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ANISOTROPIC REGULARIZATIONS OF SADDLE FUNCTIONS

by
E.KRAUSS and D.TIBA

1. INTRODUCTION

Let K:XxXY — [-e, +u§ be a closed, proper saddle
(i.e. concave -'convex).function defined on the reflexive Banac
spaces X and Y. For the necessary background in the theory of
saddle functions, we refer to Rockafellar‘{ﬁ},[7],{ﬁ], Barbu-

Precupanu [3], McLinden [E}, Gbssez [4].

We define the anisotropic regularization of K:

(L) K;(x,y)z sup infa'; [x-ul? > iy-—v!2

u€x vey 20 P G K(u'V)} ’

and the partial regularizations of K:

(122} K)(x,y)nsup {_ (x«u{z

uéx B mua

oaliR eri=titg gl '2';"’2 £ K(x, v,

Here |-l stands for the norm in both X and Y. Thes
constructions were previously considered by Attouch and Wets
[l],[é] Tiba [9], Tiba and Krauss [ld} and are extensions of
the usual Moreau = Yosida approximation of a convex proper lowe
semicontinuous function.

In this paper we study regularity results for the

above regularizations, their behaviour when k,ﬁ tend to zero,



as well as the computation and the properties of the Gateaux
A

derivative of Kﬂ‘

2. REGULARITY

Tn this section we investigate the continuity and
closedness of the different regularizations of K.
5
For any A,p.>0, Ry KN” Kp_ are saddle functions
and obviously we have
S 5N P
(2.1) Ky =(K ) =K .
2 Mo

Moreover, they only depend on the equivalence class

of K, lae,

Proposition 2.1

(2.2) K= (ol Ky, K = (c1,K) K;;(clixﬁ‘, el

= _
CRINCHIE igf{ ilﬁﬁén + cllK(x,v)}=

2 i
e s e L ik
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ainf& LX%XLE + K(x,v)}, by the clodsdnesdiior & and
v P :
since the infimum of a convex function equals the infimum of
its closure.

The last two terms are (clzK %A, respectively ;KrL
and the first relation of (28 follows. The remaining part may

be derived similarly.



A
Theorem 2.2. All saddle functions K , KH' Kk are
St

closed, proper and satisfy

{2:3) K#mcll(KP)

(0.5a) K*=c12(x“)

Sy Ay 2
(2.5) KB”CIl(KH)’Clz(hp)‘

Proof

By (2.1) we ecan restrict oﬁrselves to the study o
KN' For each y¢€¢Y, the concave function x -é(cllK)N(x,y) is clo-
sed as the infimum of a family of closed concave functions. By
(2.2); Khn(cllK)chll[(cllK)#]=cll(Kﬁ). This proves (2.3).

Denote by F,, F the partial Fenchel conjugate of
Ky K with respect to the convex variable. Then:

2 )
(2560 FP(X;°)=KF(X,~)x=§1’\(x,-) a _Lé_::__}x = K(x,-)x &

2
+ %;.;k = F(x,.) + & |.]

where [0 stands for the infimal convolution and for the

dual norm on YX. According to Rockafellar {7],[81 , under our
assumptions on K, F is a proper convex lower semicontinuous
funetdon. By (2.6), FP is also proper, convex, lower semiconti-

nuous. Using the result of Rockafellar in the opposite directic

we see that KT* is closed and proper.




Theorem 2.3, K;_ig finite and locally Livschitz on

Xx¥. Moreover, one has

2 2
(2.7) KX(x,y)=max min |- lx20l" , lyovi® K(u,v)}:—:
E uéX vey : '
o
e [ Ax=ul® . |y=v] ]
= min max { - s e sk Kituyv)
VEY uéx ! ar 21 J
PYoof

The identity (2.7) follows from RocKafellar’s mini-
max theorem in [8]. Since K.is proper the saddle value defining
Kﬁ is finite. The proof is finished by the remark that closed
saddle functions agre locally Lipschitz on the interior of their

domain (Barbu~Precupanu [3], p.134) .

Egmark

In the last section we even show that K; is

-~

Lipschitz continuous on bounded sets.

3, CONVERGENCE

In this section we ask for the behaviour of the

regularizations of K if the parameters tend to Zero.

Theorem 3,1, One has the identities:

(vl sup K — el K, inF ka cl-K
P 2 1
>0 : >0 :



(3.2) sup Ksz% p. nf K;mK,L
wo P A> 0

(353 inf sup K;mcllK, Wéup gl K)zclzK
A>0 p20 p>0 A>0

In each of these expression one can revnlace

sup (cr inf) by 1imi(or s1dm)i.
p>0 x>0 pro ANO0
Proof.

Clearly, KP' KA

G
» Ky increase as A increases or M

decreases. Thus one can substitute sup by lim and inf by lim.

p>0 Vg
Recalling (2.2), we get

sup K

v;lim Kv=lim(cl K). =cl K.
p> 0 pyo

pxo 2 fL_ 2

A0 AN0

Except for the trivial case cl, (K(x,.)2~c, the

last identity is just the wellknown convergence result for the

Moreau-Yosida approximation of the closed proper convex functio:

clzK(x,.).

To finish the proof one has to apply the above

argument to KF’ K} » instead of K, and teo uge: (2.3), u(2.4).

Theorem 3.2. It holds the estimation

(3.4) cl,Kg

= 14
A'tkwo . k,’L\.‘»O i

Proof

We remark that:

(3.5) Kﬁ(k,y)s K‘i(x,y)é 2 (2,y) .



Then 1lim > , Lim

S e e

p>0 ks 2

The second inequality follows similarly.

Remark. By a different approach, Attouch-Wets [l],
[2] showed that the estimation (3.3) and the local Lipschitz

»

continuity of K?* remain valid for non concave=-convex functions

on metric spaces.

4, DIFFERENTIABILITY

We now investigate the regularity of the subdiffe-
A

f-/l'.

Throughout this section we suppose that the spaces

rential of K

X, Y and their duals are strictly cenvex.

>

Theorem 4.1, KH_is Citeaux differentiable on Xx¥Y.

The differential coincides with the subdi fferential aK; and
L=y ]=ax (%9

is demicontinuous and maps bounded sets into bounded sets.

Remark. By the mean value theorem we obtain that
K;,is Lipschifz continuous on bounded sets.
Under additional assumptions on XxY we obtain a

stronger version of this result.

Theorem 4.,2. If X,Y and their duals are locally

uniformly convex then K; js continuously Fréchet differentiable,

This differential is Lipschitz continuous if X and Y are Hilbert
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P4



Proof of the Theorems 4.1 and 4.2,

Let M 440 be fixed and set n:= e < On X and WV
ey

we introduce equivalent norms both denoted by K-l :

2

(4.1) !EXH2: Iz for xe€X,

i
>}

2

il

==

(425 " jiyle: iyl 2 for yey.

A simple’ calculation shows
A
(4.3) K = K

where %deenotes the regularization with respect to the new
norms. But the case of isotropic reqularizations was already
treated in Tiba [9] (Theorem 4.1) and Krauss- Tiba [1@]
(Theorem 4.2). A

We conclude the paper with a formula fof éKﬁ.
Since X and Y are strictly convex, the minimax identity (2.7)

2
note the duality mapping of (X,[.[) and (Y,[.l), respectively.

defines exactly one saddle point [ﬁﬁ, y:} By Jl and J, we de-

Theorem 4,3. We have

1

(4.4) aK;(x,y)=[KJl(X;~x), lJz(y-Y;)}.

’,L

Proof

The identity (4.3) yields

S s e
51 -BK:'{ ) Bulthens > =



and (Y,l«]), respectively (cf. (4.1), (4.2)).

One checks easily

" | L
(405) rlm';‘Jl [} I‘ e J

z :
The isotropic regularization K2~ satisfies (cf. Tiba[é])

F. (¥-%) F. (Y-9)
(4.6) ax’"m,y;,‘(w}m. : 2 .,.__..]’
L k Ul L 1

O
_witthpY]as the unique solution to

od s
-alK(x,y) + Fl(x~x)30

(4.7)

~3 i Sl

K&, F) + ¢ Fz(%y‘;%o

Using the description of saddle points By subdifferentials we
e e

conclude from (4.5) and (4.7) x=xﬁ, yxy;. Now the desired for-

mula follows from (4.5) and (4.6).

- Remark
For a closed proper saddle function L:XxY —»[=-e,+e],
Rockafellar [7]9{5] introduced a maximal monotone operator
RL’

[£, gler, (x,y) 1f [-£,g]ck(x,y).

It is easy to see that (4.4) can be reformulated as

A4 A
R,x =R e e v
K [ K]vl 4 )

where[RK]%denotes the Yosida approximation with respect to the

norms ||.|] on X and Y.
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