Le(jL) —DR

= 1-00,+ o] is convei} lower gemicontinuous and
(1.6) g(yM)+h(u) —3 + oo for iiuﬁhj —

where y% is the solution 10 Eqe(1.3)((1.4)).

Then by standard arguments we infer that problem (Ll.5)
admits at 1east‘one optimal pair (y*,u¥) (see for instence [5]
pe62). As regards the characterization of optimal arcs (the

maximum principle) we have the following result ([5], p.82).

THEOREM 1. Let (yy,ué) be an arbitrary optimal pair in

control problem (1.5). Then there is pé%H%(iQJ with
Ap é(Lw(..5;‘13?.,))1%E and }’éLZ(,Q) guch that gg'ag(y’“‘) and




(1.7) (A p) -+ }’

it

o asc. in gx;yw(x)}\f’(x)j»
(1.8) p(Ay" =Bu"=f) =0 ace. in _(U-

tie) B pc Ont"y

If 1&n43 then Bqge(le7) can be gtrengthen to

Rt

28

(1@10) (ﬁiof)‘i'jga )(y%“"&iij) = Q0 8e.ce 1in ."Q @

We have denoted by (Agp)a the absolutely continuous part of the
meagure A0p€§(ﬁﬁﬂf&))% and by (Aop+§ )(y@“%,) the product of the
measure»AQp+§'. with the function y@~‘%! which belongs to CLEZ)
if 1£n& 3. By "'B?g we have denoted the Clarke generalized
gradient of g and by qgh.the subdifferential of h.
Theorem 1 hag been proved along with other related
‘results in {51 (p.84) (see also [ 2)) via an approximating process.
In few words the idea is to approximate problem (1l.5) by
the following one:

Minimize

£ 1 vy ©
(1@1) g“(y) + h(u) + s Hu-u e%U

on all (y,u) subject to

e
(1.12) Ay + \}%(yﬁif) e By dn o
Y = 0 in r ¢

\ : 7€ '
Here & > o, ga' and Jﬁ are smooth approximationg of g and é% o
- E: o ; ), "'1 -,
In particular \? can be chosen as a mollifier of‘j%(as =~ 8 =¥
le€e,
é =1 . Aty Bk
(1.13) \j‘ﬁ(‘?@):—ﬁ (Ce=€ 0 =& @*)\f’(@)d@-

Let (%3,u&) be any approximating pair in problem (1.11). Then

there is p,€ }“};f(u{t)ﬂ HE( (L) ook that
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""& WY P4BU . s ﬁ :
hove *+ P (3 =)= toBug - im AL
G 8 o ,

# O :
B p, &dh(uy )tug ~u®
& <

I"b turns out that for € »—~—~,§>o,
U == u®  strongly in U
Ve 2 v* weakly in H2((L) and
strongly in H%(g&)
Jgé(yﬁ ~§f) s f%Bu&'ony”' weakly in LZ(JQJ
and on a subsequence (again denoted &€ )
Py = weakly in Hé(jl)
Vga(yi) R i?@%g(y“”) weakly in Lz(.;(D

€ - : : :
%Edﬁ Q% -—fﬂ — P (f+Bu“~AOy@)zq gtrongly in Ll(gzj

\?E(yém%y)Q% -ﬁ§¢ﬁ& weak star in (Ifﬁ(,ng))sg

(yﬁ ““’f’/)iﬁ&(% --"‘é") —30 gtrongly in Ll(,,(?.) :

All these relations taken together imply (1.7) ~ (1.10) asg

claimed.

At first glance Eqse(1¢7)er (1.10) seem too intricate to
provide a precigse description of optimal controllers. However,
we will see below that they contain sufficient information for
the explicit solution of some typical problems (admittedly of
limited generality).

The Control of elagtic string . Consider the following problem
([181): Maximize

i

(1014) f y(}f)dx
o}

on all yé}Hg(ogl), ué& U subject to




il

(1.15) Ype * 0 & 05 T2 0, (yxx«z—u)y o aee. dn Coagl)

vlo) = y(l) = 1

where

3

i
(1e16) U uéué LC0,1) 5=l £ul(x)4 o, .§ nix)dx = ;-wa}?(N Sy

Physically, (1l.15) represent in the plane oXy the equations of
an elastic string clamped at the points (0,1), (L.1) and
pressured by a vertical. farce g:g;U and limited from below by &
rigid obstacle y=o0. This is & problem of the form (1.5) where

1
g(y) = = Jyxdax | yelF(0,1)
9]

l o= 5 :
'( ) P
) u <

. o otherwise,
“% = =1 and F= o.
As noted above, this problem admits at least ond solution.

We note that @h(u) ig the normal cane at U in u and it is the

- set of all }fé:{,z(ogl) such that » ,
(1e17) E(X) =X idn {x;«ﬁ £ u(x)e o}, }'(x) PN

in {x;u(x):mN},. }(X)%&A in {x;u(x) = 03'
where }\ is some :ceal.numliere '

Thus according %to Theorem 1 if u”™ is an optimal control

in problem (l.15) then 4 A E€R such that

=i A0 plx)l X
(1.18) v (x) =

0 1 8lx) > N

where pé& H%(O,l) gsatisfies the equations



- T e

(1Y) +1 =o0 in {xé‘; (0,1) 377 (x)> o%

pXX

(1s20) plx) =0 BeCe :i,n”.gxﬁ(O,l);y;X(x).%u&g(x) ,4,0;%‘

Since every solution y to problem (1.15) is concave and
continuously differentiable (actually yéHg(ﬂO,l)) ﬁebdnclude
that the coincidence set gx e [0,1) ;v%(x) = 05 igs an interval [a,]
ofatbsll (if not empty). Then by (1.19) we see that p is in

H® on (0,a) and (b,1), respectively. Moreover, one has

= 1‘» “peee dn Co,a) U (5,7)

io@o,

(lecl) plx) -

i

H
+
Q

os]

X
Fb
o
=
<
»
¥4
o
o

(1.22) plx)

it

X o T -
F + X » (,2 + - Fon b;:;.xsg_.l

where C'].’ C, are gsome constanis. :
We will prove first that Ea,b} # 9 and adb. Indeed if [a;b]= £
then it follows by (1.19), (1.20) that

X2 X
B S

flox 6 fixd ]

end so by (1.18) it would follow that either u*(x) = o for all
xe[0,1] or u¥(x) = =N for all x €[0,1] or u¥(x) = ~y§x(x) = 0
for x€ E%g ,,1-—?]@ Since N> M and y* is continuously differentiabl

on [0,1)all these situations are impossible. If a = b then clear]

i ¥
g = 5 and yx(a) = 0o Since u¥ takes the values -N and o onily

it Pollows freom (1.21), €1¢22) that

* )

Ve -N for =x Gfafé satf]

i

yr(x) =0  for x€lo,a-&) U Care ,1].



Hence yﬁ(x) = - g(xna)g for Ix-a}l4 & eand yg(z) = Cyx+1l for
x € [o,a~8) o Since y%(o) = 1 we arrived at a contradiction.
Hence o£ad hd Lo |

Now we return back to Eq.(l.18) to show fhat AD O
Agsume first that AL o and argue from this to a contradiction.
If p(a)p A then it follows by (1.18) that u* = 0 in [o,a)
‘and therefore y"sf)(x) =@ﬂix+ﬁ for x €[o,a] which surely
contradicts the fact that yﬁéiﬁz(ogl). e p(a)é%,k then again
by (1.18) and continuity of p we see that L
sufficiently small interval [a~¢&,a+€] and by (1..20)
pﬁﬁ = 0 in [a,a+€] . Hence p = o in [a,a+&€] contrary to our
pogumptions. Hence A2 0.

By a similar argument it follows that alsoAthe case A = o is
imposgible. : |

Now we shall prove that p(a) = o, p(b) = 0.

Indeed if pla)> A .then by (1.18) we see?that B =6 ine
neighborhood of a  which clearly contradicts the’faot thats »
e 72(0,1) and yY =9 tmke k), If p(a)éfAAAthen by continuity
of p)u& - <N on some interval [ea,a+&J and so by (1.20) ﬁ = 0
on [a,a+&J which leads to a contradiction if p(a) # o
Pinally, if p(a) = A then this means that p(x)> A and so
u? = 0 en some left interval of a which as seen above contradicts
the fact that y¥ is in H*(0,1). Thus we must have p(a) = o and
by an identical argument it follows fhat p(b) = 0. .

To summarize, we have ghown so far that X2 o and the
functions p in (1.21), (1.22) have the following precise form

(see Tigel below)

i

£ X :
(1.23) pix) = =" (x=a) for o&xéa ; Px)=o,a sx<¢b

(1L.24) alz)

I

w b b
- o= (D+l)X = = for b&xLl
2 2 2



am\\\ :
)Y ;’%”m“‘ '"'“"\-“\" e ““/:—x\’f

ety

9 q, a, o bbb B

x V

Rg. i

Denote 'b;y'-a,1 :é: By = a,-v-éf;\, by = b+"%z, bé = 1= ”?_ the solution

&

of the equation p(x) = X « Then by (1.18) we see that u~ is a

bang-bang control having the following form

N e Txe (Og::f)u (e—z—-ar, b»z-‘tz )U (".l.ﬂz,l)
Gaes) wt(x) = e
Oe 5 BB 0, as0 ikt 1-7)

Since y¥€ H2(0,1) it is obvious that 0la b a 4 alblb b, 41,
Now by (1l.15) and (1l.25) we have

2 : :
e € [
y (x) = S Aqx ' for x€ [:a,a.ln_'}
Clx + D1 - .Porsxe Eal,azj
1 B for eg:» ]
~§~ + Azx + B, oY % 8,58
0 ‘ for x&fa,bj

:  Ayx + By for x€ Eb,blj -



Gigw D for x€ Ebl,bgj

2 2
Wz’ A% + B for x€[b,,1)
o ety - g =

Lt : i T # >
If impose the conditions that y and yi' are contilinuous in

: = "
a‘l% 3.23 S b;, bl, bz andg :Yg?({)) = (1) =it -

A
(L.26) } nax = »N(Zéf;2§§+b~a) = =]
. ;

o

we find after some elementary calculation that Néé~; 1 and
I@E(lmb) = 1. Now using Eds.(la23)$ (Le.24) along with the
obvious relation p(ém) = p(lsz) we find that Jmm z and
therefore b = 1l=-a.

Finally, using Bq.(1.26) we gee that
. 1 .
G 7 - d = (e ((un)2e32m Y2y ey 7L
1
(1.28) & = 1-b = (M-N+((M-8)Z+32m) "2y /8.

We have therefore proved that the unique optimal control of

R

< o » “‘:5& o
problem (1.24) is the function w® defined by (1.25) where

{
&y bhia, ? gare oiven by (l27), (2.28),

{4t the sdme conclusion arrived Yaniro 18] by a different
approach.)
One might expect to have a similar description of optimal

control in two dimensions at least for some particular domains (2 .

2., OPTIMAL CONTROL OF SOME MOVING BOUNDARY PROBLENS

Congider the following problem: Minimize
i

(2.1) f glt,ylt))at+h(u)+ ‘f*’(y(m))
O Q
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e 12 (Q) and uﬁiﬁ <§§1) gubject to

g kA s iz;.z, é(}iﬁ)& Q;y(xg‘t);‘id%

U6

Yy + Ay £, ypo in Q= LLX(o0,T)
(2ea) .
yizs0) =y (x)y,  z€ 0O

L2 ) ol +Av = Bu for 1&€Lo0,T}; v(o) =

Here (1 is a bounded, open subset of R® with a sufficiently
smooth boundary k- 5"15}5 l ﬂg =0, Zi n‘émi)((oy'.‘x?),
io= 1500 A, is a gymmetric elliptic operator of the form (1.1),
A ig a linear continupué operator from Lg(zl) to itself,

B 1g a linear continuous ope.“ca‘ﬁox* from a Hilbert space of

controllerg U to Lg(g.l), A >0 and

(o) .f'oé”.%‘:a’lf’?'(fo,ﬁfl?j;LE(VQD}.

T _ i : 23 @7 : .~ .
(2.5) y €H(LL); Yo = 0 in | 25 + ol y, =0 in rl_.

AS regard functions g: Eo TJ }’{32(.52_) —> R, ‘jDO:LZ(,ﬂ.) w— R,
hy U e3> R we will assume that

(i) h is convex, lower semicontinuous and

2
(2.6) h(u).%,?iﬁﬂ uﬁU + C ¥ ueu

for gome BA}O end C: €R.

)
(11) g is measurable in t, g(t,0)€ L (0,T) and there existg

¢ €R such that



(3.0) 20h %%?O(y)é? C (ﬁyééﬁ
L ()

For every tp o there exigte Ly;ga such that

1) M ye 2.

sCt,3)-g(t,20 + 1 (- Y e 1, lly-z
. - e e

forall té?i@,ﬁ}and éiyﬁ 5 +§§zﬁ E

L L (@

i

e

Under assumptions (2.4), (2.5) the boundary value problem
(2e2)s (? 3) has for every u&U a unique solution yé;Ul 2(Lo T s7)
) wh ™ (Fo,7358) . (see [5], p.157),
He: sl aa 1((2“ . = o ga [ AR 2( ) - 7‘19p F 1«"{) I
ere V = qy€H (R)sy =odn 1,), H=1°(Q) and W {lo,T)iX) =
=3 1} - grye
= {yé;Li(ogm* ar ¢ (o Tgu)je Moreover, y = lim 1y, strongly
(~ . N
in 0Cho,) 7} sH) and weakly in yho (L,1J:;1) N w %(EO,TJ§V) where

ig the golution to approximating equation
y&; gl &) %

£
Yt oY +fly) = in Q =LA (0,T)

{2.8) 5les0) = y (x)

it

{‘By ; . S 5
f@wﬁ""}'cﬁ-y v I (Zl;nyll’l 2..2

(2&9) gﬁym" + AV
; dt

]

Bu in [o,T]; v(o) =

2E
where Jﬁ is defined by (1l.13).

The following estimate holds:

(2.10) | . §f c(1+ i

02 4 /
¥ (Coyadsmi) Wl@2(€o,‘zj;v) U)

By standard device it follows that optimal control problem (2.1),
admits at least one optimal control e regards the

characterization of optimal controllers we have the following

result ([5), p.239.)



THEOREM 2 Tet (y%,uy) ‘be an optimal palr in problem

=) v
(2el)e~ (2,3). Then there exisis péﬁLg(o,’i‘;V)ﬁL (OgT;LZ('ﬁ))ﬂ
BV (Lo, T} (VAR ()", 8> n/2 guch that pthopé(Lw(Q))N angd

(2411) ('th“ﬂA&:)%]L € dolt,y") Beee in {lx,01)€E Q;yy(}:,‘c),} of}‘

(g e o °
(Zeta ) pll) vi-@jﬁ@(y"y(f‘ﬂ))ﬁ%*o in 2.
w"_’) e -
(il BT x*‘fﬁ D =0 n Eonise b = in 2 5 -

»

(2ald) v =0 asee 1n {(x,"c)@ Qy° (x,%) = o, fo(?;,“c) ‘ o?g

L
5,15) B:,? ef\(” )

p(s)as ¢ dn(u)

- :
(f‘ﬁ ig the adjoint of [‘3 .

If n =1 then y'€C(q) and Eq.(2.11) becomes

P

(2.1 )t pthOpn}é@g(’cgy""’) in é(xgt)éf*Q;yﬂ(xs‘t))o}

where ¥ € 1°(Q).

Here BV([o0,T];(VART(LD) ') is the space of functions
with bounded variation from L[o,T] to (VAHE(2))' and
(pt~AOp)a is the absolutely continuous part of the measure
py=A_p (p; is the distributional derivative of p:[0,1] —» LZ(Q)
?)“fo, rg}g are the generalized gradient of 3?0 and y —»g(t,y).

Proof. Since the proof is essentially the sqme ag that
of Theorem 6.3 in ES} it will be gketched only. Also for the
sake of gimplicity we will asgume that g and e‘fo are
differentiable on LZ(LL).

For every & » o congider the approximating control

problem: Minimize
T
5 L uetll
(2.16) I (g(t,y(t)at+n(w)+ = Ju=wll_ + Y (y(2))



ST

on a1l (y,wie ™ (Lo, m)5m) Nwh2([o,1]; V))}(L (Z)
gubject o Baea(2.8), (2.9).
Let (yﬂgm ) be a solution to problem (2.15)« By estimate (2.10)

and QS&meLLOﬂu (i), (ii) we sce that for E-—»o0

u@~www%>1zw gtrongly in U
L= e

(2ell) vy, — y¥ setrongly in o( [o,T3;H)
weakly in wlﬁ (x 34J,u)s ad (Eg TJ V)

= strongly in w2 ([o,1] ;12T ))

where
dve :

(2.18) ;§w + 1 Ve = Bug BeCo in [o?T}; v&(o)
¢ .

On the other hand, we have

it : .
(2+19) g(gyg(t,y&(‘f;)),z(‘t))dt»&h’(u&,w)-k fiué-u#sw}e}% o ¥ we U

where h' is the directional derivative of h, (.,.) and <.,
are the scalar products in Lz(fz)"and U, respectively, whilst z

is the solution to

e .
w2+ By )z = i
Zyta 2+ P lyg )z = 0 an:g

z(x,0) = o in fL

Dz o .
T A 221, Giso wzz;

d
w3¥ + f\ v Bw sl Eo,Tj, v(8) = 0.

Tet %ié Wlsg(ﬂogT};Lg(jl)) fXIF(O,T;V) be the solution to

boundary value problem
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7 - ) 7 “\:3 o
{20 pg(x,m)+ v g;(y&(T))(x) =0 R

O o 2. Z
eI, ot P, = O in - o g | = r
oY Pe S e e

After some calculation involving (2.19) and (2.20) we see that

» “of & g gl ﬁ;t “/g\(tws) :
(h‘{u¢§w)+ Lo gD = Ain (Gl | e (Bw)(g)ds)dd dt 20
*f we U |
Thig yields
&
-\ (5-t)

ool ) Bg(g e

t n (9)ds)su, -u” € Dnlug).

Next we multiply Eq.(2.20) by pE and sgn De and integrate on Q.
We obtain the estimate

5 T >
it o, COR + S o (ol
% By s f T okl

B

2 &
db+ glﬁ (v )p, | axass c.

Hence %(pa)t § ig bounded in Ll(o,T;Ll(ﬁD)+L2(o,T;V')CZLl(o,T;
(E°(Q)/1V) ') for s>Nn/2 (by the Sobolev's imbedding theorem).
Thus on a subsequence, we have
pﬁ —~—» p weakly in L2<O,T;V) and weak
: )

star in L (o0;T;T°({L))
and by the Helly theorem

pa(t)' —> p(t) strongly in (H¥( @) NV)' ¥ te€o,7].

Now gince the injection of V into Lz(jl) is compact, for every
A > o we have

[l p, (+)-pCt)IL < Al (12-p(0l] Tl g (tr-pColl

LZ(S,:«) L% m A w;/



Hence

p, —> p strongly in L%(g)

pé(t) 3 p(t) weakly in L2(@2) ¥ t€[o,7]

and on a generalized sequence
S E ' : oa %
f2 e e & h £) HB g ey

(2+22) F (yE)Q& #»f&- weak star in (L (Q)) ,

£} i3 L3 S s > (e e, o 3 v r w‘ 1
Pinally, a¥guing as in the proof of Theorem 5.2 1n |5 Jwe gee

 that (on a subsequence.)
(2.23) p&!?%yé) «mﬁ§p(f6~y§f~ Aoy#) strongly in Ll(Q)
(2.24) p, B3 ) —>o0 strongly in L1(Q).

Combining the above relations we conclude that p satisfies
Bqee(2.11)~ (2.15).
If i = 1 then it follows by (2.,17) that

y, —> y¥ in  ¢(Q)

L

and by (2.22), (2.24) we infer that
p&y&= (B = #%p =3I =0 dnQ

where } = 1im '§ig(i,y&) (in LE(Q)) and f*ng gtands for
o Y = ;
the product of ?k with y .

The controlled one-phase Stefan problem congider the model

%

of the metting of a body of ice (. Cr° maintained at 0°C in
contact with a region of water. The boundary i of (L is

e o
compoged of two disjoint parts i " and fMZ.'The boundary ! 1 is
in contact with a heating medium with temperature @]_whiéz the
temperature on boundary iqg is zero. '

Let T>o0 and © (x,t) be the water temperature at point x € (2

and time t. Initially the water occupiles the domain _(20 & §2



= 0 =

and is at temperature fz (see Fig.2 below)
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e
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/ > : g :
Teh {(X) ig the equation of water-ice interface then
temperatiire distribution @ satisfies the clagsical Stefan

problen :
Q‘t A0 in é(x,ﬁ)ﬁ@; é(x)«ii‘:‘ii’%.  d
g =o aa é(xst)é‘: i g(x)e;}t%

=
,)!,z 7

(2,25) VX@~ Lx) = =¥ in'%(xst)éQ; t = ép(x); A

%%S—:—@i(@“}g) = 0 in 'Z_l’ G0 22

@(}:,o) m@o(x) for xéﬂog @(:}i,oj =0 L x & .,_Q\j’;,o.

0f course (2, m%xéﬂ, : {: ()L oj?. |

Using a well-known device (see for ingtance ﬂSj, f:9j, Ell}) ve
may reduce the free boundary problem (2.25) %o a parabolic
variational .inequality of the form (2.2). lMore precisely, the

function y defined by /\L(’@ AW



‘ &
(2.26) yix,t) = § Ox,2 W8 6 8 , aen
0

'3 . ¥ q
N e 4 4 : /
where A (x,t) = 1 if -{(::-:)é.;"’c; plx,t) = o if «{(;&:)} iy

ig the soliution 4o

(22T 7 A e fo in %y‘;} oé
Y0, YA;J.""&}’%}fO £n 0

e : o =
3

£ s 5 2 z d 5}
— ek (yy) s 0din Sy g oEo dn e,
oV ?, 1

glel 00 5 = €
a7

vhere v({,t) = f?@(§,é e ;- (0,0c 2:1 and
‘ 0

i

fa - : , : “
£ =7 Pory w & ¢ - for (
(2ige) £ -0 (a) forxCll gf L= P for x € LUNJL .

o j 0 2] : ?
Obviously 14 (x,%t)€ Q; ﬂ(x)}*ﬁé = 1(x,$) € Q; y(x,t)> 0}

Consider the following problem: Maximize

2 g—@ (x,%)dxdt
Q .

4{@@@ end u€ U satisfying Eqs.(2.25) where

(230 Q00343 = g Fruce) VOEL, velo,n]

» iy
(2é3l) U, = )\Lué‘? I;Z(O,T);o.ﬁ’:u(t):{-: N, ,gu(“t)dt = Mf
o

Here go@ T Fl) is & given nonnegative function on rl and
M, N are positive congtants such that T, M/N.

In terms of y defined by transformation (2.26) problem (2.29)

becomeg

(2.32) Ma:»:% 53/‘(3:,1’)(13:: uéUDB
(L

where the maximum is taken on all y satisfying Eqe.(2.27), (2.28),

P o
(2430 .



G

We will apply ’Fhoorom 2 where A- Oy Bu = g ols U.= T; (o,
2= 0, ‘j; (v) = p y(x)dx and \

& L e A Y
% o if uég UQ

(2433) hin) =4

g; RRe con! otherwige.

e Wooawe
Hence every optimal control u i1g given by

0 :
G u@(t)z(%h)wl(rjgo(f}”) g p(0 ,8)ds) a.e. t€fo0,7]
: " _

~ r) - *
where p{:L“(o,T;fIl(,.@)) satisfies the following systems

(py+ p)axo in {(X,t);yﬁCx,t)}'o?}

gl =1 s we b
(2.35)

‘:‘a ey
-.:v.+fi.pzo = é_-l,p::oin 2-,)_
3 <

P - # ?
Pomagaidn {(x,t)s: Qyy (xpl) = of»

Let us obgerve that p2o a.e. in Q. This can be seen recalling
; 2 : :

that p = 1lim p, (strongly in L°(Q)) where P, 1s the solution .

to system (2.22) (g = o, V“jgo = =1). By the maximum principle,

p& 20 in Q and so p 2o as claimed,

P
M :
We set '"‘“‘5*’ (E)is 5 ds ,‘g go(ﬁ")p(@',s)d@'_. Then Eq.(2.34) is

equivalent to the following

Iy T
j ux(ﬁ)‘“‘;‘l(t)dt,}}& j.u(‘t)”%"(t)d‘c v u€U,
0 0
iuen,
T 7

Wf

(2.36) Sa* )y m-Yonare Jum)pm-ynas ¥ ueu
0 : 9]



Inagmuch ag the functiion % mmw} j(m)“gf(t ig nonnegative and

monotone increasing we infer by (2.30)(see Lemme 1 below) that

/

(1
Gt it f

where ii = /M.

We have therefore proved

COROLLARY 1 The optimal control problem (2.32) hag &

unigue golution at ziven by (EeT0 ),

e

REMARK 1 Problem (2.29) has been gtudled in a special

case by E.N.Barron L6] (see also EW?}).
LENIIA 1 L@ Eb m) —~—> R be a nonnegative and

G e S WO L o ha
monotone increasing function and let U” = {qué L Lo

< T PV A o o
oLk Lult)e iﬁ s §uli)dt = 4 where ol T ;‘réﬁéf’fﬂ
AW O 4

L
Then the function u —» § u($)Y (¥)at gttaing its moximum
5 :
on U° in a unique point u¥® pgiven by

o for t€fo,t;]
g e t€(ty,7]

where t, = (2@-0)(p -4,

(2.38) u'(t)

The proof is elementery. However, we outline it for

resdear's convenience. Indeed it is readily seen that

i it :
Jugnar & § ufe) Poar Y e
0 Q

. ; ‘ y
To prove that u  is unique we assume thal there is some u €U°

gsuch that




o 2l -

‘51 i
(u(t) =) ()at § (u(t)-B)IP(t)dt = o.”
5§ u(t \f | & - 0 ﬁ ‘f ‘

Then by the mean theorem we have for some E’.’L @g_ogtl} s ”E?E ,;E:‘zl,’}

i :
V() ) (‘Ll(‘i‘;)“"ﬁﬁx)d'k'l“f(«éﬁ,) 5 (u(t)“'\j@)d% = 0
B i,
iu@os :
bz o o ('%)«‘f(“%))} (u(t)-k )at = o,
. e

iy f‘ is nonidentically constent then we may take gl and "“&2'%2
such that ‘f( '@])é“;@ ( ’g?), Then by (2.39) we see that
ult) =vel for ’Gé{os‘tlﬁ ag claimed.

3. A BILINEAR OPTIMA L- CONTROL PROBLEM

We will study here the following model problem: Minimize

St A o S

i

1 1t ;
£ el f f go(y(xst))d}:dt + j'}i"’()(y(xs‘f})dx
o 0 :

on all uég UO and y€ L‘a(Q} gubject to

Shpee y}x + uy +ﬁ(y)5} £ in Q = (0,1)X (0,T)
3“92) Yy X,O) = yO(X) 5 Xé’ (0,1)

yx(o,’c) =gy ol a0l t € Lo,T].
=

Here U =91 monoktone il’lCI’G&Siﬂf." OJ’“‘i"l(X)é N j 11(.&)(33{ =0
: O L
O

and \)g ig a maximal monotone graph in RX R such that
2 | = o |
(3.3) e ig concave and \Jgé(r)r L0tr) ¥ ven

where ﬁg(rj = Eml(r~(1+éf)~1r) ¥ reRr; €>o0



T < - Vidie
(3:8) 8y W € R, 2P0, Y20

for x€lo,1) Bad kb =0,0,

o) : :
(3:5) £ ¢ EL (), 3 el (o,1), 5 (1)

(346) £f,f.20 a.e. in Q, y (x)2 09'Y<Y)2 6 mee.s XG0,

%

In linesat cade, 1.8, tﬁ:@ o & problem of this type wag solved

by A.Priedman [10}. Problem (3 .2) serves ag model for the
controlled cooling of an inhomogeneoug rod of length by
diggipation effect in the presence of a thermostat control

procegse In thig case the control u is the heatl transfer

coefficient and  is a multivelued graph of the form
Sad 3
0 if adr Lo
(1l Pl e K. if waa
\,
¢

s
o

‘gﬁ YL,

: “ - 3 Ve
In the case of a black body radiation of the rod , Jﬁ(f)

] 4 . : 2
=l (rt - Ty ) while in the presence of natural heat convection

g/ 4 ‘3 3 s s

d,,;(._) - gh v for 20, 4 {r) = o Ffor r£&o. Note thet In all
these situation, hypothesis (3.3) holds.

By standard existence theory (see for instance [1], chap.4)
we know that under assumptions (3.5), problem (3.2) hag for

every uﬁilf(o,l) a unique solution y{iWE’Z(EO,TJ;Lg(o,l))fﬁLz(o,T
Hz(o,l))cziz(fb,ﬂ};H“(O;l))é}ﬂ(a)e YMoreover, the map 0 =——> y

S ? Pt e
is bounded from I (0,1) to Wlﬁ*(EO,T}; L% (0,1) )52 (0, T;H%(0,1))
o
and therefore compact from L (o,1) to LZ(Q)u Then by a standard

argument we infer that problem (3.1) has at least one solution.

s . 3 ; a4 i
THEOREM 3 There exislte a unique solution u~ to optimal

problem (3.1) given by



Proof. Let u® be any optimal control of problem (3.1).

Congider the approximating control problem
3 o“r 4 E v 84 -3
(3.9) inf] 7 g (y)dxdt+ j ?‘ (y(z,T))dx + = ,? u x)-u’ (2] Tdgue
5 2 e 2
G . o ;
where y ig the solution to

T ‘*j\gﬁ‘(y)ﬂzy = £ in Q

g

(310) ywlax,0)en O

GEN, ‘té[oyfl

i

YX<Ost) = Oy y<1st)

!vg;‘ ° : £ «
Here k}% i8 a mos“m app’ro ufzqm.on of ge.» Por in stance we

: & :
may define }@ a8 a mollifier of \J@& ) LeBay

% 2
¢t ‘Eﬁa(z‘) = g,\}@‘h(r-« égfﬁ )f(@)d@ ). FER
) :

where ,‘Eé C?{R), 55}&@ =] e supi;ort ff:; L ;13 We se
7

that (?3) > o f\j@a)‘;} o and by (3.3) we may assume ngt
=& v o ey :
(3e12) f«‘(r)r & C(x™) Y -zen.
For every &€ D o problem (3.9) has at least one solution Ug e
- Letting & tend to zero in the obvious inequality

Bt 1 7 i
o[ og 8o (ygldxdt + OJ @O(y&)dz& : Qj < uw"1® ax

i

T # 1
Oj Of go(yé )dxdt+ .g '\éf’o(u‘%)dx

g :
where Te 1s the soluiion to Bq.(3.10) where 1 = u" we seo that



u, ——> u strongly in Lg(@,l)

(2ai2)

Ye 7y Eiroigly in‘C(EogTjgﬂl(o,l))

and weakly in &2(03T;H2(091))
Wl”gigoyT};Lg(o,l)}.

Let p é:Lg(@gT;Hliosl)) be the golution to
(p,) 8¢ = gty
P ) (B e~ P (3B R = B, (7)) 1n Q

(3.14) paﬁx,T) = mk?%(x&(X,T)) ¥ x¢ fL

(o, ) Goph) = oy pillet) =m0 o telod

2
(¥

e .

It isqwell known that (T-t) %.%~L2(0,T;H1(g51)) and
J 7 ?

Since u, is optimal in problem (3.1) we find after some

calculation involving Eqs.(3.14) that

1 fi e : '
&lf 3 !
55 v{x)dx g B (x,t)yé (th)a’c + Ijlug,v) +
T - \
+ j(ua ~u¥ )vdt> o Y ve Lg(o,,l)
it :

]
where Iy(ug,v) = 1im (I (ug+Av) - Iy(ug))/A  and I (u) = o

A =20
"if ue U and IU(u) =+ 00 1if n€vUv,
Hence
ft
e e ) e e
; p&, :Xs yE, Xg u ‘lé_ | U R{L BeCe ll’l O, 0
In other words,
(i ! £y % ;
(3.15) uﬁ(x) é (@JIU) (Y%L+u mu&)(x) aees X€ (0,1)

where .

T
t3.4i16) aﬁﬁ (x) =~ J p (%o t)y (x,t)at  ,  =x€l[o,1].
: & ) <



Now multiply Egs.(3.14) by p and sgn De regpectively,

&
and 1ntuwrate on (o, 1) X (£,T). We get the following estimates
1 : e
E3,17) ﬁ%pé( o GV%«E ﬁ(n ) (*,u)dkdd4?§b§ ug (V)n (x,5)dxds £
o} Yoo
nl

SE (¢ SE ;
(i) }Epg(}fgt)jﬁs (v, (x,8)) | axdat & VE>os.
G o =

Hence (pj)+ ig bounded in Ll(o_,T;I;l(o,l)—.hLz(o,T;(Hl(og
TR Q:I}(ogT;(Hl(ogl))f)ﬁ Thus selecting a subsequence (again

denoted & ) we have

(3¢19) Pe ~—3 p  weakly in Lg(o,Tng(ogl)) and

s
weak star in L (o,T;LZ(o,l))
and by Helly's theorem pé:BV(Qb,T};(Pl(o,])) ) an

o0 p&(t) ——3 p(t) gtrongly in (H (031))‘
for every t€TLo,T).

Now since the injection of,Hl(ogl) into Lz(agl) ig compact, for

every X Do, 3 JM( A ) such that

Betal) H- (0,1 tilin, g

tp, C6)-pCelil 5 Allp ()-p(8)f 4 +U(A7E§~> (t )mp(‘c)(ﬁ

Then by (3.19), (3.20) we conclude that

(3.21) p —> p strongly in 1%(o &0 12(0,1)) = T2 (Q).

w

Now coming back to the sequence %yé% we gee that %ié} Qi @,

Indeed if multiply Eq.,(3+10) by v.. end use (3.,12) and the faech
& :

that f20 in Q and y_2 o in AL we get after some calculation

t

Pl

hat
i o t
j(y') (x,t)dx + J
o & 0

o

:

Lo S

J (v ) axds + 2§ 5ué<yg) dxds &
@ (e



which yields = 0 ag claimed, Similarly it follows by (3.14)

and hypotheses (3.4) that

é;( )& o s B

We will prove further that

3
&
i
¥
S
q
TN
2ok
“

B e > R o 4 R - o
S noncvone Gectedsing

X — pa(x,ﬁ) ig monotone increaging

for almost all t€[o,7].
Without loss of generglify we may assume that u ls smooth

(Otherwise we approximate it by a smooth function and pass %o

Timi¥) Men bhe FToactioh @ = (yé>x is the solution to ‘the

equation

@t -8 +ﬁ&(yé)€‘} + éwr Jé@ = f 1h 0

~7
XX
{
yo(x)

(a2 B(x,0)
G0 %) = o . :

i

%€ fosl)

{i

Moreover, since y, S0 it (o,0) and ye(lgt) = 0 we infer that
(y&)x(l,t)ﬁcu Hence ©(1,t) & o and by the maximum principle
we see by (3.22) and (3.6) that Q (x,t)&o0 4 (=, t1€0

Similarly, q = (pﬁ) gatigfies the equation
~
2 & v
2 : = i 5
f‘( ,;\ (\}) ) ( )9 ( )?... \;9 (y&)qwu&q—-uépe = {;O(y&>(yé)x in Q

it

ol = Qigo (ve e m))(s&) (x; 3136 1n (0,1)

glogt) =9, qll;ti >0, telo, 1)

and by (3.3), (3.4) it follows that q2o0 in Q.



e

We have gshown in particular that

o on téﬁgﬁ (x)2 0 v xi:ﬂoslj, \?&: 1s monotone decreasing
w %»

for every £ > o, '

On the other hand, it follows by (3.13) amd‘(j.Zl) that
for & ~—> ¢

; S
oy \D = - } Flx, ) p(x, b)d‘f} M.t;mmw S e )

i < : 4 O
Thus letting & - tend to zero in Eq.(3¢15),,i.e.,

Ik
} f () (uglz )“v(x))dx+-§ (u

@)

ﬁ:} z.(zv'))(u&(;c)mv(x))du @!-véif

;. o
(3.25) © eIy,

- 5L - 0 : e o -
By (3+24) we see that the function 3? is continuous on [o,1J

(because v and p belong to L (o W=U (o 1)) . Voreover, by (o2

%f ig nonnegetive and monotone decreasing. Then the conclusion

»

of Theorem 3 is an immediate consequence of Eq.(3.25) and of

Lemma 2 below.

LEIIA 2 Eri ff* io 1)} —> R be a continuoug, nonnegabiv

and monotone decreaging function. Then
1

_ , 1
;E}U_p‘% § u('}:)jﬂ(:{)dx; ué U% =1 65“79(}:)@;:

]

and 1f Y isg no 'didentically congtent the guppremum ig sttained

in the unigue point u= M.

Proof. We set v = u ~ M and decompose the interval [o,1]
into Lo,a)VU [a,b]U (b,1] where v(x) 4o for %€ Eo,a), v(x)=0
for x€la,b]) and vwlx}> o for xelp,a1). I¢ %f ; constant



ve may that

oy ey
:IL k.;TL‘l e

&

‘f (a) éi%}?’ (h)s THan

we have (1f v o)

e a
;‘ﬁ(“)v(y)u/s&&@(a)vg v(x)&w%?ﬂkﬂ § v(x)dx£ o

(6) b

clained.

ag

2 Clearly Theorem 3

Fda

fin

m
-~

for nongmooth

valid

functions g, and ‘fso wnov&ﬁcn they are monotone increasing, i :
convex and locally Lipsc hitzian.

Moreover, the sdme method épﬁlieﬁ to optimél‘éo&trol 5
problems governed by the equation

*ﬁ(}f):% £ in Q
x € .fL

e
e = yo(x)}

yx(o,t} + ul(t)y(o,t)

Oy

where the control u belongs

m
7l

increasing on {o, JJ; o&u(t)é W,

&)
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