ISSN 0250 3638

THE CHERN CLASSES OF THE STABLE RANK 3

VECTOR BUNDLES ON P 3

by

Iustin COANDA

PREPRINT SERIES IN MATHEMATICS

No. 29/1985

Mea 21343

INSTITUTUL DE MATEMATICA

sear best weer

PROPERTY OF A SECURE OF THE STABLE CARRY.

wel

ACHACO ESSENT.

MA PULLAGE

SWING BIDD

THE CHERN CLASSES OF THE STABLE RANK 3

VECTOR BUNDLES ON P 3

by
Iustin COANDA*)

April 1985

^{*)} The National Institute for Scientific and Tehnical Creation Bd. Pacii 220, 79622, Bucharest, Romania

Tustin Coandă

Department of Mathematics, INCREST, Bd. Păcii 220,
79622 Bucharest, Romania

O. Introduction

Let k be an algebraically closed field of characteristic 0 and $P=P_k^3$ the 3-dimensional projective space over k. The natural question of determining the triples of integers (c_1,c_2,c_3) which can be the Chern classes of a stable rank 3 vector bundle on P was formulated by R.Hartshorne in [6, Problem 14]. Since then, a number of results have been obtained which have limited the possible values of these triples. First of all, the Theorem of Riemann-Roch implies that $c_1c_2\equiv c_3\pmod{2}$. Then, for each c_1,c_2 , there are bounds on c_3 which have been obtained by G.Elencwajg, O.Forster, M.Schneider and H.Spindler. Their results are summarized in [3]. We can normalize any rank 3 vector bundle on P by a suitable twist such that $c_1=0$, -1 or -2. Furthermore, by dualizing the bundle (and twisting with -1 if $c_1=-1$ or -2) we may suppose that $c_3\geq 0$ if $c_1=0$, $c_3\geq -c_2$ if $c_1=-1$ and $c_3\geq 0$ if $c_1=-2$. Now, according to [3, Sect.4] one has:

(i) If
$$c_1=0$$
 then $c_2 \ge 2$ and $c_3 \le c_2^2 - c_2$

(ii) If
$$c_1 = -1$$
 then $c_2 \ge 1$ and $c_3 \le c_2^2 - 2c_2 + 2$.

(iii) If
$$c_1 = -2$$
 then $c_2 \ge 2$ and $c_3 \le c_2^2 - 3c_2 + 2$

Furthermore, L.Ein, R. Hartshorne and H. Vogelaar have proved in [3, (7.4.1)] that one cannot have $c_1=0$, $c_2 \ge 5$ and $c_2^2-5c_2+6 < c_3 < c_2^2-c_2$ Using [2] one finds further restrictions to be imposed to

the Chern classes of a stable rank 3 vector bundle on P. Before stating these restrictions we introduce some notations. Put:

$$M_o(1,c_2) = \{c_2^2 - c_2\}$$

$$M_0(q, c_2) = [c_2^2 - (2q-1)c_2, c_2^2 - (2q-1)c_2 + 2(q^2-q+1)]$$

$$\bigcup_{d=1}^{d_0(q)} (c_2^2 - (2q-1)c_2 + 2(d-1)q, c_2^2 - (2q-1)c_2 + 2dq - 2d(d+1)), \text{ for } q \ge 2$$

$$M_1(q,c_2) = [c_2^2 - 2qc_2, c_2^2 - 2qc_2 + 2q^2]$$

$$\bigcup_{d=1}^{d_1(q)} (c_2^2 - 2qc_2 + 2(d-1)q + 2(d-1), c_2^2 - 2qc_2 + 2dq - 2d(d+1)), \text{ for } q \ge 1$$

$$M_2(q, c_2) = [c_2^2 - (2q+1)c_2 + 2q, c_2^2 - (2q+1)c_2 + 2q^2]$$

$$\bigcup_{d=1}^{d_2(q)} (c_2^2 - (2q+1)c_2 + 2dq, c_2^2 - (2q+1)c_2 + 2(d+1)q - 2d(d+2)), \text{ for } q \ge 1$$

where $d_0(q)$ is the largest integer for which d(d+1) < q-1, $d_1(q)$ is the largest integer for which $(d+1)^2 \le q$ and $d_2(q)$ is the largest integer for which $(d+1)^2 < q$. It is easy to see that if d(d+1) < q-1 or if $(d+1)^2 \le q$ then $2dq-2d(d+1) \le \frac{1}{2} \cdot (q^2-2q)$, and if $(d+1)^2 < q$ then $2(d+1)q-2d(d+2) \le \frac{1}{2} \cdot (q^2+3)$. Now, according to [2, (2.7), (2.8)] and [2.9] one has:

(0) If
$$c_1=0$$
 then $c_2 \ge 2$ and $c_3 \le \frac{1}{2} \cdot c_2^2$ or $c_3 \in M_o(q,c_2)$ for some $1 \le q \le \frac{1}{2} \cdot (c_2+1)$

(1) If
$$c_1 = -1$$
 then $c_2 \ge 1$ and $c_3 \le \frac{1}{2} \cdot c_2^2$ or $c_3 \in M_1(q, c_2)$ for some $1 \le q \le \frac{1}{2} \cdot (c_2 - 1)$

(2) If
$$c_1 = -2$$
 then $c_2 \ge 2$ and $c_3 \le \frac{1}{2} \cdot (c_2 - 1)^2$ or $c_3 \in M_2(q, c_2)$ for some $1 \le q < \frac{1}{2} \cdot (c_2 - 1)$.

The aim of the present paper is to show that the above conditions suffice to assure the existence of a stable rank 3 vector bundle on P with the given Chern classes. We prove this assertion by producing various examples of stable rank 3 vector bundles.

With some exceptions, these bundles are realized as extensions:

where \mathcal{F} is one of the stable rank 2 reflexive sheaves constructed by R.Miró in [7], S is the singular scheme of \mathcal{F} and Y is a plane curve or the empty scheme. This kind of extension is described in [1, Sect.3].

Hence, we prove the following:

Theorem. c_1, c_2, c_3 can be the Chern classes of a stable rank 3 vector bundle on P if and only if $c_1c_2 \equiv c_3$ (mod 2) and, after normalizations, c_1, c_2, c_3 satisfy one of the conditions (0), (1), (2).

I take this opportunity to express my thanks to C.Bănică for his consistent help and encouragement.

1. Complements about Extensions and Some Useful Examples

Let ${\mathcal F}$ be a rank 2 reflexive sheaf on P which can be realized as an extension:

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}}(\mathbf{a}) \longrightarrow \mathcal{F} \longrightarrow \mathbf{I}_{\mathbf{Z}}(\mathbf{b}) \longrightarrow 0 \tag{1}$$

$$0 \longrightarrow \mathcal{F} \longrightarrow E \longrightarrow I_{YUS}(t) \longrightarrow 0$$

with E a rank 3 vector bundle on P. The Chern classes of E are:

$$c_1(E) = c_1(\mathcal{F}) + t$$
 $c_2(E) = c_2(\mathcal{F}) + t c_1(\mathcal{F}) + deg Y$
 $c_3(E) = -c_3(\mathcal{F}) + t c_2(\mathcal{F}) + (c_1(\mathcal{F}) - t + 4) deg Y - 2 \times (\mathcal{O}_Y)$

However, the condition $H^2(\mathcal{F}(-t))=0$ is too strong for our purposes. In the next two propositions we shall consider two cases in which this condition is not necessarily fulfilled but a locally free extension still exists.

Proposition 1.1. Let \mathcal{F} be a rank 2 reflexive sheaf on P which can be realized as an extension (1) and let S be the singular scheme of \mathcal{F} . Suppose that ω_Z (4+a) has a global section vanishing at no point of S.

Then there is an extension:

with E a rank 3 vector bundle on P.

Proof. Dualizing (1), one gets an exact sequence:

$$0 \longrightarrow \mathcal{O}_{p}(-b) \longrightarrow \mathcal{F}^{*} \longrightarrow I_{Z}(-a) \longrightarrow 0 \tag{2}.$$

Dualizing (2), one finds an exact sequence:

$$0 \to \mathcal{O}_{\mathbf{P}}(\mathbf{a}) \to \mathcal{F} \to \mathcal{O}_{\mathbf{P}}(\mathbf{b}) \to \mathcal{E}\mathrm{xt}^1(\mathbf{I}_{\mathbf{Z}}(-\mathbf{a}), \mathcal{O}_{\mathbf{P}}) \to \mathcal{E}\mathrm{xt}^1(\mathcal{F}^*, \mathcal{O}_{\mathbf{P}}) \to 0$$

We have $\operatorname{Ext}^1(I_Z(-a),\mathcal{O}_P)\cong \omega_Z$ (4+a). Let η be a global section of ω_Z (4+a) vanishing at no point of S. η determines a global section η of $\operatorname{Ext}^1(\mathcal{F},\mathcal{O}_P)$ which generates $\operatorname{Ext}^1(\mathcal{F},\mathcal{O}_P)$ as an \mathcal{O}_P -module. From the commutative diagram:

$$H^{0}(\operatorname{Ext}^{1}(I_{Z}(-a),\mathcal{O}_{P})) \longrightarrow H^{0}(\operatorname{Ext}^{1}(\mathfrak{F}^{*},\mathcal{O}_{P}))$$

$$0=H^{2}(\operatorname{Hom}(I_{Z}(-a),\mathcal{O}_{P})) \longrightarrow H^{2}(\operatorname{Hom}(\mathfrak{F}^{*},\mathcal{O}_{P}))$$

it follows that by the canonical morphism $H^0(\mathcal{E}_{x}t^1(\mathcal{F},\mathcal{O}_p)) \longrightarrow H^2(\mathcal{F})$ to goes into 0. Hence η_0 is the image of an element $e_0 \in \operatorname{Ext}^1(\mathcal{F}^*,\mathcal{O}_p)$.

Let:

$$0 \longrightarrow \mathcal{O}_{P} \longrightarrow E_{O} \longrightarrow \mathcal{F}^{*} \longrightarrow 0 \tag{3}$$

be the extension determined by eo. Dualizing (3) one gets. on exact sequence:

$$0\longrightarrow \mathcal{F}\longrightarrow \operatorname{E}_{\operatorname{o}}^{*}\longrightarrow \mathcal{O}_{\operatorname{P}}\longrightarrow \operatorname{Ext}^{1}(\mathcal{F}^{*},\mathcal{O}_{\operatorname{P}})\longrightarrow \operatorname{Ext}^{1}(\operatorname{E}_{\operatorname{o}},\mathcal{O}_{\operatorname{P}})\longrightarrow 0$$

From the fact that η_o generates the \mathcal{O}_P -module $\operatorname{Ext}^1(\mathfrak{F}^*,\mathcal{O}_P)$ it follows that $\operatorname{Ext}^1(\operatorname{E}_o,\mathcal{O}_P)=0$, hence E_o is locally free, and that $\operatorname{Im}(\operatorname{E}_o^*\longrightarrow\mathcal{O}_P)=\operatorname{I}_S$. $\operatorname{E=E}_o^*$ is a rank 3 vector bundle on P and we have an exact sequence:

Proposition 1.2. Let \mathcal{F} be a rank 2 reflexive sheaf on P antisfying the hypothesis of (1.1) and let S be the singular scheme of \mathcal{F} .

Let $d \ge 1$ and $e \ge 1$ be integers. Suppose that $\mathcal{F}(d+e)$ has a riobal section s vanishing in codimension ≥ 2 .

If YCP is a complete intersection of two surfaces of degree d and e, respectively, such that s vanishes at no point of Y, then there is an extension

with E a rank 3 vector bundle on P.

Proof. We have an exact sequence:

 $\operatorname{Ext}^1(\operatorname{I}_{Y \cup S}, \mathcal{F}) \longrightarrow \operatorname{H}^0(\operatorname{Ext}^1(\operatorname{I}_{Y \cup S}, \mathcal{F})) \longrightarrow \operatorname{H}^2(\operatorname{Hom}(\operatorname{I}_{Y \cup S}, \mathcal{F}))$ and isomorphisms: $\operatorname{Hom}(\operatorname{I}_{Y \cup S}, \mathcal{F}) \cong \mathcal{F}$, $\operatorname{Ext}^1(\operatorname{I}_{Y \cup S}, \mathcal{F}) \cong \operatorname{Ext}^1(\operatorname{I}_{Y}, \mathcal{F}) \cong \operatorname{Ext}^1(\operatorname{I}_{Y \cup S}, \mathcal{F}) \cong \operatorname{Ext}^1(\operatorname{I}_{Y}, \mathcal{F}) \cong \operatorname{Ext}^1(\operatorname$

By (1.1) there is an $e_2 \in \operatorname{Ext}^1(\operatorname{I}_S; \mathcal{F})$ which determines an extension:

with E₂locally free. Let e_2' be the image of e_2 in $\Pi^0(\mathbb{Z}_{\mathbb{Z}}^{1}(\Gamma_0\mathcal{F}))$.

$$I_{Y}: \qquad 0 \longrightarrow \mathcal{O}_{P}(\text{ades}e) \longrightarrow \mathcal{O}_{P}(\text{end}) \oplus \mathcal{O}_{P}(\text{end}) \longrightarrow I_{X} \longrightarrow 0$$
(4)

Applying Hem(-,F) to (4) one gets an exact sequence:

$$0 \longrightarrow \mathcal{H}_{em}(I_{Y}, \mathcal{F}) \longrightarrow \mathcal{F}(a) \oplus \mathcal{F}(e) \longrightarrow \mathcal{F}(a+e) \longrightarrow \mathcal{E}_{x}t^{1}(I_{Y}, \mathcal{F}) \longrightarrow 0$$

which decomposes into two short exact sequences:

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}(d) \oplus \mathcal{F}(e) \longrightarrow (I_{Y} \cdot \mathcal{F})(d+e) \longrightarrow 0$$

$$0 \longrightarrow (I_{Y} \cdot \mathcal{F})(d+e) \longrightarrow \mathcal{F}(d+e) \longrightarrow \mathcal{F}(d+e) | Y \longrightarrow 0$$

The morphism $H^0(\operatorname{Ext}^1(I_Y,\mathcal{F})) \longrightarrow H^2(\mathcal{F})$ is equal to the composition of the morphisms $S_1: H^0(\mathcal{F}(d+e)|Y) \longrightarrow H^1((I_Y\cdot\mathcal{F})(d+e))$ and $S_2: H^1((I_Y\cdot\mathcal{F})(d+e)) \longrightarrow H^2(\mathcal{F})$. The section $s \in H^0(\mathcal{F}(d+e))$ restricts to a section $e_1' \in H^0(\mathcal{F}(d+e)|Y)$ which vanishes at no point of Y and such that $S_1(e_1')=0$.

It follows that the element $(e_1',e_2') \in H^0(\operatorname{Sxt}^1(I_{YUS},\mathcal{F}))$ goes into 0 by the morphism $H^0(\operatorname{Ext}^1(I_{YUS},\mathcal{F})) \longrightarrow H^2(\mathcal{F})$, hence it is the image of an element $e' \in \operatorname{Ext}^1(I_{YUS},\mathcal{F})$. e' determines the extension we are looking for.

Next, we show that the stable rank 2 reflexive sheaves produced by R.Miró in [7] satisfy the hypotheses of (1.1) and (1.2) if they are constructed with some care.

Lemma 1.3. Let Z_1, Z_2 be nonsingular (connected) curves in P such that the scheme $Z_1 \cap Z_2$ is nonempty and consists of finitely many simple points, and let $Z=Z_1 \cup Z_2$. Let $D=Z_1 \cap Z_2$ considered as a divisor on Z_1 or Z_2 . Then:

- (i) Z is l,c.i, in P
- (ii) $\omega_{z}|z_{i} \cong \omega_{z_{i}} \otimes \mathcal{O}_{z_{i}}(D)$, i=1,2
- (iii) If, for some $n \in \mathbb{Z}$, the restriction $H^{0}(\mathcal{O}_{\mathbb{Z}}(n)) \longrightarrow H^{0}(\mathcal{O}_{\mathbb{Z}_{1}}(n))$ is surjective then the restriction $H^{0}(\omega_{\mathbb{Z}_{1}}(-n)) \longrightarrow$

 \rightarrow $H^{0}(\omega_{Z}(-n)|Z_{2})$ is surjective.

 $(iv)\omega_{\chi}(1)$ is generated by its global sections.

<u>Proof.</u> (i) Let $x \in Z_1 \cap Z_2$. One can choose a regular system of parameters u, v, w of $\mathcal{O}_{P, x}$ such that $I_{Z_1, x} = (u, v)$ and $I_{Z_2, x} = (u, w)$.

Then $I_{Z_1, x} = I_{Z_1, x} \cap I_{Z_2, x} = (u, vw)$.

(ii) We start with the exact sequence:

$$0 \longrightarrow \mathbf{I}_{\mathbf{Z_1}}/\mathbf{I}_{\mathbf{Z}} \longrightarrow \mathcal{O}_{\mathbf{Z}} \longrightarrow \mathcal{O}_{\mathbf{Z_1}} \longrightarrow 0$$

But $I_{Z_1}/I_{Z}=I_{Z_1}/(I_{Z_1}\cap I_{Z_2})\cong (I_{Z_1}+I_{Z_2})/I_{Z_2}=\mathcal{O}_{Z_2}$ (-D). Hence we obtain an exact sequence of \mathcal{O}_p -modules:

$$0 \longrightarrow \mathcal{O}_{\mathbb{Z}_{2}}(-\mathbb{D}) \longrightarrow \mathcal{O}_{\mathbb{Z}} \longrightarrow \mathcal{O}_{\mathbb{Z}_{1}} \longrightarrow 0 \tag{5}$$

Applying Ext^2 (-, $\omega_{\rm p}$) to (5) one gets an exact sequence :

$$0 \longrightarrow \omega_{Z_1} \longrightarrow \omega_{Z} \longrightarrow \omega_{Z_2} \otimes \mathcal{O}_{Z_2}(D) \longrightarrow 0 \tag{6}$$

Restricting to Z_2 , we get an epimorphism $\omega_Z | Z_2 \to \omega_{Z_2} \otimes \mathcal{O}_{Z_2}$ (D).

But this is an epimorphism of invertible $\mathcal{O}_{\mathbb{Z}_2}$ -modules, hence it is an isomorphism.

(iii) We consider the exact cohomology sequence associated to (6) twisted with -n:

$$H^{0}(\omega_{Z}(-n)) \to H^{0}(\omega_{Z_{2}}(-n) \otimes \mathcal{O}_{Z_{2}}(D)) \to H^{1}(\omega_{Z_{1}}(-n)) \to H^{1}(\omega_{Z}(-n))$$

It follows that we have to show that the morphism $H^1(\omega_{Z_1}(-n)) \to H^1(\omega_{Z_1}(-n))$ is injective. If $\psi \in H^0(\mathcal{O}_Z(n))$ then the diagram:

$$H^{1}(\omega_{Z_{1}}) \longrightarrow H^{1}(\omega_{Z})$$

$$H^{1}(\phi|Z_{1}) \qquad \qquad \downarrow H^{1}(\phi)$$

$$H^{1}(\omega_{Z_{1}}(-n)) \longrightarrow H^{1}(\omega_{Z}(-n))$$

is commutative. We have an exact sequence:

$$H^{1}(\omega_{Z_{1}}) \longrightarrow H^{1}(\omega_{Z}) \longrightarrow H^{1}(\omega_{Z_{2}} \otimes \mathcal{O}_{Z_{2}}(D))$$

But $H^1(\omega_{\mathbb{Z}_2}\otimes \mathcal{O}_{\mathbb{Z}_2}(\mathbb{D})) \cong H^0(\mathcal{O}_{\mathbb{Z}_2}(-\mathbb{D}))=0$ and $H^1(\omega_{\mathbb{Z}_1}) \cong k$. It follows that the morphism $H^1(\omega_{\mathbb{Z}_1}) \longrightarrow H^1(\omega_{\mathbb{Z}_1})$ is an isomorphism.

We have proved that the morphism $\operatorname{H}^1(\omega_{Z_1}(-n)) \to \operatorname{H}^1(\omega_{Z}(-n))$ is the dual of the morphism $\operatorname{H}^0(\mathcal{O}_Z(n)) \to \operatorname{H}^0(\mathcal{O}_{Z_1}(n))$. Now, the assertion follows from our hypothesis.

(iv) $\operatorname{H}^{\operatorname{o}}(\mathcal{O}_{Z_{\mathbf{i}}}(-1))=0$ hence, by (iii), the morphism $\operatorname{H}^{\operatorname{o}}(\omega_{Z}(1)) \to \operatorname{H}^{\operatorname{o}}(\omega_{Z}(1)|Z_{\mathbf{i}})$ is surjective, i=1,2. Using (ii) it follows that deg $(\omega_{Z}(1)|Z_{\mathbf{i}}) \geq 2g(Z_{\mathbf{i}})$ hence $\omega_{Z}(1)|Z_{\mathbf{i}}$ is generated by its global sections, i=1,2. It follows that $\omega_{Z}(1)$ is generated by its global sections.

Example 1.4. Let $q \ge 1$ and $c_2 \ge 1$ be integers such that $c_2 \ge 2q-2$. Let \sum_1 , \sum_2 be nonsingular surfaces in P of degree q-1 and q, respectively, intersecting transversally. Put $Z_2 = \sum_1 \cap \sum_2 C_1 \cap \sum_2 C_2 \cap C_1 \cap C_2 \cap C_$

The Chern classes of \mathcal{F} are: $c_1(\mathcal{F}) = -1$, $c_2(\mathcal{F}) = c_2$, $c_3(\mathcal{F}) = c_2^2$ - $-2(q-1)c_2+2r$ (see [7, Sect.2] for details).

Firstly, we investigate under which conditions $\mathcal F$ satisfies the hypothesis of (1.1). The extension (7) is determined by a global section ξ of ω_Z (5-2q) vanishing only at finitely many points. If L is an invertible $\mathcal O_Z$ -module then we have an exact sequence:

$$0 \longrightarrow \operatorname{H}^{\circ}(L) \longrightarrow \operatorname{H}^{\circ}(L|Z_{1}) \times \operatorname{H}^{\circ}(L|Z_{2}) \longrightarrow \operatorname{H}^{\circ}(L|Z_{1} \cap Z_{2}).$$

Put $D=Z_1\cap Z_2$. By (1.3), $\omega_Z(5-2q)|_{Z_1}\cong \mathcal{O}_{Z_1}(c_2-(2q-2))\otimes \mathcal{O}_{Z_1}(D)$ and $\omega_Z(5-2q)|_{Z_2}\cong \mathcal{O}_{Z_2}(D)$. Choose $s_i\in H^0(\mathcal{O}_{Z_i}(D))$ such that the divisor of zeros of s_i is D, i=1,2, and let $t_1\in H^0(\mathcal{O}_{Z_1}(c_2-(2q-2)))$ be a nonzero section. We may take $\hat{S}=(t_1\otimes s_1,s_2)$.

It follows that, in order to verify the hypothesis of (1.1), it suffices to find a global section of $\omega_Z(4-q)$ vanishing at no point of D. This happens, for example, if $D=\emptyset$. Now, suppose that $D\neq\emptyset$.

The morphism $H^0(\mathcal{O}_P(q-4)) \to H^0(\mathcal{O}_{Z_1}(q-4))$ is surjective. By (1.3 iii), the morphism $H^0(\omega_Z(4-q)) \to H^0(\omega_Z(4-q)|Z_2)$ is surjective, hence it suffices to find a global section of $\omega_Z(4-q)|Z_2$ vanishing at no point of D. Put $D_2=(H\cap Z_2)\setminus D$. We have:

 $\omega_{\mathbf{Z}}(4-\mathbf{q}) \big| \, \mathbf{Z}_{\mathbf{2}} \cong \mathcal{O}_{\mathbf{Z}_{\mathbf{2}}}(\mathbf{q}-\mathbf{1}) \otimes \mathcal{O}_{\mathbf{Z}_{\mathbf{2}}}(\mathbf{D}) \cong \mathcal{O}_{\mathbf{Z}_{\mathbf{2}}}(\mathbf{q}) \otimes \mathcal{O}_{\mathbf{Z}_{\mathbf{2}}}(-\mathbf{D}_{\mathbf{2}})$

One can identify $\operatorname{H}^0(\mathcal{O}_{\mathbb{Z}_2}(q)\otimes\mathcal{O}_{\mathbb{Z}_2}(-\mathbb{D}_2))$ with the global sections of $\mathcal{O}_{\mathbb{Z}_2}(q)$ vanishing at any point of \mathbb{D}_2 . Hence we must find a global section of $\mathcal{O}_{\mathbb{Z}_2}(q)$ vanishing at any point of \mathbb{D}_2 but at no point of \mathbb{D}_2 . The morphisms $\operatorname{H}^0(\mathcal{O}_{\mathbb{P}}(q)) \longrightarrow \operatorname{H}^0(\mathcal{O}_{\mathbb{Z}_2}(q))$ and $\operatorname{H}^0(\mathcal{O}_{\mathbb{P}}(q)) \longrightarrow \operatorname{H}^0(\mathcal{O}_{\mathbb{Q}_2}(q))$ being surjective, it suffices to find a global section of $\mathcal{O}_{\mathbb{C}_1}(q)$ vanishing at any point of \mathbb{D}_2 but at no point of \mathbb{D}_2 . Now, $\mathcal{O}_{\mathbb{C}_1}(q)\otimes\mathcal{O}_{\mathbb{C}_1}(-\mathbb{D}_2)\cong\mathcal{O}_{\mathbb{C}_1}(\mathbb{D})$. Hence we must find a global section of $\mathcal{O}_{\mathbb{C}_1}(q)\otimes\mathcal{O}_{\mathbb{C}_1}(-\mathbb{D}_2)\cong\mathcal{O}_{\mathbb{C}_1}(\mathbb{D})$. Hence we must find a global section of $\mathcal{O}_{\mathbb{C}_1}(q)\otimes\mathcal{O}_{\mathbb{C}_1}(-\mathbb{D}_2)\cong\mathcal{O}_{\mathbb{C}_1}(q)$. Such a section exists if and only if:

 $h^{O}(\mathcal{O}_{C_1}(D-x)) = h^{O}(\mathcal{O}_{C_1}(D)) - 1 \text{ for any } x \in D \text{ (see [5; IV, 3.1])}.$ By the Theorem of Riemann-Roch this is equivalent to:

$$h^{O}(\omega_{C_{1}}(-D+x))=h^{O}(\omega_{C_{1}}(-D)) \quad \text{for any } x \in D.$$

Now, we show how one can choose $D \subseteq H \cap Z_2 = C_1 \cap C_2$ such that $h^0(\omega_{C_1}(-D+x))=0$ for any $x \in D$. We have $\omega_{C_1} \cong \mathcal{O}_{C_1}(q-4)$. Using the exact sequence:

$$0 \longrightarrow \mathcal{O}_H(-2q+1) \longrightarrow \mathcal{O}_H(-q) \oplus \mathcal{O}_H(-q+1) \longrightarrow I_{C_1 \cap C_2} \longrightarrow 0$$
 one finds that $h^0(I_{C_1 \cap C_2}(q-4))=0$, hence if $\sigma \in H^0(\omega_{C_1})$ vanishes at any point of $C_1 \cap C_2$ then $\sigma = 0$. It follows that there is a set $T \subset C_1 \cap C_2$ consisting of $h^0(\omega_{C_1}) = \frac{1}{2} \cdot (q-2)(q-3)$ points such that, if $\sigma \in H^0(\omega_{C_1})$ vanishes at any point of T then $\sigma = 0$.

Let y_1,\ldots,y_g be the points of T and let $\sigma_i\in H^0(\omega_{C_1})$ be the unique (up to scalar) section vanishing at $y_1,\ldots,y_{i-1},y_{i+1},\ldots,y_g$ but not at y_i , σ_1,\ldots,σ_g is a basis of $H^0(\omega_{C_1})$ hence for any $x\in C_1$, there is an i such that $\sigma_i(x)\neq 0$. It follows that for any $x\in C_1$ T there is an $f\in H^0(\mathcal{O}_{C_1}(q))$ which vanishes at any point of T but not at x. Indeed, choose σ_i such that $\sigma_i(x)\neq 0$ and $\lambda\in H^0(\mathcal{O}_{C_1}(1))$ such that $\lambda(y_i)=0$ and $\lambda(x)\neq 0$. We may take $f=\lambda^4\cdot \sigma_i$.

We have proved that the base locus of the linear system of the curves of degree q in H passing through the points of T is T. It follows that, moving C_2 (in fact \sum_2) if necessary, we may suppose that, for any i, σ_i vanishes at no point of $(C_1 \cap C_2) \setminus T$.

Now, suppose that $T \subset D \subseteq C_1 \cap C_2$. Let $x \in D$. If $\sigma \in H^0(\omega_{C_1})$ vanishes at any point of $D \setminus \{x\}$ then $\sigma = 0$, hence $H^0(\omega_{C_1}(-D+x)) = 0$.

We have proved that if r=0 or if $\frac{1}{2}(q-2)(q-3)+1 \le r \le q(q-1)$ then one can construct \mathcal{F} such that it satisfies the hypothesis of (1.1).

One can similarly prove, using the curve C_2 instead of C_1 , that if r=0 or if $\frac{1}{2} \cdot (q-1)(q-2)+1 \le r \le q(q-1)$ then one can construct $\mathcal F$ such that $\mathcal F$ (-1) satisfies the hypothesis of (1.1).

Next, we show that if $q \ge 2$ then, for any $n \ge 1$, $\mathcal{F}(n)$ has a global section vanishing in codimension ≥ 2 . Firstly, we show that for any $d \ge q$ -1 there is an irreducible surface of degree d in P containing Z_2 but not Z_1 . We may suppose $d \ge q$ +1. Then the base locus of the linear system of the surfaces of degree d containing Z_2 is Z_2 and this linear system separates the points of $P \setminus Z_2$. By the Theorem of Bertini, the general surface of degree d containing Z_2 is irreducible.

Now, let $n \ge 1$ be an integer. Let h=0 be an equation of the plane H and let g=0 be an equation of an irreducible surface of degree n+q-2 containing Z_2 but not Z_1 . Let s be a global section of $\mathcal{F}(n)$ which goes into $h \cdot g \in H^0(\mathbb{I}_Z(n+q-1))$. If s vanishes in codimension 1 then there is an m < n, an $s \cdot \in H^0(\mathcal{F}(m))$ and an $f \in H^0(\mathcal{O}_P(n-m))$ such that $s=f \cdot s'$. Let g' be the image of s' in $H^0(\mathbb{I}_Z(m+q-1))$. We have $f \cdot g' = h \cdot g$. By unique factorization, g' = h or g' = g, but none of then vanishes on Z and this is a contradiction.

Example 1.5. Let $q \ge 1$ and $c_2 \ge 2$ be integers $\sqrt{}$. Let $Z_2 \subset P$ be a complete intersection of two surface of degree q and let Z_1 be a plane curve of degree c_2 such that Z_1 meets Z_2 at r simple points, $0 \le r \le q^2$. Put $Z=Z_1 \cup Z_2$. One can construct a stable rank 2 reflexive sheaf \mathcal{F} on P as an extension:

$$0 \longrightarrow \mathcal{O}_{p}(-q) \longrightarrow \mathcal{F} \longrightarrow I_{Z}(q) \longrightarrow 0$$

The Chern classes of \mathcal{F} are: $c_1(\mathcal{F})=0$, $c_2(\mathcal{F})=c_2$, $c_3(\mathcal{F})=c_2$, $c_3(\mathcal{F})=c_2$, $c_3(\mathcal{F})=c_3$

One can show, as in (1.4), that if r=0 or if $\frac{1}{2} \cdot (q-1)(q-2) + 1 \le r \le q^2$ then one can construct \mathcal{F} such that $\mathcal{F}(-1)$ satisfies the hypothesis of (1.1). Also, if $n \ge 1$ then $\mathcal{F}(n)$ has a global section vanishing in codimension ≥ 2 .

We end the section with an example of a semistable rank 3 vector bundle on P with $c_1=0$, which will be used in the sections 3 and 4.

Example 1.6. Let $q \ge 1$ and $c_2 \ge 2q$ be integers. Let Z_1, Z_2 be plane curves in P of degree c_2 -q and q, respectively, contained in different planes H_1 and H_2 and such that Z_1 meets Z_2 at s simple points, $0 \le s \le q$. Put $Z = Z_1 \cup Z_2$. Let H be a plane which intersects transversally Z_1 and Z_2 and which does not contain any point of $H_1 \cap H_2 \cap Z$. Put $L_1 = H \cap H_1$, i = 1, 2.

There are elements $t_1, t_2 \in \operatorname{H}^0(\mathcal{O}_Z(1))$ which generate $\mathcal{O}_Z(1)$ and such that t_1 vanishes at any point of $\operatorname{H} \cap Z_2$ and t_2 vanishes at any point of $\operatorname{H} \cap Z_1, \omega_Z(3)$ is generated by its global sections, hence we can find $\sigma_1, \sigma_2 \in \operatorname{H}^0(\omega_Z(3))$ such that $\tilde{\Sigma}_1 = t_1 \cdot \sigma_1$ and $\tilde{\Sigma}_2 = t_2 \cdot \sigma_2$ generate $\omega_Z(4)$. $\tilde{\Sigma}_1$ and $\tilde{\Sigma}_2$ determine an extension:

$$0 \longrightarrow \mathcal{O}_p^2 \longrightarrow \mathbb{E} \longrightarrow \mathbb{I}_Z \longrightarrow 0$$

with E a semistable rank 3 vector bundle on P with Chern classes: $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2-(2q-1)c_2+2q^2+2s$.

We assert that for any $n \ge 1$ there is an epimorphism $E_H \longrightarrow \mathcal{O}_H(n)$. Indeed, dualizing the exact sequence:

$$0 \longrightarrow 0^{\frac{2}{H}} \longrightarrow \mathbb{E}_{H} \longrightarrow \mathbb{I}_{Z \cap H} \longrightarrow 0$$

one gets an exact sequence:

$$0 \longrightarrow \mathcal{O}_{H} \longrightarrow E_{H}^{*} \longrightarrow \mathcal{O}_{H}^{2} \longrightarrow \omega_{Z \cap H} (4) \longrightarrow 0$$

The morphism $\mathcal{O}_{H}^{2} \longrightarrow \omega_{Z \cap H}$ (4) is determined by $\overline{5}_{1}|_{H}$ and $\overline{5}_{2}|_{H}$. It follows that the image of the morphism $H^{0}(\mathbb{F}_{H}^{*}(n)) \longrightarrow H^{0}(\mathcal{O}_{H}(n))^{2}$ consists of the pairs (f_{1},f_{2}) such that f_{i} vanishes at any point of $H \cap Z_{i}$, i=1,2. Let $\lambda_{1},\lambda_{2} \in H^{0}(\mathcal{O}_{H}(1))$ be such that $\lambda_{i}=0$ is an equation of L_{i} , i=1,2, and let $\lambda_{0} \in H^{0}(\mathcal{O}_{H}(1))$ be

a linear form which does not vanish at the point x where L and L intersect. Let φ_o be the epimorphism $E_H \longrightarrow I_{Z \cap H^o}$

Let φ be a global section of $E_H^*(n)$ whose image in $H^0(\mathcal{O}_H(n))^2$ is $(\lambda_1^n,\lambda_2^n)$ Vianishes only at the point x. It follows that φ might vanish only at x. If φ vanishes at x then the global section $\varphi + \lambda_0^n \cdot \varphi_0$ of $E_H^*(n)$, whose image $(\mathcal{O}_H(n))^2$ is still $(\lambda_1^n,\lambda_2^n)$, vanishes at no point of H.

2. Examples of Stable Rank 3 Vector Bundles with $c_1=0$.

With some exceptions, the bundles considered in this section are constructed as extensions:

where \mathcal{F} is a stable rank 2 reflexive sheaf on P as in (1.4) and Y is a plane curve of degree $d \geq 2$. One can verify the stability of E as it follows. In every case one has $S \neq \emptyset$, hence we may suppose $H^0(I_{Y \cup S}(1))=0$. It follows that $H^0(E)=0$. Dualizing (1) one gets an exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}}(-1) \longrightarrow \mathbf{E}^* \longrightarrow \mathcal{J}^* \longrightarrow \mathcal{U}_{\mathbf{Y}}(3) \longrightarrow 0$$

If $c_2 \ge 3$ then $\mathcal{F}^* \cong \mathcal{F}(1)$ has only one (up to scalar) global section s. We may suppose that $s \mid Y \not= 0$, hence the morphism $H^0(\mathcal{F}^*) \longrightarrow H^0(\mathcal{F}^* \mid Y)$ is injective. $\omega_Y(3) \cong \mathcal{O}_Y(d)$ and $\det \mathcal{F}^* \cong \mathcal{O}_P(1)$, hence we have an exact sequence:

$$0 \longrightarrow \mathcal{O}_{Y}(1-d) \longrightarrow \mathcal{F}' \mid Y \longrightarrow \mathcal{W}_{Y}(3) \longrightarrow 0$$

It follows that the morphism $H^0(\mathcal{F}^*|Y) \to H^0(\omega_Y(3))$ is injective, hence $H^0(\mathbb{F}^*)=0$.

Example 2.1. Let $q \ge 3$ and $c_2 \ge 2q-2$ be integers. Let $\mathcal F$ be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}}(\mathbb{Q}+1) \longrightarrow \mathcal{F} \longrightarrow I_{\mathcal{I}}(\mathbb{Q}=2) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree c_2 -1 and Z_2 a

complete intersection of two surfaces of degree q-2 and q-1, respectively, such that Z_{γ} meets Z_{γ} at r simple points.

We construct a stable rank 3 vector bundle E on P as an extension:

where Y is a conic.According to (1.4), if r=0 or if $\frac{1}{2} \cdot (q-2)(q-3) + 1 \le r \le (q-1)(q-2)$ then the construction is possible. The Chern classes of E are: $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2-(2q-1)c_2+2(q-2)+2r$.

This example covers all the values of c_3 with $c_3 = c_2^2$ - $(2q-1)c_2+2(q-2)$ or with $c_2^2-(2q-1)c_2+(q-1)(q-2)+2 \le c_3 \le c_2^2$ - $(2q-1)c_2+2q(q-2)$.

Example 2.2. Let F be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}}(-1) \longrightarrow \mathcal{F} \longrightarrow \mathbf{I}_{\mathbf{L}} \longrightarrow 0$$

where L is a line. The Chern classes of \mathcal{F} are: $c_1(\mathcal{F})=-1,c_2(\mathcal{F})=1$, $c_3(\mathcal{F})=1$. We have $H^2(\mathcal{F}(-1))=0$, and $\mathcal{F}(1)$ is generated by its global sections. It follows that if Y is a l.c.i. curve in P with $\omega_Y(2)$ generated by its global sections then $\omega_Y(3)\otimes\mathcal{F}$ has a section vanishing at no point of Y. In this case there is an extension:

with E a rank 3 vector bundle on P. Let Y_1, \ldots, Y_n be the connected components of Y. If there is an i such that $h^O(\omega_{Y_1}(2)^*)=0$ or if $h^O(\omega_{Y_1}(2)^*)=1$ and $n\geq 2$ then E is stable (see [1; Sect.3, Example 2] for details).

Now, let $q \ge 1$ and $c_2 \ge 2$ be integers such that $c_2 \ge 2q-2$. Let $Y=Y_1 \cup Y_2$, where Y_1 is a plane curve of degree c_2-q+1 and Y_2 a plane curve of degree q-1, situated in different planes and such that Y_1 means Y_2 in a simple points, $0 \le s \le q-1$. In this case the Chern classes of E are: $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2$ $-(2q-1)c_2+2q(q-2)+2(s+1)$.

This example covers all the values of c3 with:

$$c_2^2 - (2q-1)c_2 + 2q(q-2) + 2 \le c_3 \le c_2^2 - (2q-1)c_2 + 2q(q-1)$$

Example 2.3. Let $d \ge 1$, $q \ge \max$ (2d,3) and $c_2 \ge q+1$ be interges.Let \mathcal{F} be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{p}(-d-1) \longrightarrow \mathcal{F} \longrightarrow I_{Z}(d) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree q and Z_2 a complete intersection of two surface of degree d and d+1, respectively, such that Z_1 meets Z_2 at r simple points.

We construct a stable rank 3 vector bundle E on P as an extension:

$$0 \longrightarrow \mathcal{F} \longrightarrow E \longrightarrow I_{YUS}(1) \longrightarrow 0$$

where Y is a plane curve of degree c_2 -q+l. According to (1.4), if $\frac{1}{2}$ ·d(d-l)+l $\leq r \leq$ d(d+l) then the construction is possible. The Chern classes of E are: $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2-(2q-1)c_2+2dq-2r$.

Example 2.4. Let $d \ge 1$, $q \ge d+2$ and $c_2 \ge q+d$ be integers. Let \mathcal{F} be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}}(\text{-d-1}) \longrightarrow \mathcal{F} \longrightarrow \mathrm{I}_{\mathbb{Z}}(\mathrm{d}) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree $c_2-q+d+1$ and Z_2 a complete intersection of two surfaces of degree d and d+1, respectively, such that Z_1 meets Z_2 at r simple points.

We construct a stable rank 3 vector bundle E on P an extension:

$$0 \longrightarrow \mathcal{F} \longrightarrow E^* \longrightarrow I_{YUS} (1) \longrightarrow 0$$

where Y is a plane curve of degree q-d. According to (1.4), if

 $\frac{1}{2} \cdot d(d-1)+1 \le r \le d(d+1) \text{ then the construction is possible. The Chern classes of E are: } c_1(E)=0, c_2(E)=c_2,c_3(E)=c_2^2-(2q-1)c_2+2dq-2d(d+1)+2r.$

The examples (2.3) and (2.4) cover all the values of c_3 with $c_2^2 - (2q-1)c_2 + 2dq - 2d(d+1) \le c_3 \le c_2^2 - (2q-1)c_2 + 2dq$. Now, let d be the largest integer for which $2d \le q$. We have $2dq \ge (q-1)(q-2)$. It follows that the examples from (2.1) to (2.4) cover all the values of c_3 with $c_3 \in M_0(q,c_2)$, except $c_3 = c_2^2 - (2q-1)c_2 + 2(q^2-q+1)$ and $c_3 = c_2^2 - (2q-1)c_2$.

Example 2.5. Let $q \ge 2$ and $c_2 \ge 3$ be integers such that $c_2 \ge 2q-2$. Let E' be a stable rank 3 vector bundle on P with Chern classes $c_1' = -1$, $c_2' = q$, $c_3' = q^2 - 2q+2$ (see [8, (5.8)]). Let $H \subset P$ be a plane which contains a generic line of E'. By [8, (5.8)], E'(q-1) is generated by its global sections, hence the same is true for $E_H^*(c_2-q+1)$. It follows that $E_H^*(c_2-q+1)$ has a global section vanishing at no point of H, hence there is an epimorphism $\alpha_H^*: E_H^{**} \longrightarrow \mathcal{O}_H(c_2-q+1)$. Composing with the morphism $E_H^{**} \longrightarrow E_H^{**}$ we get an epimorphism $\alpha_H^*: E_H^{**} \longrightarrow \mathcal{O}_H(c_2-q+1)$. Let $E_H^{**} = Ker\alpha_H^*$. E is a rank 3 vector bundle on P and, by definition, there is an exact sequence:

$$0 \longrightarrow E^* \longrightarrow E^* \xrightarrow{\alpha} \mathcal{O}_{H} (c_2 - q + 1) \longrightarrow 0$$

Dualizing, we get an exact sequence

The Chern classes of E are $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2-(2q-1)c_2+2(q^2-q+1)$. In order to show that E is stable it suffices to show that $H^0(\alpha)$ is injective. We have $H^0(E^{**}(-1))=0$, hence the morphism $H^0(E^{**}) \longrightarrow H^0(E^{**})$ is injective. Now, let $F_H=\ker \alpha_H$. Dualizing the exact sequence:

$$0 \longrightarrow F_{H} \longrightarrow E_{H}^{**} \xrightarrow{A} \mathcal{O}_{H} (c_{2}-q+1) \longrightarrow 0$$

and using the fact that $H^0(E_H^*(-1))=0$ one finds that $H^0(F_H^*(-1))=0$. But $F_H^*(-1) \cong F_H(c_2-q-1)$, hence $H^0(F_H)=0$. It follows that $H^0(\alpha_H)$ is injective.

Example 2.6. Let $q \ge 1$ and $c_2 \ge 2$ be integers such that $c_2 \ge 2q-1$. Let E' be a stable rank 3 vector bundle on P with Chern classes $c_1 = -1$, $c_2 = q$, $c_3 = -q^2$. By [8, Sect.5], there is an exact sequence

$$0 \longrightarrow E^{\circ} \longrightarrow \mathcal{O}_{P}^{3} \longrightarrow \mathcal{O}_{H_{0}}(q) \longrightarrow 0$$

for some plane $H_0 \subset P$. Let $F_{H_0} = \operatorname{Ker}(\mathcal{O}_{H_0}^3 \longrightarrow \mathcal{O}_{H_0}(q))$. Using the Snake lemma, as in [2,(1.1)], one gets an exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}}(-1)^3 \longrightarrow \mathbf{E}^{\mathfrak{e}} \longrightarrow \mathbf{F}_{\mathbf{H}_{\mathbf{O}}} \longrightarrow 0$$

 $F_{H_0}^*$ is generated by its global sections. But $F_{H_0}^* \cong F_{H_0}(q)$. It follows that $E^*(q)$ is generated by its global sections.

Let HCP be a plane which contains a generic line of E'.

One can construct, as in (2.5), a stable rank 3 vector bundle E
on P as an extension:

The Chern classes of E are $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=c_2^2$ -(2q-1) c_2 .

Now, let \bar{q} be the largest integer for which $2\bar{q}-1 \le c_2$ and $\bar{d}=d_0(\bar{q})$. $c_2^2-(2\bar{q}-1)c_2+2(\bar{q}^2-\bar{q}+1)$ is equal to $\frac{1}{2}\cdot c_2^2+2$ if c_2 is even and to $\frac{1}{2}(c_2^2+3)$ if c_2 is odd. It follows that the examples from (2.1) to (2.6) cover all the possible values of c_3 with $c_3 \ge c_2^2-(2\bar{q}-1)c_2+2\bar{d}q-2\bar{d}(\bar{d}+1):=m_0(c_2)$.

The remaining values of c_3 are coverd by:

Example 2.7. Let $c_2 \ge 2$ be an integer. Let \mathcal{F} be a stable rank 2 reflexive sheaf on P as in (2.2). We construct a stable rank 3 vector bundle E on P as an extension:

Med 21343 0 --- I --- 1 1 (1) --- 0

where Y is a l.c.i. curve in P satisfying the conditions stated at the beginning of (2.2).

Let d be an integer with $0 \le d \le c_2$ -l. If Y is a disjoint union of c_2 -d-l lines and of a rational curve of degree d+l then the Chern classes of E are: $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=2d$.

If Y is a nonsingular curve of degree c_2 and of genus g then $c_1(E)=0$, $c_2(E)=c_2$, $c_3(E)=2c_2-2+2g$. According to [4], there are such curves for all g with $0 \le g \le \frac{1}{6} \cdot c_2(c_2-3)+1$.

It follows that this example covers all the values of c_3 with $0 \le c_3 \le \frac{1}{3} \cdot c_2(c_2+3)$. One can easily see that $\frac{1}{3} \cdot c_2(c_2+3) \ge m_0(c_2)$ for all $c_2 \ge 2$.

3. Examples of Stable Rank 3 Vector Pundles with $c_{\perp} = -1$

Example 3.1. Let $q \ge 1$ and $c_2 \ge 2q$ be integers. Let $\mathcal F$ be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$O \longrightarrow O_{P}(-q) \longrightarrow J \longrightarrow I_{Z}(q) \longrightarrow O$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree c_2 and Z_2 a complete intersection or two surfaces of degree q such that Z_1 meets Z_2 at r simple points. We construct a stable rank 3 vector bundle E on P as an extension:

According to (1.5), if r=0 or if $\frac{1}{2} \cdot (q-1)(q-2) + 1 \le r \le q^2$ then the construction is possible. The Chern classes of E are $c_1(E) = -1$, $c_2(E) = c_2, c_3(E) = c_2^2 - 2qc_2 + 2r$.

This example covers all the value of c_3 with $c_3=c_2^2-2qc_2$ or with $c_2^2-2qc_2+(q-1)(q-2)+2\leq c_3\leq c_2^2-2qc_2+2q^2$.

Example 3.2. Let $d \ge 1$, $q \ge 2d$ and $c_2 \ge q$ be integers. Let \mathcal{F} be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{\mathcal{D}}(-d-1) \longrightarrow \mathcal{F} \longrightarrow I_{\mathcal{Z}}(d) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree q and Z_2 a complete intersection of two surfaces of degree d and d+1, respectively, such that Z_1 meets Z_2 at r simple points. We construct a stable rank 3 vector bundle E on P as an extension:

where Y is a plane curve of degree c_2 -q. According to (1.4), if $\frac{1}{2} \cdot (d-1)(d-2)+1 \le r \le d(d+1)$, then the construction is possible. The Chern classes of E are $c_1(E)=-1$, $c_2(E)=c_2, c_3(E)=c_2^2-2qc_2+2dq-2r$. Example 3.3. Let $d \ge 1$, $q \ge d$ and $c_2 \ge q+d$ be integers. Let $\mathcal F$ be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{P}(-d) \longrightarrow \mathcal{F} \longrightarrow I_{Z}(d) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree c_2 -q+d and Z_2 a complete intersection of two surfaces of degree d such that Z_1 meets Z_2 at r simple points. We construct a stable rank 3 vector bundle E on P as an extension:

where Y is a plane curve-of degree q-d. According to (1.5), if $\frac{1}{2} \cdot (d-1)(d-2) + 1 \le r \le d^2$ then the construction is possible. The Chern classes of E are: $c_1(E) = -1$, $c_2(E) = c_2$, $c_3(E) = c_2^2 - 2qc_2 + 2dq - 2d^2 + 2r$.

Example 3.4. Let $d \ge 1$, $q \ge d+1$ and $c_2 \ge q+d$ be integers. Let E' be a semistable rank 3 vector bundle on P constructed, as in (1.6), as an extension:

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree c_2 -q and Z_2 a plane curve of degree d such that Z_1 meets Z_2 at s simple points, $0 \le s \le d$. Let H be the plane considered in (1.6). The generic splitting type of E' is (0,0,0) and H contains a generic line of E'. By (1.6), there is an epimorphism E' $\longrightarrow \mathcal{O}_H(q-d)$. Let E be

the kernel of this epimorphism. We have, by definition, an exact sequence:

It follows, as in (2.5), that E is a stable rank 3 vector bundle on P with Chern classes: $c_1(E)=-1$, $c_2(E)=c_2$, $c_3(E)=c_2^2-2qc_2+2dq+2s$.

The examples from (3.2) to (3.4) cover all the values of c_3 with $c_2^2 - 2qc_2 + 2dq - 2d(d+1) \le c_3 \le c_2^2 - 2qc_2 + 2dq + 2d$. Now, let \tilde{d} be the largest integer for which $2\tilde{d} \le q$. Then $2\tilde{d}q + 2\tilde{d} \ge (q-1)(q-2)$. It follows that the examples from (3.1) to (3.4) cover all the values of c_3 with $c_3 \in M_1(q,c_2)$.

Let \bar{q} be the largest integer for which $2\bar{q} \le c_2$ and $\bar{d} = d_1(\bar{q})$. $c_2^2 - 2\bar{q}c_2 + 2\bar{q}^2$ is equal to $\frac{1}{2} \cdot c_2^2$ if c_2 is even and to $\frac{1}{2} \cdot (c_2^2 + 1)$ if c_2 is odd. It follows that the examples from (3.1) to (3.4) cover all the possible values of c_3 with $c_3 \ge c_2^2 - 2\bar{q}c_2 + 2\bar{d}q - 2\bar{d}(\bar{d} + 1)$: = $m_1(c_2)$.

The remaining values of c_3 are covered by: Example 3.5. Let $c_2 \ge 1$ be an integer. We construct a rank 3 vector bundle E on P as an extension:

$$0 \longrightarrow \mathcal{O}_{p}(-1)^{2} \longrightarrow E \longrightarrow I_{y}(1) \longrightarrow 0$$

where Y is a l.c.i. curve in P with $\omega_{Y}(2)$ generated by its global sections and such that $H^{0}(I_{Y}(1))=0$. The extension is determined by two global sections ξ_{1} , ξ_{2} of $\omega_{Y}(2)$ which generate this sheaf. If ξ_{1} and ξ_{2} are linearly independent over k then E is stable (as one can easily see dualizing the extension).

Let $2 \le d \le c_2+1$ be an integer. If Y is a disjoint union of d-1 lines and of a rational curve of degree c_2-d+2 then the Chern classes of E are: $c_1(E)=-1$, $c_2(E)=c_2$, $c_3(E)=c_2+2-2d$.

If $c_2 \ge 2$ and Y is a rational curve of degree c_2 +1 then: $c_1(E) = -1$, $c_2(E) = c_2$, $c_3(E) = c_2$.

Now, suppose that $c_2 \ge 3$. If Y is a nonsingular curve of degree c_2 +1 and of genus g contained in no plane then the Chern classes of E are : $c_1(E) = -1$, $c_2(E) = c_2$, $c_3(E) = c_2 + 2g$. According to [4], there are such curves for all g with $0 \le g \le \frac{1}{6} \cdot (c_2 + 1) \cdot (c_2 - 2) + 1$.

It follows that, for $c_2 \ge 3$, this example covers all the values of c_3 with $-c_2 \le c_3 \le \frac{1}{3} \cdot (c_2 + 1)^2 + 1$. One can easily see that $\frac{1}{3} \cdot (c_2 + 1)^2 + 1 \ge m_1(c_2)$ for all $c_2 \ge 3$.

4. Examples of Stable Rank 3 Vector Bundles with $c_1 = -2$

Example 4.1. Let $q \ge 1$ and $c_2 \ge 2q$ be integers. Let \mathcal{F} be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{\mathbf{P}} (-\mathbf{q}) \longrightarrow \mathcal{F} \longrightarrow \mathbf{I}_{\mathbf{Z}} (\mathbf{q} \cdot \mathbf{1}) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree c_2 -1 and Z_2 a complete intersection of two surfaces of degree q-1 and q, respectively, such that Z_1 meets Z_2 at r simple points. We construct a stable rank 3 vector bundle E on P as an extension:

$$0 \longrightarrow \mathcal{F} \longrightarrow E^*(-1) \longrightarrow I_S \longrightarrow 0$$

According to (1.4), if r=0 or if $\frac{1}{2} \cdot (q-2)(q-3)+1 \le r \le q(q-1)$ then the construction is possible. The Chern classes of E are: $c_1(E) = -2$, $c_2(E) = c_2$, $c_3(E) = c_2^2 - (2q+1)c_2 + 2q + 2r$.

This example covers all the values of c_3 with $c_3 = c_2^2 - (2q+1)c_2 + 2q$ or with $c_2^2 - (2q+1)c_2 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_2^2 - (2q+1)c_2 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_2^2 - (2q+1)c_2 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_2^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_2^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_2^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-2)(q-3) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-2)(q-2)(q-2) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2q + (q-2)(q-2)(q-2)(q-2) + 2 \le c_3 \le c_3^2 - (2q+1)c_3 + 2 \le c_3^2 -$

- $(2q+1)c_2+2q$ or with $c_2-(2q+1)c_2+2q+(q-2)(q-3)+2 \le c_3 \le c_2$

max(2d,3)

Example 4.2. Let $d \ge 1$, $q \ge \sqrt{\text{and } c_2} \ge q$ be integers. Let $\mathcal F$ be a stable rank 2 reflexive sheaf on P constructed as an extension:

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree q-1 and Z_2 a complete intersection of two surfaces of degree d such that Z_1 meets Z_2 at r simple points. We construct a stable rank 3 vector bundle E on P as an extension:

where Y is a plane curve of degree c_2 -q. According to (1.5), if $\frac{1}{2} \cdot (d-1)(d-2)+1 \le r \le d^2$ then the construction is possible. The Chern classes of E are: $c_1(E)=-2$, $c_2(E)=c_2$, $c_3(E)=c_2^2-(2q+1)c_2+2(d+1)q-2d-2r$.

Example 4.3. Let $d \ge 1$, $q \ge d+1$ and $c_2 \ge q+d$ be integers. Let \mathcal{F} be a stable rank 2 reflexive sheaf on P constructed as an extension:

$$0 \longrightarrow \mathcal{O}_{p}(-d-1) \longrightarrow \mathcal{F} \longrightarrow I_{Z}(d) \longrightarrow 0$$

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree c_2 -q+d and Z_2 a complete intersection of two surfaces of degree d and d+l, respectively, such that Z_1 meets Z_2 at r simple points. We construct a stable rank 3 vector bundle E on P as an extension:

where Y is a plane curve of degree q-d-l. According to (1.4), if $\frac{1}{2} \cdot (d-1)(d-2)+1 \le r \le d(d+1)$ then the construction is possible. The Chern classes of E are: $c_1(E)=-2$, $c_2(E)=c_2$, $c_3(E)=c_2^2-(2q+1)c_2+2(d+1)q-2d(d+1)+2r$.

Example 4.4. Let $d \ge 1$, $q \ge 2d+1$ and $c_2 \ge q+1$ be integers. Let E' be a semistable rank 3 vector bundle on P constructed, as in (1.6), as an extension:

where $Z=Z_1\cup Z_2$, with Z_1 a plane curve of degree q-d-1 and Z_2 a plane curve of degree d such that Z_1 meets Z_2 at s simple points, $0 \le s \le d$. Let H be the plane considered in (1.6). By (1.6), there is an epimorphism $E^* \longrightarrow \mathcal{O}_H$ (c_2 -q). Let E^* (-1) be the kernel of

this epimorphism. We have, by definition, an exact sequence:

$$0 \longrightarrow E^*(-1) \longrightarrow E^* \longrightarrow \mathcal{O}_H(c_2-q) \longrightarrow 0$$

It follows that E is a stable rank 3 vector bundle on P with Chern classes: $c_1(E) = -2$, $c_2(E) = c_2$, $c_3(E) = c_2^2 - (2q+1)c_2 + 2(d+1)q - 2d(d+1) - 2s$.

The examples from (4.2) to (4.4) cover all the values of c_3 with $c_2^2 - (2q+1)c_2 + 2(d+1)q - 2d(d+2) \le c_3 \le c_2^2 - (2q+1)c_2 + 2(d+1)q$.

Now, let \tilde{d} be the largest integer for which $2\tilde{d}+1 \leq q$. Then $2(\tilde{d}+1)q \geq 2q+(q-2)(q-3)$. It follows that the examples from (4.1) to (4.4) cover all the values of c_3 with $c_3 \in M_2(q,c_2)$.

Let \bar{q} be the largest integer for which $2\bar{q} \leq c_2$ and $\bar{d}=d_2(\bar{q})$. $c_2^2-(2\bar{q}+1)c_2+2\bar{q}^2$ is equal to $\frac{1}{2}\cdot(c_2^2-2c_2)$ if c_2 is even and to $\frac{1}{2}\cdot(c_2-1)^2$ if c_2 is odd. It follows that the examples from (4.1) to (4.4) cover all the values of c_3 with $c_3 \geq c_2^2-(2\bar{q}+1)c_2+2(\bar{d}+1)\bar{q}-2\bar{d}(\bar{d}+2):=m_2(c_2)$.

The remaining values of c_3 are covered by: Example 4.5. Let $c_2 \ge 2$ be an integer. We construct a rank 3 vector bundle E on P as an extension:

where Y is a l.c.i. curve in P with $\omega_Y(3)$ generated by its global sections. The extension is determined by two global sections ξ_1 , ξ_2 of $\omega_Y(3)$ which generate this sheaf. If ξ_1 and ξ_2 are linearly independent over k then E is stable.

Let $1 \le d \le c_2$ -1 be an integer. If Y is a disjoint union of d-1 lines and of a rational curve of degree c_2 -d then the Chern classes of E are: $c_1(E) = -2$, $c_2(E) = c_2$, $c_3(E) = 2c_2 - 2 - 2d$.

If Y is a nonsingular curve of degree c_2 -1 and of genus g then the Chern classes of E are: $c_1(E) = -2$, $c_2(E) = c_2$, $c_3(E) = -2$

According to [4], there are such curves for all g with $0 \le g \le \frac{1}{6} \cdot (c_2-1)(c_2-4)+1$.

It follows that this example covers all the values of c_3 with $0 \le c_3 \le \frac{1}{3} \cdot (c_2 - 1)(c_2 + 2)$. One can easily see that : $\frac{1}{3} \cdot (c_2 - 1)(c_2 + 2) \ge m_2(c_2) \text{ for all } c_2 \ge 2.$

References

- 1. Bănică, C., Coandă, I.: Existence of rank 3 vector bundles with given Chern classes on homogeneous rational 3-folds. Manuscripta math. (to appear).
- 2. Coandă, I.: On the spectrum of a stable rank 3 reflexive shear on \mathbb{P}^3 . Preprint INCREST, No. 26/4985
- 3. Ein, L., Hartshorne, R., Vogelaar, H.: Restriction theorems for stable rank 3 vector bundles on Pⁿ. Math. Ann. 259, 541-569 (1982).
- 4. Gruson, L., Peskine, C.: Genre des courbes de l'espace projectif (II). Ann.scient. Ec. Norm. Sup., 4^e série, t.15, 401-418 (1982).
- 5. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, Vol.52. Berlin, Heidelberg, New York: Springer 1977.
- 6. Hartshorne, R.: Algebraic vector bundles on projective spaces: a problem list. Topology 18, 117-128 (1979).
- 7. Miró, R.: Gaps in the Chern classes of rank 2 stable reflexive sheaves. Math. Ann. 270, 317-323 (1985).
- 8. Okonek,C., Spindler,H.: Reflexive Garben vom Rang r>2 auf \mathbb{P}^n .
 Crelles J. 344, 38-64 (1983).