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HYPONORMAL OPERATORS AND BIGENDISTRIBUTIONS

Mihai Putinar

Intreoduction

This paper deals with two-dimensional models for hyponormal operators.Ve
link the canonical model described in a previous paper [12] to more familiar
function spaces and then we relate it to other functional realizations of some
special classes of hyponormal operators.The paper is centered around the space
of globally defined eigendistributions of the adjoint of a hyponormal operstor.

A hyponormal opefaior on a Hilbert space H is by definition a linear boun-
ded operator T € i(H) with the property e < T*T.The generic element of this
class of operators was described by Daoxing-Xia [16] as a combination between
multiplication operators with bounded measurable functions and the Hilbert
transform,on the Hilbert space L2(a,b),where (a,b) is an interval of the real
line.Xia's model and the cartesian decomposition of an operator into real and
imaginary part were the principal methods in the theory of hyponormal operators.
Recently,several authors ( Xia[17],Clancey[4],Pincus—Xia~Xia[1ﬂ) have refered
to hyponormal operators with one-dimensional self-commutator,snd related ob-
Jects to them,in complex coordinate terms.We adopt in this paper the same
point of view.Clancey's report[41 was the motivation of the present papef,while
the proofs below continues the technique developped in f1éT.Let us recall the
main construction from [12].

Let £2 be-a bounded domain with smooth boundary of the complex plahe G ’
and let T € ;f(H) be a hyponormal operator.For every smooth H-valued function

f € Yg(fi;ﬂ),the Cauchy~Pompeiu formula gives rise to the inequality

(1) Epell, o € cC @ el o+ NE-1%%l, o ),

where C is a positive constant depending only on {2 and P:L2(IZ,H)-> AZ(YI,H)
denotes the Bergman projection.when the domain £2 contains the spectrum of

1, L Ol s (1), ,the linear map
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Vi H—> H°(Q ,H)/(z-T)H (0 ,H),

where Vh represents the class {Erh of the constent function h on {2 ,is one
to one and has closed 'range.Here H2(§Z,H) stands for the Sobolev space of
order 2 of H-valued functions .This fact is a consequence of the inequality !
(1) and of the Riesz-Dunford functional calculus.Then the operator T induced
by the multiplication with z (the complex coordinate) on the quotient space
above is (generalized )scalar) in the terminology of Colojoari-Foias [5] and
it extends T,that is VT:%V.The existence of this natural scélar extensibn
explains several spectral properties of hyponormal operators.,

The present paper deals with the dual picture of the above construction.
More precisely,the dual space-of the quotient space where acts the scalar ex-

tension is the following space of distributions
-2, - e ek
WT (H) = { u€H 2(S).,H)\ (z-T )uzo'k',
and the surjective map
-2
Vil: WT (H) — H
acts by the formulea
-2
VilaiE=(a,d ) e Su y wE€ g (HDE,

In other words ,the Hilbert space H is generated by the global eigendistribu-
tions of the operator T*. :
The space WEZ(H) carries a Hilbert sﬁace norm which is independent of (2 ’
“and this fact will be used in the sequel in order to define & canonical norm
on.the space of the scalar extension T.
The surjectivity of the operator V' reminds of the characteristic property
of a class of operators studied and classified by Cowen and Douglas [6] :
Altough the case of a general hyponormal operator is more complicated,this

analogy suggests a correspondence between a hyponormal operator T and an



operator velued distribution kernel X _ which plays the role of the generalized

Bergman kernel of Curto and Salinas [g].This object offers » functional descrip-
tion of the -initial Hilbert space,in which 7" becomes the multiplication operator
with z.The kernel KT has a certain redundancy,and we were able to eliminate it
and to describér» a determining part of KT only in a few well understood cases,

The content is the followings

In the first section we recall some facts concerning vector valued Sobolev
spaces.

Since the natural scalar extension of a hyponormal operator relies on the
multiplication operator with the complex coordinate on a Sobolev space,we col-
lect in the second section a series of properties of this prototype operator.

The third section deals with the naturglity problem for the Hilbert space
structures intréduced by various Sobolev space norms on the space of the na-
tural scalar extension of a hyponormal operator.The list of the properties of
the natural scalar extension is completed in the last part of this section
with a spectral preserving theorem.

The foutth section is devoted to eigendistributions of cohyponormal operatorsc

We prove that any cohyponormal operator possesses a global distribution resol-

-1
vent in Hloc y,localized at an arbitrary vector.Then we associate in a natural
way to a hyponormal operator T the distribution kernel KTf H™ ( E Jﬁ (H

which is a complete unitary invariant of T and behaves well to analytic changes
of coordinates,

. Thanks to the recent work of Clancey {3],L4} we detgrmine in the fifth
section a generating part (a compression) of the kernel KT,in ﬁhe case of ir-
reducible hyponormal operators with one-dimensional self-commutator.As a bypro-
duct we derive a concrete functional model for such operators,which diagonali-

*
zes T and is expressed only in terms of the principal funcion of T.
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§1. PRELIMINARIES

In this section we recall some properties of the Sobolev spaces of vector
valued functions.Altough most of the results listed below are more general,we
concentrate on Sobolev Spaées of order 2,on EQz.A complete and optimal referen-
‘ce on that subject is Hormander's book [9].

Let H be a complex Hilbert space and let & (€ ,H) be the fgjuspace of
smooth,compactly supported H-valued functions on the complex plane € it b
pological dual is the space of H-valued distributions,denoted by Sﬁl(il,ﬂ)l

We shall use the nondegenerate sesquilinezr pairing

~
Vv

J(c 1) x2(C 1y——~ € ,

-

Which cetends the [ —scalar product :
<P.V7, = §<CP(Z),(}'(Z)7H dp(z) 3 q%k\/é DeC n),
Here,and throughout this paper, y.stands for the planar lLebesgue measure,
Let z denote as usually the complex coordinate on C .One denotes: 0 = 0/2 z,

2=2/9% and A= 437 .
The Hilbert space completion of & (C ,H) with respect to the norm

liolle s _ ;
pll 2 (- ll,
is the Sobolev space HZ(GZ,H).Its dual via the above sesquilinear form is the

Sobolev space of order -2,denoted H~2({;,H).The norm of this space can be des-~

cribed in terms of the Fourier transform as follows:
H,uniaz = g\\%mnz(u PR
e point outAthat for any @< (C,H),
(2)  No-s)plls = s +8logly +16l%l 5 .

Tet S) vo o complex domain with smooth boundary'lafz .Then



Hg(Q e {Lféﬂz((ﬁ ) | Supp(f)Cﬁk

is a closed subspace of‘Hg(C ,H).By the Sébolev embedding theorem the Hilbert
space Hg(fl,H) is continuously contained in the Banach space C(fi,ﬂ) of conti-
'nuous functions on fi suniformly bounded in norm.The dual of Hg(fl,H) with res-
pect to the above pairing is denoted by H"2(§Z,H) and it is a quotient Hilbert
space of }-1"2(6 JHY .

Conversely,if one denotes by,ng(IZ,H} tge closed subspace of H—2(C +H) of
those distributions supported by Q. ,then H ({2 ,H) will denote its dual.It is

convenient to identify Hz(Sl,H) with the orthogonal ~complement of HS(C\?i SH)

9

it e Hg(C\ﬁ )

oG 1) -

We point cut that the space H () ,H) is continuously contained in He(fl,H).
By the definition of the H -norm,the operator 1- O :Hé(fl,?ﬂ-m*? L2(IZ,H)
is an isometry,which is not onto.The dual,in th%éense of distributions,of the

differential operator 1-A has the same expression,hence the operator

2
0

@A o) > FTO(RH)

is unitary.We should remark at this point that the space H“2(§2,H) is naturally
cantained in 55/ (R H),;but not in H_E((:,H).However,we may identify H“Q((2,H)
with the range of the operator (1—L>)2: Hg(KZ,H)——A> H~?((Z,H).In such a way
H—2(§2,H) becomes a subspace of ng(IZ,H). :

If we assume in addition that the domain (2 is bounded,thé space Hg(IZ,H)

carries the following equivalent norms:
= S e “'“2‘ ‘ 2
el 2 hasll, 2 fH2 , LEH (9 H).

Some formulae in this paper will be at hand in ﬁhe third norm rather than in the
first one.Consequently we denote throughout this paper by wﬁ(fZ,H) the space

Hg(fl,H) endowed with the following Hilbert space norm:

<o



hell2 = 10%0, - 1/4la1l,

-

Its isometric dual is éenoted by Wﬁa((Z,H),and it is endowed with the norm

that makes the operator
e W(?;(Q,H) o

unitéry.

At the level of local spaces we state the following.

LEMMA 1 .1 A lovally integrable function f on () belongs to H (IZ,H)

1o
iff ¢f belongs %o Wd( H) for every o&9(02).

5 :
The space N (i H) is again contlnuouu]y embedded in C(Sl ,H) and consequen-~

,t1ly the Dirac measures 5'@ h “belong to W (Kl,H),where A€ and he€ H.More-

over,these and only thes¢ are the elements of VJ“Z(SQ,H) supported by a single

point,

§2. A SCALAR SUBNORMAL OPERATOR

In a previous paper,the'multipliCation operator with the complex coordinate
on & Sobolev space of order 2 was the prototype in the functional model asso-
ciated there to a hyponormal operator,see [12J.We present in this section some
of the properties of that operator,though we will not make use of 211 of them
in the sequel.We restrict ourselves to the scalar case dim(H)=1,the higher di-
mensional case being completely similar.

Let £2CC be a bounded domain with smooth boundary'and let M denote the
multiplication operator with z on the Hilbert space w (fZ) As we already re-
marked in [12] the operator M 1is scalar of order 2,in tho sense of Colojoara
and Foias [)] yWith the spectral distribution

<

Qs T >-———>J,”w o



:). AN
U@L =f , @ed(C), tew (C).
The maximal spectral space assoclated to a closed suset F of € s

wg(fz)M(F) = {ffswg(YZ) supp(£)C F(lfi} :

2 e
Let EF denote the orthogonal projection of WO(SZ) onto this space.Then E he~
haves like a spectral measure,with one exception-the countable additivity pre=
perty.indeed,let W be a subdomain relatively compact in {2 ,with smooth boun-

dary.

LEMMA 2.1 Let {K | be an increasing compact exhaustion of w .Then

I-}

"
V]

[
U~
6]
i
—
[N
(=

C\w Kn'

Proof. The orthogonal projections P1=E¢;\u) and P2ms»lim EK are comple-
mentary and for every f € wé((Z) the continuous functions P, £ " and P,f vanish
on dW ,Therefore P1+P2#I,q.e.d.

The operator M is subnormal because the operator

2% ) —— @)

is an isometry which intertwines M with the multiplication operator with z,

acting on L2(S2).

THEMMA 2.2 The adjoint of M has the following expression

(3)  (")(2) = FE(2) + 2/ b <§X(Z>f£§) W) , rewi(n),

T -z

where X € 9 (Ql),'XF—J N5y e S2EE T arbitrary and p, denotes

the orthogonal projection &f wg(gz’) onto wg(gz).

Proof. The Cauchy transform is a linear bounded operator from wg(fz) into
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& [ : ;
H™ (2 ),hence the right side of (3) makes & good sense,

Let @ y V€9 (C2).Then one gets from the Cauchy-Pompein formula:

il

<Ecp,q/>wz + < 2w vy <%§%><5>/<'5~Z> du (3)), 7,2

<Dy, Bl el §?<3>/<"5-Z> Ty, -

I D) 20 Bt = 52 e 52
el 2l Wy K299 0T L0 TPy
@My 72

Because the space & (2) is dense in wg(ﬁl),the formula (4} is proved.
As the operator Ms% is unique,its formula doesn't depend on the choices of
the domain $2' and of the function e

The operator M”  is still scalar,with the spectral distribution Cuf «ts
maximal spectral spaces are:

5 { ) 5
Tya sl ST s £E€ W o] & NC P
v,O\Sl )M%(] ) >Z \r\o(.Q. ) \ upp( A 1) i ]g y

vhere F is a closed subset of the complex plane.Indeed, T € Wg(fl)vk(F) 1£F
3 % =
QAK(q7)f = 0 for every cyéégé({L\ F).That is AQQL(q7)f,g> =0 for every func«

tion g € Wg(SZ).But we have
O',(- " i —-2.‘ “? ~, ?
K %,08

and consequently e won C\or
The maximal spectral spaces of the operator M*' are not orthogonal for
disjoit supports,as those of M,but onc can estimate the angle between them,
as follovs.Let eF denote the orthogonal projection of Wé(fl) onto the
2
(i s ) {12
space wO(KZ)M*\L).



PROPOSITION 2.% Let F,G be two disioint closed subsets of (O .Then there
s ¥ th e A A

is & positdive constant C,such that
| o e -e-w non 2
heF eGH L 1=C | dist(B,6)] ",

provided that dist(¥,G) is small.

For a proof of Proposition 2.3 and related results we refer the reader to
Simon's book [14, &III,4] . ; .

The operator M -the dual of M on W—Z(IZ)n will be of a .certain interes® in
the next sections.As a first applicstion of the duality between distributions
and functions,we compute various specira of the operator M.Altough scme of the
equalitis below are true for arvitrary scalar operators,we prove them in our

context.

PROPOSITION 2.4 The operator M has the following spectra :

sy = o, (M) = «5ap(m) S

GC(M) =951 .

gg&ggi. The point spectrum of M is empty.Indeed,if (M-A)f = O for a

point A€ and 4 function f<€ WK’EZ),thsn supp(£) C %ykg and,since f is

OK
continuous, =0,
Let us assume that 0 é.fL\G}(M),that is the operator M has dense range in

wg(fl).On the other hand,
an(M)J'- €52 s i =2 \ &
¢ =L WEWTH(O Yicw,afy=0 , B¢ wo(fl) =) uEW (fl)l 7u = 0

=£lg*

a contradiction! Consequently S?.C.G;(M).

Similarely 0Q). C Gé(M).Tho inclusions are in fact equelities,because
Q=0cM) =c,(MVs (M) and o (NN T M) =g

Let us assume 0 € () \‘Yap(m).Then the operator M has,by the above compu-



e

e e
tion oi Ran (M) a closed range of codimension 1 in do(flﬁ.Jnen every element

fe w (§2), £(0)=0, would factorize as f=zg,with g<5hO(S2).But Z/z doesn't be-.
1ong to HJ O(IZ ) ywhich contradicts the assunption that M has closed range.

In conclusion, GLSG(M) = a)(W) iy ,end the proof is complete.

The dual M of the operator M,on VW ?(SZ),coincides with the multiplication

with Z .Its adjoit can be easily computed,as follows.

—¥% A
LEMMA 2.5 The operator M esgC(w (£2)) is unitarely ecuivalent with M

and it is represented by the formula

g )
(4)  Tu=z2u-2/r (1/3%u), uewi().

Here the space wnz(fl) is embedded into HSZ(IZ) as the range of the opera-

tor (93 ) s W UQ) — }fdaﬂ:).This makes possible the convolution 1/7 * .

2

Proof. An element ue€W “(£2) can be approximated with a smooth function of
the form (93)2%p 3 q9€9(f2).Since Dl s e ,one gets
B e 452
vz 9@) ¢ = 2(1/z ¥ 90 Q) = -7 @ ,

ol
hence the right part of the equality (4) represents a boundcd operator on W .
TG = =Kt D ;
The relation (20 Y%I = M(?O)? implies M (99)? = (?9 )huuherefore the
: — %
operator M is unitarely equivalent with M.] Moreover,the same equality shows

that in order to prove (4) it is enough to check that

‘

<a(33)2g 4y -ofm /7 (97 )9 47 =<(00)%0g, ¢ >,

for any functions q>,4'€:93(f2),8ut in view of the above computation we have

2y <1/E%(90)% 47 =2400%, ¢V = 2490% , ¢ > ,

and the proof is complete.



e
%3. SCALAR EXTENSIONS OF HYPONORMAL OPERATORS

Let T be a hyponormal operater on the Hilbert space H.We describe in this <
section several Hilbert space structures on the space of the natural scalar
extension of T, |

Let £ be a bounded domain in C ,with smooth boundary and wich contains

the spectrum of T, {LDG(T).Then the Fréchet quotient space

2 m “.'2 . ]
3= 'HlOC(Q,H)/(z-«L il (02 ,H)

contains the space H,as classes of constant functions,vis the embedding
b my 2 [
Vil—s ¥ |, Vh = 1®ll.iae scaler operator z® 1 commutes on HlOC\fZ,H),as
well as its Spectral'distribution,with the operator z-T,hence it induces a
s ~r ~
scalar operator on ¥ ,denoted by T.Moreover,VT=TV,sece [12].
7 . 73 . .

The Frechet space topology of ¥ is compatible with various Hilbert spree
norms,as for instance that used in [12] ,by relation (2) and JTemma 1.1.Most of
these Hilbert space norms depend on a choice,e.g. of the domain {1 .For exsm—
ple,every domain 3& endows the space ¥ with a Hilbert space structure,by

identifying ¥  with the space
H () = w(Q,1) O (2 TS0 ,1).

The bad behaviour of these norms when comparing them for different dom&ins can

be easily illustrated by the following.

Example. Hyponormal operators on finite dimensional spaces.

We assume that dim(H) is finite.In that case T is a normal operstor.Let
consider two domains with the property o(T) C 2/ C €2 .Then the operator
A jﬁo(fll)ﬁ———4» éco(fl) induced by the natural extension map wg(ff)(i wS(fZ)
is not,in general,unitary.lNotice that the operator A is invertible.

Indeed,let us assume that f € 3C (fl) satisfies l\fH llA“1fil Then the
function f vanishes on Q\ Q. becaa se the space Wd(fl) is isometrically

contained in Wd(XZ).As the spectrum o (T) is finite and the space }ﬁo(fl)



contains only continuous functions,it is not possible that A would be unitary
for an arbitrary small neighbourhood Q' of the gpectrum,

If the space 1s finite dimensional,then % coincides with T,that is dim{H)=
dim(% ).Indeed,since the operator T is diagonalizable,it sufficies to prove
the equality of dimensions in the case dim(H)=1.Let us assume then in addition

that & (T) = 40}.By the proof of Proposition 2.4 we obtain

'%Oﬁl)glwnWUL m{ﬂéWQ“Z) %1:O§ Lalsd s
and therefore dim(Y ) = 1.

The same dualify argument shows that the operator z»T:Wg(KZ,H)-—¢*W§(£2,H)
has not,in general,closed range.

Let us come back to an arbitrary hyponormal operator T;A simpler and & more
canonical picture is obtained by dualizing the space . with re: spect to the
sesguilinear form -

2

= -2 cosa S e
gty by nmgﬂ.,ﬁ)XHIOC(Q,H) e,

defined in the preliminaries.lere HEE(CZ,H) denotes the space of those distri-

butions ué»sz(El‘H) with compact support in £2 .Let us define the space

(5-T" Ju = OE N

The space VW, )(N) inherits a HJJbert space norm from H (IZ,H),because the

2 3 "
(H) = X = {ue}-{w((z JH)

support of a dlsterutlon u»éw (H) is contained in (T ) ﬁoreover,uince the

natural inclusion U(‘\(Z 1) € HO (Si H) is isometric,whenever 57 €Ll ,this

Hilbert space norm on W ?({) doesn't depend on £2

4
=2 =
On the other hand,the space H "~ (£l,H) contains WTZ(H),but not isometrically
.. 2 : o
so that the unitary operator (1»[5)? : Ho(sl,fn emat H 2(S?.,H) defines by

bl

pull back & universsl norm on the space [(1—[3)2]"1W¥2(H).But a straightfor-

ward computation shows that
. : - Byutin?
W EH(Q 1O (-T2 (2,H) = [(1- )71 P,

In conclusion we state the following.
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PROPOSITION 3.1 Let 2 be a domein which conteins the spectrum of a hypo-

m : e
normal operator!&he differentisl overator

M Hg( Q,H8) O (2-T )Hg (£2,H0) Jf;él_} W,;Q(H)

e : 2 ;
is invertible and the Hilbert space norm on ¥ which makes (1-A)° unitary

doesn't depend on (2 .

Let wi(H) denote the space 3 endowed with this canonical norm.

We point out that,altough an element f€ W_ (H),realized in virtue of the

i

above proposition as a function in HS((Z,H),has a trivial extension F to € ,
- 2 A

as well as every distribution uf.wT (H),the relation (1~z§)2f = u holds only

on £2 .When extending f and u to € ,the distribution_(1~uA)2Fnu is not neceg-

sarely identical’' zero,being supported by EKZ.

PROPOSITION 3.2 The natural map

o HQ(Q_,I-I)@(z»'l‘)ﬂg(ﬂ,H) —— w,i(ﬁ)

is an isometric isomorphism,whenever e (),

Proof. Tet {2 be a domain with smooth boundary,which contains the spectium

of the operator T.By the definition of the Sobolev spaces,the operator

2
BH(Q ) = BE(C,mense T g =8l 2o

is unitary.let P, denote the orthogonal projection of HZ(E.,H) onto Hz(IZ,H),

and let X €9@C) X =1 on € .Then (X 2-T)(1-Pp ) = (I-Pg ) (X 2-1)(I-Pe ).
& 2
2(0_,1»1)91(:124)1-12(51,H) and g€ H°( C,H) we have

For any functions f €H
=H 2 2 Sy
SUE-2)(1-A) T80 = (1=A) 2 (L z=l)e> = T, ( Lnatlg W=

T ) T, Y et dep e 0y



i

And conversely,the same computations show finally that
2 2 e A
(an)” [ 0200 MO -t (2, 1) | = )

Let Q denote the orthogonal projection of Hg(fl,ﬂ) onto HZ{IZ,H).Then
i’ (Q,1m)6 (z=1)r% (0 1)) = ng(ﬂ H)© (7~7) g’ Q H)m easily follows from
the equ a1lity <O lz-7)g) = <F,(2=T)g 7 where f< H (S2,H) and g el (f? HO

In conclusion,the map e in the statement,which coincides with Q when the
space w,i(l-i) is realized inside HS(Q ,HY,is unitary,q.e.d.

The second part of Thi% section is devoted to a spectral property of the

gscalar extension T Cﬁf 7)) of a hyponormal operator T.

THREOREM 3.3 Let T be a hyponormal operator and let T be its natural

scalar extension.Then 6 (T) = 6(T).

~

Proof. Since.the spectral distribution U of the séalér opergtor 9 is
supported by 6 (T),the inclusion:. of local spectra G%(Vh) < 6T(h) holds
true for every he H.We recall that the operator V; H—> Wé(H) intertwines

T and T,

Tet h<H be fixed.In order to prove the CﬂﬂVP“qL 1n01L31on, 5’(h) & Gﬁ(fh),
we identify wi(n) with the Hilbert space P ‘)C)(znﬂ)n (Cz,h ,where (1 is
a bounded domain which contains the spectrum of T.

Lev A—¢<T¥(Vh).Tnen there exists an open neighbourhood W of A and an ana-

lytie functicn Et&@(iu,wg(h)),such that
fEarrgly) =wh , Ge®

let g € €)(CM,H¢(51,H)) be a holomorphic 1ifting of E .Then for a fixed $€ w,

et 2 TR

BB -2 5.8) £ (z-TJH (k) .

But the dsnse range property of a Hilbert space operator is preserved by
the topological tensor multiplication with & nuclear space.Therefore there is

a sequence f! € €>(QU',H2(SZ,H)),SO that .
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l%m (Ch = (T -z)gl% ,z) - (z=T)F

7
in the Frechet topology of the space KD(QJ,HZ(SZ,H)).
Let W' be another open neighbourhood of the pount X ,relatively compact

in W .Let m denote the unique continuous linear extension
2D
m: O(w)@H(Q ,H) —> H (W', H)

of the map a®br>(a.b)lw' .Then m(h-(3 -2)g(3 ,2) ~(Z~T)fﬁ(3 JZ)) =
h~(z~T)fn(z),where fn(z) - fé(z,z) for z € W' ,Therefore h = lim(z-—T)fn in
}»12(w’,}-i). '

In view of the inequality (1) we obtain lim || £ =BE. i ;= 0 and

lim || h-(sz)anH » ! = Oyvwhich in turn implies h< m%%ﬁf)."&ut the ope-

rator T satisfies Bishop's property ( &),see [151 or for instance as a sub-

scalar operator,so that the operator (z-T) has closed range on O (w',H),
Finally h € (z-7)© (w',H),or,in other terms, A¢ G,(h), g.e.d,

In fact we have proved more,namely.

COROLLARY 3.4 - The local spectra Gﬁ(h) and (Tﬁ(Vh) coincide for every h<¢ H,

The above spectral behaviour of a minimal scalasr extension of a hyponormal
operator is different from that of the normal extension of a subnormél operas
tor.In particular,the natural scalar extension 5 of a subnormal operator S
doesn't coincide,in general,with the normal extension of S.0n the essential

resolvent set of S,the operator S has not,in general,closed range.
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94. A DISTRIBUTION KERNEL

This section deals with the relationship between hyponormal operators and
operator valued distribution kernels on Q:QOThe existence of a scalar exten-
sion of a hyponormal operator makes possible the analogy with the generali-
zed Bergmén kernels theory of Curto and Salinas [71 »Altough the general frame-
work developped in the sequel leads to rather tautological results,when ap-
plying it to particular hyponormal operators the fine invariants,fit naturally
into this scheme.

Let T be a hyponormal operator on the Hllb rt space H.With the notations
of the preceding section,the dual V': J (XN —> H of the ombeddlnp V is onto.
We recall that w;g(H} denotes the set of those distributions w€H ((, H)
which are annihilated by E*T%,The operator/ﬁcts by the formula

Vi(a) ==+(a, )N ,ué\x';z(ﬂ) :

where ( , )} stands for the natural bilinear pairing
(,):@dlfix@ —  H,

We shall use the following continuity property of this bilinear form:

(5) Iyl sflwfly~2 . Il iz Fue “Z’(&;,H), peb(C )y,

which can be proved by & Fourier transform argument.

For the beginning we prove for its own interest the following.

PROPOSITION 4.1 A cohyponormal operator T*{i(ﬂ) has a generalized global

resolvent,localized at an arbitrary vector h€ H: i.e. there exists a distribu-
; -1 s s S i~ =
tion v, € Hloc(d,,n) so_that (Z-1T )vh = et

]1/2

The vectors of the range of the operator [T*,T have even a global re-

solvent of a function type, [43].



i

= <X ; 3 ; : -2,
Proof. We choose for a fixed héll a distribution u€¥W “(H) with the pro-
£X00% \ I

1 : 2
e 1) 1s ont
(C ,H) hloc(&:,I., is onto,

Heew
1 loc” < _
there exists a distribution w,€ H,. (C,H) such that dJu, =u.Iln particular,the

i 160 1
restriction of u, to the open set C \6 (1) is an atiholomorphic function:
(=24
s |
~n
WAl TEs. } 8. 5.7
Ne= - 00

perty V'{u) = -7 h.Because the operator 0 :

where the series converges Tor [z|>ITH and an-é H.Then the expression

; o9
f(z) = :__J a -
n=0 :

defines an an'tiholomorphic function on the whole complex plane,
. ; A s
The desired global resolvent is \rnsu1mi.]ndeed, 0 Z=T )vh = (Z-T )u = 0,
and the estimate

i (E«'I‘%)(uq‘ =iyl ienlty for (zl=» oo |

3 : : S
holds true.Then by Liouville's Theorem (Z-T )v

i

e e
It remains to compute the constant s ;- Let X € 9(C), X 21 on & neighbour~

hood of 6(T).By Stokes Theorem we obtain

=Wh = (a0, ) = {u, L) = (avh,x) & "“(Vh! 9% ) =
& [
& Z ﬂ__ng ey (z)d/(.;,(z) = -7a_, ,
Nz=1

and the proof 1s complete.
Throughout this section we denote for the sake of simplicity L:W,EE(H) for a

fixed hyponormal operator T,

< 7 )
DEFINITION 4.2 The distribution kernel KT € Q (Q:?, Z(L)) associated to

the hyponormal operator T is

(6) <K (P@Y)IuvH =L (0, ), (v,F)Y,
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vhere ¢,V e and u,ve L.
The distribution KT is complet ly determined by the relation (6) because

of the following e’sflm'atc derived from (5):
G 2 o M 3 Lol ol ol >
(7) ‘<V"}‘( ¢ e Y Ju,v Ll & Hu[{L thLh cl”xln?_ i k,/“ e

wlth the same notstions as above.

PROPOSITION 4»,, The KkKernel KT has the following properties:
a) K. pod)* . Ky ( W ®9) , P, de )

b) For every fmltﬂ sequence (({) -r; 5 Cf 1{—9 (C), nz1,the operator
$

atr ¢ ( i
matrix (K (@, ® f )) J,j is positive
c) Su.pp(r’T) @ (5‘('1‘)% G (T

e
) ]‘“T . f_ (1))

Procf. a) Let u,ve L.Directly by the definition (6),

-

'{‘ ., //. P g »-".
o rm(‘_;@f""‘,{ ) U,rv>::<‘u$}:{T(CP®\‘£l)\7} :"('\KUQ(P))(VPL*)? :"(KT(\“/@(F )U'9V>‘

<
f G o ¢ = inite avea
b r (‘ilpi)J~ Cfi €5 (,Q) and (ui.)ief[ U, € L, are finite systems,
then :

- <K ‘J‘((?j@?"' N ,u}w 2 <(n: (\0 Dy (u Cf;i)> -—“Z(u ({? )l‘? .

A
Ly ! i,
c) It suffices to recall that supp(u) € © (T) whenever u€ L.
d) The distribution X, belongs to I’ - ( , £(1L)) by (7),and it has com-

pact support,hence KT € H“2 ( «:2 JLCT

The ‘continui ty and the positivety properties of the kernel R ingure the

existence of a scalar product on the space SJ (€ ,L),which ehtendo continuously

the following form

‘<K.Tf.9g.>m g< Krl ‘)W)I(w)rg 7’ = z /K LQ/ ®L]0l ds > :

ljw
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n m
where £ = ) P;@u, €D (€,L), 8= \[/].@vje@(C,L) and the inte-
=1 =y '

gers n,m are finite.

Let us define the continuous evaluation.map
Y CZ (€ ;L) =1,
thch_acts on simple funétiqns of the form $>8’u by the formula
\P(Cptzg) = (ﬁ,cp) . ({)ég((f/), u€L..‘
Theﬁ,for the abovevfinite dimensionai vélued funcﬁions‘f and g,the relation .

) cx e = WY Wil
'holds‘trué.The right side of (8) makes a good sense for arbitrary functions
f,g € Q (€,L),and it can be taken as a second definition of the kernel KT.
The separate completion of the space (&;,L)Awith respect to the ssmi-
norm deriQed from the scalar product (8) is isometrically isomorphic'with the
: space H,through the linear extension of the operator qJ.In this description,
as a vector valued function space,of the Hilbert space H,the operator T* be-
comes the multiplication with E.Moréover,the reproducing kernel KT ofithis
fun¢tion space is a complete unitary invariant of the operator T,in the fol-

lowing sense.

LEMMA 4.4 Two _hyponormal operators T«éJfUI) and T' € Jf(H') are unitarely
equivalent iff there exists & unitary operator U: W_2(H)———? W_?(

i)
»®
that UK U= K,

H') such

S L

Proof. TIet K denote the separate completion of the space 9’(C.,W52(H)) in
the norm (KTf,f) ,S0 that the operator WY :X —> H is unitary and has the pro-
perty 4f64’= Z.Analogously,K' and L denote the corresponding objects associa-
ted to T'. '

If U is a unitay operator as in the statement,then it induces a unitary



20~

transform I®U : K—— K' with the property (I®U)Z = z(I®U).Consequently
(1@u)Y*1"V(1®U) =9'* 1 ¥’ ,and the proof is complete.

There are examples which show that only & "thin" subspace of w;2(n) is
necessary.in order to classify the hyponormal operator T up to unitary equi-

valence,as in Lemma 4.4,Thus we adopt the next.

DEFINITION 4.5 A closed subspace G of ](_UT (H)) is called generating
for theooperator T if VY 9 (¢ yG) is a dense subspace of H.

In other words GCL is generating if the linear space

{(u,cp‘) u € G,cfwe@(«: )}

is dense in H.
Let PG denote the orthogonal projection of L onto & generating subspace G,
Then the compression of the kernel KT to G,

Y

G /2 ;
B = DD e CE , £(6))

has 8ll the properties listed in Propoegition 4.3.Therefore the restriction

%JG of the operator V4o 9 (C ,G) is related to the kerhel K¥ by the rela-

tion:
o= :
(g crgtie ) = SN Y )y e ey
Now we may conclude with the following.

THEOREM 4.6 Let T be a hyponormal operator on the Hilbert space H and let

: : by e T *
G be a generating space of eigendistributions of T
& =Y

Let %;/ denote the separate completion of the space 9@ (€,G) with respect

to the seminorm <KTf,f>> and let U: %l.~’? H be the continuous linear exten-

sion of the operator 4JG

Then U is unitary and U(Zf) = T*U(f) or_every Lt.%L
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Proof. The operator U is an isometry,vwhich is onto because G was sup-
posed a generating subspace of L.For a simple function of the form ¢ ®u<€
@ (C,G),we have

¥ ‘\PG( ¢ou) = q‘*(u,?) . (Eu,cF) " \;/G(;‘.(F‘&u),

because u¢ W_i(H).Then the proof is over by an approximation argument.

Lemma 4.4 and Theorem 4.6 lead to the next.

COROLLARY 4.7 Let T€ Z(H) and T'€¢Z(ll') be hyponormal operators and let

- . > . IO 3 . 3 * A *
G,G' be generating subspaces of eigzendistributions of T,respectively of T'.
< § (i)
G G

If there exists a unitary operator U:G—G',so that UKU = Ko, sthen T ig

unitarely eguivalent with T'.

The necessary condition for unitarﬂéquivalence stated in Corollary 4.7
is also sﬁfficient whenever the space G i1s canonically related to the ope-
rator T.In many cases dim(G) is finite,so that the classification of the re-
lated operators is a finite dimensional problem.We illustrate this statement

with two examples.

Example 1. Normal irreducible operators.
Let N be a normal operator on the Hilbert space H,with a cyclic vector E
of norm one.We dono?e as usually by i?(N) the continuous functional caleculus
of N,P€C({c(N)).
Let £2 be a bounded domain which contains & (N).In virtue of the continui-
ty of the functional calculus and of the Sobolev embedding theorem,the following

estimate

g il < il = cncplﬂ}g(ﬂ-y

holds true,with a positive constant C depending only on £2 .Thus the relation



(u, @) =@(M)% , g ed(c ),

defines a H-valued distribution u< HBZ(Q JH) Moreover,u€ W&e(}{) .Indeed,

for every c?ég(ﬁ),
(FZ), @) = N @ - EPIWT = o.

Since the linear space {@(N)E ; @69’5(({;)15 is dense in H ,the one dimen-
N

kernel KN to this space is a scalar distribution which can be easily coxhputed,

as follows: let ¢,Y€9(C),

sional subspace Cu of W "(H) is generating for N.The compression k of the

k(q7®‘¥)==<KN(?Q9¢)u,u> =Clu, ), (u @)Y =YY, @ (D)%) =

ORI AR {M dpey,

vhere df“LT :—.<dE7;b,,“g > and B is the spectral measure of N.The norm of the space Cu
v

was choosen so that [llull = 1.Concluding,we have proved the formula

k(z,w) = /\Ag(z) (Sl(r/,__»w) y

where & (z-w) stands for the Dirac measure supported by the diagonal of the
2 o
space C ',
The completion of the space @ (C ) with respect to the seminorm given by
the kernel k coincides with the space Lg(i/,‘;) and the unitary U:Lz(/u_,.}),—vﬁ is

the operator which diagonalizes N.

Example 2. The class A(£2) of Curto and Salinas [7] .

The class A(S2) of operators provides the localization of the class B(£2)
of Cowen and Douglas [6} .We restrict for the beginning to a particular element
of A

Let £Z be a bounded domain in the complex plane and let S be a hyponormal

operator which has the properties:
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(1) Ran(z-S) is closed for all z €5 g

(11) span {Ker('ﬁ;ws*) I ZEQ} is dense in H ; and

(iii) There exists a bounded coanalytic function P:Q»———?,{j(@n,ﬂ),
such that Ran P(z) = Ker('z—s%) for every z<S) .

For a relation between hyponormal operators and the class B(s2) see [1].

2%

Under the assumptions (i)-(iii) the space W:; H) contains the following.

°

priviledged eigendistributions.Let ei,i.-.«A ,n, be the canonical basis in (Dn

Since the operatorial function [ is uniformly bounded,the formula

(o, 5@ = g Cf(Z)P(Z)eid/m(Z) , PED(C)
)

defines for every i=1,n a distribution uif{ HWZ(C yH).It is plain to check that
(E-—S")ui = 0 ,in the sense of distributions.

The- linear .span G of ui,i=1 'N,18 a generating subspace of w;Z(H),because of
the assumption (ii).Let us compute the corresponding distribution kernel.

We renorm the space G so that (u.1 ,...,un) becomes an orthonormal basis.let
f,e €2 (C,6),s0 that

n

n
fzg@i@ui and gmz Lf/jfg)uj 3

_]_::1

where ka, \f/k € 9 (c )sk=1,n.Then,

e ]

"rG 2 7 G/ 5 ool & ( (U 1t =
(hsf,g>- = CKglP ®@u,), k}/jebuj) = % <KS(}I/j®CPi)ui,uj?

‘:Z{(ui’ q)l) s (uj: \lJJ)> =Z g <CFL(Z) r' (Z)@iy U{’a(W) P(W)Q‘j> d';&x (;:4/,‘,
%0 ‘ :
r ¥
= \<Hn)” Time2),8(0 > aptz)ap )
ToE T : . :
In conclusion the distribution kernel KS-coincides on £2%5%  with the
generalized Bergman kernel of the function r ; Kp(z,w) = (w)*r(z).
In the general case,when the function [ is not necessarely bounded,the
Lebesgue measure must be multiplied - by 2 weight,in order to annihilate the

growth of (l(z)|| when z — 202,
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The last subject of this section is a naturality formula of the kernel
KT,to analytic changes of coordinates.

Let £:U —— V be a biholomorphic map between two domains of the complex
plane.We recall for the beginning the operation of change of coordinates intro-
duced by f at the level of distributions,

Tet o€ D(v) and let P€D (U).The distribution o« o f € Q' (U) is de-
fined by the formula

(o(of,cr) = (°(,\P) ’

where

e

P(5) = @7 (3)) | e

The same definition applies to vector valued distributions.

LEMMA 4.8 Let 7€ £(H) be 8 hyponormal operator with o (T)C Ui

=2 ot -2 .
u €y, (H) ,then wuef € Wf(T)(H)‘

Proof. The spectrum of the operator f(T) is,by the spectral mepping theo-

1L
there exists by standard arguments a function 4’€§D(U,H),so that

2 : ;
rem,contained in V.Let us assume u<€ W~ () .For every function @ € (v, ,H)

(z-1) Y(2) = ((2) - £(8)) @(£(2)) 12£(z)|® , zew.
Then
AT -2(1) Yuet™!), @ =Luet™ (T -E(M))gY =

=<u,(f-—f(T))(cFo f)!af12> =<Lulz=0 i = 0,

1 .. =2 :
‘ -
& Nf(T)(H) yq.e.d,

Since the support of a distribution uf;wgz(ﬂ) is contained in the compact

subset G (T) of U,the linear operator A

and therefore ue f



is bounded.Notice that C_-1 1s a two-sided

f

THEOREM 4.9  Let T¢Z(H) be a hyponorpal

inverse of Cf.

operator and let £:U—>V be a

biholomorphic map,defined on a domain which

contains the spectrum of T.Then

*
B 20 B = 0B O o
Proof.

'"(T) cf)of )l?f-1‘2®(\{!of—1

< (u,(Ye

it

Slaerh ) (vor, 8.0

<(Cfu,\}'),((3fv,?f>)> X

K, ((g®t}f)(lfu,cfv Y =
*®
<Cf KT(QPQ\}»)Ci.u,v) .

and the proof is complete,

The compression of the kernel KT

a similar formula ;if one
generating subspace C —1(G)<: wf2T)<H)'

to a generating subspace G of, MT

takes the compression of the kernel K

Let @,VeJ(U,H) and let u,ve€ u!f(T)(H).By Definition 4.2 we have

?’fdl 2)11,V'> =

£y 1R 2, (v, (et y 1257 Py =

,.

(H) has

(T) to the
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?5 OPERATORS WITH ONE-DIMENSIONAL SRLF-COMMUTATOR

The compression of the distribution kernel of a hyponormal operator with
one-dimensional sclf-commutator to a space generated by a single eigendistri-
bution of its adjoint coincides with & scalar kernel already existing in the
literature,cf. [3},[11],[18].WG use this kernel in order to obtain a concrete
functional description of the operator 4in terms of its principal function.

Let us recall for the beginning some facts and notations concerning the
operators with rank one self-commutator.The reader is refered to [4] { ]ana
[10] for details.

Let T be a bounded linear operator on the Hilbert space H,so that

)= 2@2

where 2@% is a rank one,positive,operator: (% @g)h =(h)‘{-,‘7”g ,h€ H,
The complete invariant to unitary equivalence of an irreducible operator
with one-dimensional self-commutator wes discovered by Pincus [10] as & sca-

lar function on the spectrum,called the principal function.The principal

function g, of the operator T' is a compacily su orted,real valued measu-—
=2Boa 2ol &m p P PP

rable function on € ,characterized b Helton and Howe formula [81
9

tr [ p(r,1%),q(r,2%)] =='1/JTS (3p2q ~Fp20)g, de
C
where p,q are polynomials in two Varlqb?eu.

The order of the factors T and T in the monomials of p and q doesn'?t
affect the trace of the commutator [p(T,T*),q(TFT*)],which exists whenever
'?*,T] 1s trace-class,In our case,when T is hyponormal and rk[Tw,T] =1,
the principal function satisfies the additional condition O:SgT$1

Putnam proved in {1371 that for an arbitrary complex number z<€C,the equation

G -

= - continuous
has a unique =olution x <€ Ker(z- ¥ )" .Moreover,this solution depends weakl?\



: : = -
on z<€€,and it will be denoted in the seguel by (Z»T*) Z .

Recently,Clancey [3] proved the identity

gl :
(10) 1-<<%«T">”1§ ,<’Z~T*>“‘g?~s: exp{~~’s/’-ﬂ-(w—-—Lw = cdpdm g,
Y6 e )

which holds on the whole ng,see also [11].The integral of the right side of
(10) has removable singularities off the diagonal of &:2.In case z=w and

S e —zl2gT(3 ) dﬂb(E ) = o0 ,the right side of (10) is taken to be zeroc.The
kernel

Qo) =1 - <@ i mnts s>

was used in [4] in connection with a distributional model for T.We use the

next.

THEOREM 5.1 (Clancey [4]) An operstor T with [1%,1]= 3©% is irreducible
iff the values of the function (EMT*)‘1§ Span H,

The theorem has,with the terminclogy of the preceding section,the following

oo

iy N

-

COROLLARY 5.2 Let T be an irreducible hynonormal operator with[r*,1) =
The distribution 2 (F-17)~ g belongs to W

(H) and it spans a one-dimensio-

II\
nal generating space for T,

Proof. The function (E~T*)-1§ belogs to Lioc({L,H) and

(z-1%) 2 (z-1*)"'g =2 [E-1%)(E-r")7"f]- 9% -

therefore E(EnT*)"L% €'v% (He

Furtheron we prove that the space
; -_ e e G -
Mo { a (Z—-T ) g 10\7) l q)‘é o (L)>

is dense in H,



The Cauchy (anti)transform of a test function cpefb(ﬁ) is

2(2) = W S':'-'q?(s’)/( -z) ap(3) .

It is a antianalytic function off supp(go ),vanishing at o0 , and Pl - ¢ .Let
£ be a bounded complex domain with smooth boundary,which contains supp(cp)

and o (T).Then by Stokes Theorem

i
§

g Z)(E—T"‘)"ﬁ‘g d/L(z) Bf(z) a-—’l‘ 5 d/ﬁ(Z)

C

/21 g f(z)(“rz-uT*)“’g, 8% (9 (/,-J 3, 2B
0
The contour integral is zero since f(z)(E@T*)— is a antiur‘alytic function on
.\ ) yvanishing of second order at oe .Therefore SCP (BT ’g du, € M.

By Theorem 5.1 the vectors SQD (EZ-.’_I,‘%)"LS, dp cpe@((l ),span tne Hilberst
space H,hence the space M is also dense in H,and the proof is over,
. The above corcllary and Theorem 4.6 imply that tho compression k of the

distribution kernsl K, to the space generated in zJ (H) by the distribution

T
N e ¥ ] : = : %
U= @(2~T ) 7§ is a scalar kernel which reproduces H and diagonalizes T

Let us compute this kernel.let consider the test functions ¢ v € QD ¢ (C) . Then,
k(gey) =K (@oY)u,uy = {(u, V), (e,
>
S((iﬁ'm”ﬂ f'()t}“ (B-r" r)§'7(z)\7 d/)x,(z)d‘u,(w) =
£ = -1 ; B :
7% (ETHTEY WP (w) 2@ (2)) dulz)dpln) =
g 2 9 J (z,w) W w)q)(z a2 )d)u(w :
In ¢onclusion{wg have proved the equality

-—

k(z,w) = - ’d‘? '9w g'* (z,w).
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THEOREM 5.% Let T‘é;ﬁ(H) be an irreducible hyponormal operator with

[2%,2] = T®% ,and let & be the principal function of T.

£

The separate completion Z;, of the space g(@) with respect to the seminorm

' g(5 ) =
lpll; = -\ exp {-41/31&3':;3’({?;,) a3 >% 0 (v) 2 (2)  dplz)ap(w)

is unitarely equivalent with the space H,via the operator U: ,'3’; —_— o,

U(g) = g?@(27(5~1‘%)"1g dp(z) &

% * 3 . 2
The operstors T and T become in thet identifications

(11) II&TU(@')(Z) = 2.@(z) - 1/q Sq?(“s )els )/(% -Z) dp{% ) ,and

H —
U T*U(q Y{(z) = Z<P(z)6
The right side of (11) should be taken as the class of the respective func-
tion in %v 5
Proof. Theorem 4.5 and the preceding computation of the kernel k prove
the assertions of the statement,with the exception of the relation (11)

L]

In order to prove (11),we recall from Proposition 7 of (4] tne identity
?

(2} 1831, = 2@ - elayEct) e

which holds at the level of distributions.
Let X €9 (C ),so that X = 1 on a neighbourhood of @ (T).Because the
kernel k is supported by G (T) % 6(T),it is sufficient to prove that

Ulzq - X(z)/x S?(S )e(3)/(5 -2) du(5 ) ) = TU(p),
for every function e 9 (C).But the explicit form of the operator U gives

U(zq —%/xgcq(é )8(5 )/ (3 -2) dp(3)) =



B0 =

1

; e : = R I

- §3{zcg - X/xt < @ (3)g(% )/ (% -z) dp(? {Q(Z~T ) T dplz)
: J
e ; = e =1,
= =((E-T*)"%29) + ((B-T) 7% ,80) +
-~ : - - A o, SR
+ ga[m-x)/w S @ (5)8(5 )/ (3 ~2) auls )lam )7 dplz)
—}’,' l* “1‘*’ ‘

= (T ¢(2~-T7") },CF) + I = TU((F) + I,
where we have used (12) and we have denoted the last singular integral by I.

3tokes Theorem and the observation that the antianalytic functions

ch(g )e(S )/ (% -%) du(3') ena (E~T*)“Tg vanish at infinity,imply I=0,

and the proof is complete.

'inal remarks,

a) . The formulee of T and T* obtained in Theorem 5.% are dual %o those

given by Pincus-¥ia-Xia [111 on their analytic model.

b) Becavse the vector 3 has a priviledged place in the Hilbert space H,
relative to the operator T,Theorem 4.6 shows that the scalar xernelkis a

complete unitary invariant of the operator T.

¢) Conversely,a compactly supported,measureable function g on C ,with
.0 g<€1, produces by the formulae of Theorem 5.3 an irreducible hyponormal

operator with rank one self-commutator and with principal function Bp=8&.
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