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with diffusion

“
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Introduction

This paper concerns the absolute continuity property of the transition

Gl Eiae aecamyAtad il cda e
GETIRS S SOS L e @GeaViitn: STOEIRE

Generally the exist

i 74 ra TR
P(t,y,.), 120, y& R, associated with diffusion processes

:ce of the smooth density for transition probabilitics
s

can be obtained wsing the

fundamental Hormander's theorem on hypoelliptic cperators (see [1]. In a

remarkable paper ((2)) Malliavin has developped

2 e S (R \. S Y e |
ecauations. Since Malliavin's article appeared

probabilistic techniques to prove

the existence of the smooth density for the distributions associated with stochastio

there have been made various

attempts to put Malliavin's calculus on firmer mathematical footing and 1o include

the drift part in the probeabilistiz analysis; the theory and examples contained in

theerem cannot be applied, The coramon fealures

in [2] and the reasoning proceeds in the following way. The probab

[2]-{10] show that probabilistic techniques provide a method when Hérmander

of all these papers are contaired

on C{0, < )R generated by the solution of the stochastic equation Is the image of

the Wiener measure P on C([5,00):R™) by the mapping («J\;\( . lo paove ihat the

distribution P(t.y,.) of x(t,.) has a smooth density ‘it suffic

to. show thet the

es
differentials of P(t,y,.) in the sense of distributions are bounded rmeasures and to

s (ol g o~ Y T Fomrs
accomplish this goal an integration by parts formu

The Malliavin calculus proves this for

laiis pecessary,

mula on the infinite dimensicnzl

space  ~p = CU0,<)R™) endowed with the Wiener measure P and using &

generalized Ornstein-Uhlenbeck operator which is an unbeunded selfadjoint

o

operator on LZ(*‘!"M' A functionai analytic approach of this subject is given by

Stroock in [6].

A simpler approach is pronosed: by Bismut

1031 where the infinite

dimensional aspect of the Malliavin calculus is replaced by Girsancv's theorem and

the differoniial analysis becomes a Iinite dirmmensional one. .f\cma“y it is b:zsec Ch

the em& dding the original sclution into a famil

generate tiie saine probability measure and the

direct consequence of the probability invariance.

e S ‘s S B P e S S el SR
I'his formula aepinds \_.:‘:("xlth_“y [CIRERURIS S0

integration by par

aitnix @x“(r) /BLLJ/Q o (‘4"/‘



which is equivalent to the Malliavin's cogivariance matrix for diffusions and the
nonsingularity of M(T) insures the existence of the density for the marginal
distributions; the smoothness property of the density’is a consequence of the

property (det : q(;;ﬁ,P)n

WA . . e g . .
In the 1‘3’%&1‘!\'0\/1:;1') case the above property has a nice des¢ription using Lie
algebras of the vector fields defining stochastic' equation and it was Stroock who

proved the most complete form of this relations (see [7], [8]) which is the same

C)

with I'{ormar‘.c’!cr‘s condition for second order parabolic differential operators.

e I‘v’ialliavin calculus has reached a high level of generality both
the hypotheses in Markovian case and including a large class of problems
in stochastic analysis (see [6]-[9]).

- This paper is not intended to be more general than the above cited
beuunful works. On the contrary it gives a more direct approach to the Malliavin's
co/\/awon(:e matrix when de aling with stochastic integral equations and the main
-part which appeared in [11] was inspired by [5] and [14].

It is our conviction that it can make the subject more accessible.

It has the same spirit as in [3] but the Girsanov theorem is used in a
different way. The variations of the given Wiener process are depending on a finite
dimensional parameter W€ R™ and a natrix of control functions U. As a result the
matrix M(T) ‘&X (T} /du Ju o Wwill depend on U and the property

1‘ AV N . . . .
(et M) e 2 1.,,](;_4,13) is obtained easier in some cases by choosing a suitable
iif !

matrix U. There is a general way of taking U which corresponds to the,Malliavin
colg{variancc matrix as it appears in [3] and [5] (see definition 18) and it works with
minor changes not only for diffusions but also for conditioned diffusions and
stochastic equ uations with de ay. :

The paper is divided into two parts. The first part -contains the
explanation of the embedding procedure and formulation of the main results stated
in theorems | and 2.

In the second part we include all the auxiliary results and proofs of
theotems.. The result in theorem | uses only local conditions on the diffusion
coefficients and it firstly appeared in [7]. Theorer 2 can be used for obtaining the
regularity of the transition probabilities and estimates on the density when the
diffusivh mairix is degenefale(see [12]) and the drift part is a nonanticipating

functional as in the followi ing system



=4

dx., (L) :j’ (y (* ), X (t)) S \ Pl ,x ()~ XZO,{))M( 1,01, 120,

(

ar (1) = o (=0, %, (D X SR O p(OQB)s(-}{ﬂh,(‘,], 0

1 R A ¢ < o S - : 3
where g )) bl R A 3:I~l7‘19.~? Rl are © and with partial derivatives
b gl 20l €S @™, 2PNl e ey ML o

j =2 e s P y = (x,x)c L

"1t will be considered in more detail in thé jast part of the papel-

7 E'TORI‘»I‘ML}-\TEC;Z\J OF THE PR OBRLEM ARND AN RESULTS
We consider the following 1to equation
Gl oy
(1) dx(t)=E(x()dt + (_?fg.l(x(t))dw.)(t), %(0) = Xy >0, CEn
/";ﬂ.’

where w(. ) is a standard m —d'xme:ns'\cmal Wiener process over the ﬂrob;mlny space
< e i (\aé D
\. 2) ’d.’)f) 1 i &,P Z y d'lq i,o\ are (‘1\ ) .\.Ullhlﬂ’vc')

(2) il e Lg/(x‘ C(R) il

aiid C & (Rn) consists of AlliC (Rn) functions which are wounded along with all their '
partl“‘ derivaties. e 1cgularuy of the pb obability measures P(t,%g; q), 10, on R
genera ated by ‘me lto solution % ( y in (1) is obtained by using an embedding
- procedure G 0(.), into 2 family of diffusion processes < aue .R". The main
ool of this procedure is the GirsanoVv theorem of changing the original Wienet
process ol Jintoss NeW OBE W iue RE

The fmal goal is 10 obtain estimates of the form

o s Oy e 3 = 0N
(3) ﬁ;qu(x (O <C T Seef f\.ix:z‘.\l (‘«)(*i.(-,Cb(R)

1 X P 1* : S n'] ; S : )W\/ i "‘
dxl_(t) = (x‘l(t))dt o _Z,_ g.y(x l(‘c)) dwi(ﬂ, X lc_-R ; Xl(O) = %@ 0 x,oéfx , \
K\

|

|



where the constant Cﬁirdocsn’t depend on V:, which ensure% the existence
. ’\r)

of the density for probability measure, P(T, 'ib,dx)zp(T,.Xa,x)dx, with

3 e = : R
P(W,xo,-)e;Cb R and fulfiling
. = mk :
(h) {ip(T,‘XO,-)H Cﬁ(Pn)ﬁiCkgf , for some constants Ck>0 aﬁd /ck?(L

b
- i - Ui . . SR
For getting (3) and (4) we need that x (:) is differentiable with respect
=N
to uiER
Every where in this paper the differentiability with respect to u

. . . . ) . .
is taken in the mean square in the space Lz(%p,P) and it will not be

te
ot i) n
specified later. Denote D = ——rimeeeee | |l =3 £, , for .20, =,
u v e = i [
e A i=1
Gl N
1 n

integer.
In the following we shall describe more precisely the émﬁéﬁjing pro=

cedure. We associate to (1) the following auxiliary system

o : ﬂ m
(5) dx=}f(x)+:i 53 u.Uf(z)g.(x)/dt+;i cidignile) 0=,
. =1 j=14J b ' .o
; m n .i = m : ;
dx=[Alx)+ 2 5 u Ul (2)B, ()] Xdes 22 B x)Xaw, (1), X(0)=]
i=1 j=1 e I g i
o m i ‘ s
dY=—YIA(x)+ Aaei u.u.(z)B.(x)]dt~; YR Codw e D
7 e e o o i
i=1 j=1 - i=1
dN 3 5
- YG (x) U (2) N(D)= G
N e o
where X, ¥, M are n xn) matrices, Z=(x %, Y), Alx)= —f;(x), A{x)=A(x)-> 3i;x)
. i=1
i , o the
- | o Ve
¢ ) e = = S atri Lidentis
Bi(x) = () U (Uj)i=l,...,m e (g],...,gng 62 Vnull matrix, I+idantity
Jj=loeaan
- i n+2n : ; = nEln e S -

matrix, and U iR 2y R are fixed in Cp (R ) such that (YG().)U(L,')ii =

o o) 2 f ;
s 4 Lot ; Ay - . s ste wa = = . v \
Cy (R &2n7). The definition of (5) is justified later after getting {15,.



The equation (5) fulfils the usual conditions of differentiability with
respect to the parameter ué R" and denoting by yoleh 0 e X, the

fto solution in (5) we have

(6) Ecne ‘yU(L)IQ«cxy SBaosnax lﬁzyu(t)]q‘i o
e te [0,T]

'

for each T >0, o= K "C{H> andeg 5 1.

e
Applying Ito’s differential rule to WO ), ) in B it Follows

that X' (t) is nonsingular and
(7) : (Xu(t))"1=Yu(t) - fop cach b0 uER

Define w (.), k'(.) by

hesods o
B8 i (e e S e e de s imd e ot
[ ] =t o i ] g

& : St oy 1 o

(9) kL(t):exp*&i [ ( S u.b. lz (s))dw s )~ Gl
(_ } NS i) i AeRBl s e
i=1L o j=1 = o =

&

where zu(.)'is defined by zu(.)=(xu(.),Xu(.),YU(.)).

)

Let T> 0 be fixed. Using Girsanov’s theorem (see LZ&&%it follows that

W (), té}[O,T}, is a standard m-dimensional Wiener process with respect

to the new probability

(10) pU=k

and y(t), t¢[0,T], the Ito solution in (5) fulfils the following Ito

equation

m

(1) dx=f(x)dt+:1_gi(x)dw?(t) 5 X(0)=XO ,
: i=1



m
d¥=h (x) Xdtt = B
i =

e KO

o m
dY="YA(x)dtm 7

5 ‘Bi(x)dw%(t), y(0)=1,
‘:-’.\

; ; G
%% = v6(x) () n(o)= &

ot e i l
Gler \hesnew probab\\lty cpace ) ZH s S e
S I 1 -

defined as e e (9) we have Kk

, where A,A,Bi,r

Y and \rare
Q) = ahd (L) fulfils

J : me 0 : '
(12) Jk;:ﬂkfi 'fﬂujUE(zu(t))dwi(t), k(0)=1, >0

Combintng (12) with \(5) we get an |to equation fulfilino the usual
conditions of differentiability G inespect to Uqs e 1t follows

e ¢
(13) WM(r) and Duku (1) €& LO(:.T?;,P) ¢or any K=(%

\,..‘,%}Q, i< q<fr

|n order to Shtaln estimates (3) we shall \oc the SysteH (5) ‘amd it is

. : {kﬁxu ol

reqUired that the matr\x\:eMM(t)i to be non
g Juzo

v

~

singular for each t>
Y':»\ U ;

O- \,’x
“ m%’i‘a"“ﬂ oy

0;'Denote

t> 0, and from (5) we qet that WS sathe 1o solution
- of
(14) dr«-—{/\(xo(t)):-us(xo(

= m
o (@ (£) Y (1)
i=1

m(o)= <

where xo(.),‘lg(-

) define the sol
e : o
Jo? u=0 , Since X (e

ution yo(.)ﬁ(xo(.),Xo(.),Yo(
ar and (XO(Q))“\

is nonsingul

.),N‘,’(.H in (5),

com (1) we aet

O () (see Eh

: .
(15) W (1)=x° (1) SYO(s)G(xo(s‘))U(zo(s)\,dssxou)rao(t) i
(¢]



(16) WA= e, 1e 0, ueR

where yu(.)ﬁ(xu(.), XU, YY) NY (L)) is the solution in (5). Now the
definition of (5) becomes clearer aid: contains for u=0 the components
defining -the matrix Mo(t), On the other hand thé insertion of the parameter
ug R is done in such a way that enables one to write (5) in the form G

for each interval {D,T], which has the property that yu(t), t<§[b,T_L the
: 2

S
"INy 3 probability Tt fulfiling

solution in (11) determines on C(fO,T];R

(see U%], phe s

(17) AT =T fopany ueh

Using (7) it follows that MY(T) in (16) is nonsingular iff N'(T) has this
g :

property and -tmaprezenseyad the matrix U(z) in (5)

r, :
s to be taken in such

u - : 2 y : .
a way that N (T) L3 nensingidar . Eirstiofsall thore iela general way of
choosing U(z) in (5) which in a sense is equivalent with the general proce-

dure used by Stroock in )51 in order to define the positive definite matrix
T - '

PO (T)=x°(T) SYo(t)G(xo(t))G*(xo(t))(Yo(t))%dt(XO(T))x where”ﬁﬁ” indicates
o :

a: transpoS@ﬂL‘wu@tzyif'

This corresponds to the following U

. % : i, - ey
(18) U(z)=6"(x)Y (1+&zfzolg') 1, vhere ZO=(xO,1,I).
BH _
Denote P(z)=YG(x)U(z). The factor (l+lz~zok ) is introduced in order to
: s 0% n+2n2 ) . : :
have Pij{q : Ui(ﬁ e Cb(R ) but this do not affect in any way the strict

positiveness of the matrix NG

is strictly positive (see remark below).



Remark 1

SL

Assume U(z) as in (18). Since (det NU(T))~Lg Gt I
. pﬁ =]
(1+ max wu(t%wflgu}.( e ) D here e R”

: o’ AG , it follows
o 0T e ;

' " S e . o e
that the symmetric matrix N (T) is strictly positive definite and

(det NU(T)) e L (G2,P) for e e e )
, d =1 .
for any 1< a<

Another possibility of choosing U(z) in (5) is when m=n and g](x s

(@]

.,gn(xo) are linearly independent. In this case we define U in (5) by
() U(z):(H-i‘z»zoign)m](det X) (det 6(x))&(x)Y ,
where M denote the cofactor of M (MM=(det M)T). Since
j el o) hn
{(det X) (det G(x))G(x)Y M: C(1+i 1 )
the factor (1+] ‘Sn)~1

2-2 ih (19) s chesen: to Tultil Pii(')’ Uj(.)ﬁ7C (Pn+?n )

NS b

O

Introducing (19) in (5) and using (16) we obtain

. t, .
(20) MY (£)=x"(t) {(7 et R O e T <
o)
n+2n n+2n2
where { R LO ow) f cC (h ) is given by
20  !%2)¥(1+(2~20{8n)—](det G(xj)z
?Lnark 2

: 7 A =
The matrix M (T) in (20) is nonjin(ular and the components of (MY(T))
- : -1 X
are in Lq(:?,P) for any lzq , iff p{T)=( g idty s ROl

pU(Thg Lq(ﬁ?,P) fior any. =g «ﬁv_[Now we are in position to state the main



Theorem |

5 ) -
Assume m=n and. g 6. )a.g | )6 re linearly mdepend“nt( (1) ek
2 : '1 \_‘ e :
: O, ~ 0
p(-t,xow) be the probability measure generated on RE by x (t], where x (.) is the

uc measure,

solution in (1). Then P{"c,xo,.) has a density with respect to Lebesg
o
gl il _
p("c,xo,dx) = p(t,xo,x)cm with p(‘i:,xo;,.)c Cb(R ) for each t>0.
In additicn, there exist s 1()’ Cl >0 such that

. ~n{n+k+2)

0

ot %
(v )O‘<‘t§1 0

oEe -1
Wbkl Ck depends only on the bound of f,gi on S(xo,ro), (k)  and the bounds on

0
SRR : AN i

the derivatives of f,g, where (det G{y))"2k>0  (¥)yzS(xpry):

Theorem 2

Let x (.) be the solution in (1) and P(i:,xo,.) the probability measure
o oo nh 0
generated on R by x7(t).

Suppose that there exists the matix U in (5) such that for each T>0 is

fulfilled dO(T) = (det \'O T 1(: Lq(‘::.,P) () I<geg, Then P(t,xo,.) has a density

with respect to Lebesgue measure, P(t ,Ao.dx) p(t, yo,\/d,\, with plt, %0 )VC (m )

for each t>0. -
_In addition, i there exists 'I'O>O such that
E ldo(t)iq_{.(?;i S s 1<q< <¢
for sorne constants 'l‘(;q>0 p>0, then
ISl e -p(n+ks2) (1) 0<K<T,
Go
e

N/
where Cl dependson C_ .\ 4 and the bounds on the derivatives of f and &;



Denote d (T)=(det NUCT) ! ar d(T) = (det F/tu("l"))”l where NY(.) is defined in (.5) and
MUY in (16).

Proposition

: o o : ' % -
1f 6% L (2,P) () 1<q< 2 then d{(MEL G2 P Algaw, v RY

"1t is obvious that in the place of u=0 can be taken any UOC-; R". The proof
will be given for d(T)=(de ‘U(T)) and it is the same for M' (T) replacing N by M.
By hypothesis

Eja’( - | (et mTamOc e
i

where the mezl‘ic space YL C(]0, T R ‘\mjn ) is defined by y(O\"(x HQ)'ﬁnd cet
N(T);’:‘D, where y=(x,X,Y,N) and 1 fulfils (17). ;

‘Approxirrmte h(r):l for r{«!,‘q&’) ) by an, increasing sequence of continuous functicns
t‘q o {:U,C'c)"’*zgi?,li‘, defined by h”(r') =5l fop nn hn(r) =0 for r>n+1, hn(:‘t) e

ifor n<r<n+1. Define

\f‘n: t\/aR contindous and bounded by

P _(y) = | det N | et nem| 79

Using (17) it follows ‘ : : s

e {;iu(“{-)lz“ ( “:{'!l“,) ‘) 1j “(T) ’ (IS‘ (\S/ / (I/( )) S\fp ty eyl

= E/'M_({‘:.'{ i‘(\‘ “-lb}

where k() Is defined in (9) andstulfil (10) and (}.2). Since hir)=l=lim hn(r})r é[:[]g ),

using Lebesque's convergence theorem we get — |

£ ket dbern? = £ [doem] o G s oo R e Y -

On the other hand 1'(t) = (ku(t,))'l is the solution of

Gk b Ble s g o
dl o [ ';‘)—1 [ >_' 34’) ((3’ { A [[ )}J ‘{"".' it’) ) / /"7) 5 l/’ ;{ (> 6
(it j’( : &

and fulfils 1(T)& L (i ,P Yy, 1<gq<ec , where BT R,

, : 1 A : : ot 3 d‘(._.,.» S
It follows {J 1 ({ . i) [ e = (CJ,J(T“)} b IIKL("“) [ Gl Y=

A . v 0 - N4 //“’7
‘:L({ L(, }il ) = (Ec({d.u(“)/ /> /_21 (E /( II(T))) e,

" and the proof is complete.



3. AUXTLITARY RESULTSSAND "PROOPS "OF SFHEQRENS 1 ANDE2

In order to get estimates of the form (3) and (4) we need to use
Girsanov theorem not only for (5) but also for some ''derivated systems'
obtained from (5) by successive differcentiation with respect to the parameter

u. As a model we consider -the following lto equation

.

m

(22) dy=F(y)dt+ 3 G. (y)dw, (t), y(0)=y €R", t20, kzn,
=l

[ 55

where w(.) is the original Wiener process in (1) and F.G, &C (Rk) with
é;i L= le C (RT). LetiTh 0ibe fixed ond foreach ue RY denote wh(t),

: : s i ir et ST
t<3{p,T], a new Wiener process over the probability Spacejiiz-f',io” Z P
with wo(t)=w(t), t20, and pUak" (T)P, where K'(T)e& L (EB,P) for any 1€qg <o

q
and k®(t)= 1. Using theorem 3.5 (see J{3]) it follows that e e o
the lto solution of &
m

(23) dy=F (y)dt+ = Gi(y)dw$(t), v(O)ﬁyo ; téfiofﬂ
-

defines on C({ﬂ,T];Rk) a probability TTU fulfiling

(24) TT=T1° for any, weh’

o

: . P k u N
Denote byfY a metric subspace of C( D70 R ) such thiat vl sl ool (P)
; c . JRE T '
in k75b2 o for eachiuc (", where (€ R vis an open . sets
. Ui
First we shall state a lemma which is a consequence of (24). Let k (T)

u

1 = . :
be defined as above and denote by EL,E the expectation with respect to P~ and

P respectively.



Lemma 1

[ eV l s 1 . . N ¥
Let Y& Cb(n ) and h be a polynomial - of k+1 variables. Consider Pi¥—R

continuous and denote pU(T)rp(yu(.)), where yu(.) is the solution in (6) for

u el Rssume p(M€ Lq(‘»::},P) (V) 1£q< 2, Then

BN MIRGU M e M)=E Pt NG, p MK )=

=£ Ly (M) h(y°(1),p°(T)) for any u & ¢

In addition, let yu(T), kY (1) and pu(T) be differentiable of any order with

respect to uet  and assume 1°(T), Dulu(T)% Lq(gg,P) (V) 1£ qeeo, for any

£ - r i
0\=(<a],...,fan), where l=y,k,p respectively. Then

b) 0=0" o Py (MG (D), p TNKE(T) =
<60 [y (T LG n (6 (), ()T m/, ve
Proof

: ; 3 i o et
e eono e b)) o “dlcect Gon-eqience o (a) et RS = IREOE

continuous and bounded. Using (24) it follows

[Tty oty ()= | Gy G M, ply())en ®
ij . C\J ;

L i{’(yu(T))lW(yu(T),pU(T\),\:E Giiy® (T))h (y© (1) ,p°(T)) for any ue
ELw

. gl 3 : . .

Since PU=k“(T)P we obtain (a) for h continuous and bounded. Generally, h is a

pointwise limit of a sequence of continuous and bounded functions {hn(n>i with
o -

lhn(y,p” < |hly,p)l. By hypothesis,

| G IR, pt )] =



Come

. > b U (-
and using Lebesgue’s convergence theorem we get lim E‘ﬂy (T))h

e .

5] AT o el S
=f ‘(’(\/l.'(ﬂ)n\yuu),pu(l)):;conssu. for welt | and the proof is complete.

Lemma 2

Suppose that yu(;)x(qy(,),X“(.),YU(.),NU(t)) is the solution in (5),

\ g

kKY(.) in (9) and the family of matrices iNU(T), ué C7§ Fulfils (det NY(T)) };
Lq(:},P) for any 1% g<e® and uééc, where Cfgan is an open set containing
the origin and T>0 is fixed. Then

e 2 (00t t/"<x0('r>>>? @ [ (T)kU(T)”/ ol
s Xi 121 ;1 u_j [. |j & u::O b

where (L?j(T)):LU(T)=(MU(T))“] < and: MU(T) is defined in (16) .

Proof

We shall appiy Lemma 1. Take k:n+3m2 and défine the metric subspace
C\jé C([O,f];Rk) by y(O)zyOx(yO,I,I,QS) and det N(T)#0, det X(T)#0 where the
elements v in C([O,f}ﬁRk) are weltten 1 the form yley=lule), xle), v (e) Nie))
and *(t), Y(t), 'N(t) are (n x n) matrices. It is obvious that p(y{.))=

=(det Y(T)det N(T)) Lo o contlnuous functional oma Y. Usimgs(6) ana-(7) and
the hypothesis we get that pu(T):p(yl(.)) fu!fils'the hypotheses in Lemma 1.
Using (6) and (13) we see that yU(T), k7(T) fulfil the differentiability
properties required in Lemma i. ‘
The Lemma 1 is applied with thijp, =l oan whiere Z=(Zij) s the
cofactor matrix of XN (7. XN=(det XN)T). By definition h(yu(T,pu(T))=L?j(T),

and from (b) in Lemma 1 we get
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S ———E ey =
- L0 @)L ) Gl
:;uf- mEs i
et (O (ML o G [ (r)) ------------- I Ll Sy,
d X Y i (i =0
J J J
S (rf\; /u (“).7 )"‘1_“‘0(() £ 1 ( ? P; Xu (-)l u (T)) B her
ince L ~~~~~~~ ! Juxo it follows ~,-(§ = i -1 usO‘“ei , where
leuia
e G e canonical base and the plOO is complete.

i n

The next lemma 14 a consequence of the exponentia\ martingale inequality

T

and & similar result is contained in @ 5l [’J

Lemma )

Let & =inf {L, ol Xy(t)—yo\ .‘;'ro%, e chla)ie ohe colution in (22)

and /ZO> 0 is fixed. Then (‘"cf)—‘é Lq(f;?,P)_ foe =y ege and there exists

T such that
o}

E(At) 4C ¢ 9 for 0Lt&T
q O

~’

where the constant C depends only on q, /'Z.O and the upper pounds for el

feat
IR = -
on ?\y\ R 3 \\/ YO\ St ,~20g-
proof

F rom (22) we get

t : miet
(25} yltA S )“yo= S C(S)F(\/(s))ds-k 0 SC(S)G.‘ (y (5))(‘\\-1.] ey, il
o = o ;

where cls)=1 irioap  and Gl S G

From (25), using lto’s gifferential Hile it Rellods

16, |



m'lg;.n

it i e
o 2 : b dw. s
) lvicae oy [ SO a(s)ds+ '/1 %). e e

where a, bi are bounded measurable scalar functions. We take TO‘>O sufficiently

small such that

/8
(27) T sup Jals) <2
o 2
sz 0
e - -
In order to prove that (76) Q;Lq(;u,P) it is enough to verify that
( i/\To)wké Lq(},,F) as the following inequality shows

: e
o8 ol T s i

For each T<T_, using (26) and (27) we get

8 ] "7 S T | = 1 2/ ®
(28) f{ =P L%ﬁ(s)gs } %b mJ (s) > 2 (S
& m e /{»O
Pymax _> balsldi e i
Ztg.|= o ' 2

On the other hand, the exponential martingale inequality gives

Bl sl aE e .
(29) P gmax ,f?’ gb.(s)dw.(s)“ = > S(b.(s))'d§J>53‘)<; exp(-%3)
< i i 7 i :

AT izl e i '

i=1
~ o o 2o i 2
and choosing p(=5=x » ® = , where M=sup > (b.(4))", we get
= A 4 T :
szl i=1
§ Dot e
(30) P,max $?_ﬂ Sb[ (3)(}\:‘1.<S)(T>-_‘.}7_ L‘::
Cteliii=1 o ' B
m t t Q
mhs Eol o
'PZI”‘-GX[ S0 §b (daw ()= 5 b, (s1)2as)]> QO)ZE sl
i o ! o :
, 32
‘ 3 J "_»-.:—c.).
where & an



¥

(B P %.”G >'T".§ mP% ?*<Ti’4;exp(“ %T"1) for any TAZTO

S ey : ,“nf
Denote An: 2' 2 (n l; Rl g el 2 o s and ve have

Lo )
o0

e . e onids
(32) (et ) 2 QF ) ';0(2 ) ;,An

Taking expectation in (32) and using (31) we get

o0 (¢’g) ; 3 z
(330 EleAT ] Fe (z'r;j)q‘f:’i (2 s (ZTO‘)q Z 2" %exp(-f 2“1‘;1) =
n=0 n=0
oo :
K(ZTn])q;},2mn=K2q+1 e 2
o) o
n=0

. - + e ,
where K>0 is taken such that u 1exp("ﬁ’uTo])g_K, ) vel ).

Sl )

Using (33) we obtain (e) = Lq(QJ,P) and replacing T_ in (33) by

0K T &F_we get

£ AT TG, T.7%, where cq:anq“

s

and the proof Is complete.

emark 3

The conclusion in Lemma 3 remains unchanged if F, Gi Tho(72) are replas
ne 2R : Sis o k k : A k
ced by Borel measurable functions h: p,»b) %R LR -whiichare C? in y&R

and fulfiling

Ih(e,yl < niey D), ieliy),  ver

Lemma 4

Let m=n and assume that 91(Xo)"f"9n(x0) are linearly independent in



(1) befiine U(z) as in (19) and pu(T) as.in remark 2. Then there exists

o ; . 5 i o 5 7 = Y
Dupu(T) for any :\’::(c{],. = ,c(n) ; c{i; G0, and DZpu(f)é Lq(gB,P) ) l=q =%,

for each ué:Rn o e 200

In addition, with <Y defined in (34), there exists TOE>O such that
A o U 2 '
h(p (T))‘T:CqE(W/\C» e o e 0, where CO;>O depends only ﬁé)?,and

(

i
LO) and ;

i K (V) D<tLT

Ve -t = ; s '
where the constants CU >0, ue < R, are uniformly bounded iif ¢ .is a bounded

< &
& 5 G
e AdeEs .0 L ; ; e . - LetiBaite il
set, and Lq depends only on q, 2o, and the bounds for [fl, Lgi\ 45 k)x"’ E

on {x¢&R": oGl o f-
1 elieion

chfinc
(34) wtsinf § T O:(zu(t)nz

: 2 =
where /to)>0 is sufficiently small such that (det G(x)) g»ko S0, for x inithe
/ ' u u u Tl o . =
ball S\xo,leo), andayo b )=les Lol ) s sthie “sol Uit liom ln (5). For each
ueR", the equation fulfilled by z"(.) is of type (22) and the hypotheses in

Lemma 3 are verified. It follows that thereiexists TO>-0 corresponding to u=0,

such that

(35)- E(w°4 t)‘qé_Cg B G T
(=) e L (R.P) (V)" 12q <=g for each MER”
=L
g
where C° depends only on % and the bounds, for (f’ bl 4:£l | -t
q epends n» q:-t»o 3 () -Q‘\’ L,\x’ o X

onlix: (X“XO’;

=80, TRY ST



1

If we change & with & in (35) the constant T can be preserved as
in (35) as the following remark shows. For each u‘akn the solution zu(t),
t QJb,Té}, in (5) has‘the same trajectories as the solution z"(.) in (11)
and the coefficients in (11) are those in (5) forvu:O.

The equation verified by z"(t), t«é[b,TOJ, in (11), fulfils the hypo-

theses in Lemma 3 and we get that there exists TO> 0 such that

(36) o b e
= 0
for each u, where Cq Sl b el b g el \gi’ ! ]»%;
o -
S on \x. {x-'x ' T N
o X o

o
Since E(t A% ) “AgY }( tA Ou)"q(ku(To))~1] for any g<t;§To , where

K“(.) is in (3), we obtain

(37) E(t/\'lfu)mq‘;‘(,:,t: = (¥) Daser
WA e ) Uy 172
C 6 Elea ]
NS
where qu is the corresponding constant in (36).

TAL
G8) Pl (202" (et 66 (6)))%ae)”
¢}
(1\0)“1(14 max iz (t)-zolgn)(“:u/\T)q{L
bzt AT
= 8 -1
o e e

Usttng (36) and (87} in (38) it follows

(39) pUW)GLqum) (V) 1<q<eo,

s

: 2 : i
On the other hand, using (det G(x"(t)) > ko7’0 for any D<t< T we get



& }g 5
D e R - ” -1 8n
E(p (l))]:;CqE(rt:/\T) q , where Cq:(ko) 1k éo )

since y"(.)=(z"(.), N(.)) fulfils (6) it follows that there exists D p"(T)

for each ®=(« "C<n) and

o

ol

(40) 0, - (Me Lq(‘;{;}?,p) () 1€q<™, uer"

The proof is complete.

In order to get estimates (3) we need to use Lemma 2 and to write

n \ il
S S Bt o o e
}il ”Juj(Lij(T)L (f))u:O in a more explicit fgrm. Denote Djy (t) L& u‘(L)IU:O
Fat ]
/O ::__(“l‘ k.._ \ |
DJL <t)'[‘bu'(tjiu$0 and
J
(41) g“(N)=(det (1)) , d"(M=(q" ()™,

where yU()=(z" () ,N"(.)) and k"(.) are the solutions in (5) and (12) respec-

tiveliv.

«s

By differentiating with respect to uj in (8) and (i2) at 1=0, we get

that Djyo(t), Djko(t), t>0, is the solution of the system

fa)ee dy Ry d b 2 G )d (el y(o)=(z";,@)"‘
: o
"y e 7 Q,Q?G;
dD y:[,»,—n(,)o yh > U )G (v dt+ > ——(y)D.ydw, (t), D.y(0)=0,
i=1 J Ve e U s J
O =
dDJk‘—:: U (7)dwi(t) ; D.k(0)=0,
=1

L rehere Bl (RS bbb el
) n

i(y)“—‘(g%{‘(x}, (Bi(x)X)x, - (YBi(x) %,(5§)£ and (v is the null matrix in R

...]
From (16) and under the hypotheses in Lemma 2 we have (M"(T)) =

=d"(T)RY(T)YY(T) and using (42) we obtain



= s Ao o 2 —0 G /s o ..
(43) 521'73G(Lij(])' e ji](n (MY=(T)) ;059 (T)+
N
J2 @ DJ(:TO(I‘)YOU))U.+("rli”(r)v(’(ﬂ)I DRy,
L

where M is the cofactor matrix of M (HF= (det M)1) .

Denotefy;\y,D1y,...,Dny, le,...,an) and (43) sheys that

n -~
e o u e Bl 5 AIO (@l
(k) .511W;U?(Lij(r)k (I))U:Onhi(y (hd 1))

where hi is a polyncmial of degree (n+3) with respect to the componente of

YOAT) and d°(T) Lul of second degree with respect to d°(T) where ?Kt), i<&[h,T},

is the solution in (42)..

Using the above remark and Lemma 2 we have

Lemma 5

Suppose that the hypotheses in Lemma 2 are fulfilled. Then

n s 5 a. E
- ) - :

S ddl g el e W s g and

ey i] u=0 q

= :

i ) 51 O = = ’ 0 ; & oz N

/Ee;;?(x (I))]: op Xzfﬁnp/(x)] for any “'Cb(R )

where CizEIhi(§o(T),dO(T))/, and h, is the polynomial in (Lh).

In the Lemmas 2 and 5 we described how to get estimates (3) for The
par;icu]ar caseﬂf=ei, =l i Whiere ei,...,enf}Rn Yo alcanonieal haz=2in
general, to obtain (3) for an arbitrary « we need to re;xa;i“the arqur=nts
used for -:«‘(*—‘ei but for new equations obtained from (42) in the folliowi=g
manner .

We replace w(t), tQQIQ,T], a2 ) by e tc;[O,T], defined o (8),

u . U TR o
and denote by S the new equation. Let vy () tcft0,T1, be the solutic— in



!
N
b2l

3

sY over the probability space (9,7, {gij?spu) where PU=k"(T)P and K"(.) is
given in (9).

Denote
(45) PTY=h, (1), a" (1)

where h is the polynomial in (kk).

We have

(46) B RG

v / S
Denote by D the transformation applied in (42) obtlained ¢4 changing w(t)*“é
%

Uy, ; f il i i e H??“ o ; 7
W) tcth,TJ, the differentiation 1efa~(t)(um0 e o, 1l of the selu-
) e :
e S : ; T V’B\”J 0
tion y“(.) in S  and adding at (42) the lto equation fulfilled bny5~U~(t)

-~ U::O 2

té[O,fL

Definition

The Ito equation obtained from (42) by p transformations D is called

aderivedisystem of order p and‘denote it by DPS:JIet e P integef be fixed
and \9(t), t Gjb,T], the Ito solution in DPS. It is obvious that the Wiener
process in pPs is the original one w(t), t({b,TT, and changing it into wu(t),
té{b,f], we dgnote»by 0PsY the new system so obtained. Let ﬁpu(t>, téf{p,fj,
the solution in DPSY. We have 'Wp(t)=‘§(t), tcé [O,f}.

Remark 4

The solution Y'(t), t{f(O,TJ in DPsY is differentiable with respect to

- N s Ar My &) : S el=ileC GC - -3 = TR lin
uéR . and mheal (l)xALq(uu,P) () T2q <og (= Crenea \n). it is clean Gl

&

that the solution ﬁfu(‘) in DPsY is obtained from a system of theform (23)

which can be rewritten in the form



. n m Ly 2
(46)  dy= F(%’)*’B“uj > U{(/)Gi(ﬁ{} ditn > Cl(Q’)dwi(t) W) %; : tcl{O,Tl
j = ] i =1 i = 1 ;

where W=z 5 aid Ué(z), 2z are as in (5). The differentiability properties

k);utf

of the solution WU (.) with respect to u in (k6) follows from F,Gickgw (R

r’[‘},) X 5 L’ % 7 b A <

Denote by PE the set of polynomials 0(y’,d) of k+1 variables, of degree

r4nt2 and of (r+1) degree with respect to d, where k=dimy .

Let RL be the set of functions ﬁhRnx {--> R obtained by Y(u,w )=
xQ(q'u(T),du(T)), where QGFPL and \fu(t), t<§[Q,T1Q the solution in a system
plc

) -
Define Pi<T):RP by
- By ey Ly i :
(47) ¥ Ml = paBme 3 1 e -5
j- j

Lemma 6

Let T> 0 be fixed and suppose that dl“’(”I")-':(det_NU(T))“1 EEile e
LR e for neL SR, 6 open, 0, where yu(.):(zu(.),Nu(.§)

is the solution in (5).

Then-

T lC(l I BN B
0 erdoEmety - edbomnlE ) E ) )
o0
for any ‘fé Cb(Rn)

There exists 14 k<%, k integer, depedning only on (&l ‘and n such that

s 37
P e i T i : & i
B M- My P GRER and Ne(0) €L (,P)

(V) 1€ q<ec for each f{ﬁ(G(T,...,a(n).

b add ifsion, s thene exists 1 O 0 and p> 0 such that



' e N ) . VASS
E[do(t){qgfcq g (V) 0<<t*£TO . fOF some.censtant Cq)»O ;
(¥) 14q<e9, then
y - N i e ) (fe<i +1) : L
C) E \ (&(O)l = (";»'(' ! : ; (\/) DT TO

T :
where the constant C > 0 depends only on Cq and the bounds of derivatives
U\

of f and g;-

Proof

The proof is given by induction with respect to 'l . For leli =1, we
have ﬂf=§% for some iG5'{1,..‘,n}, where Cryecsey is the canonical base
: n
PR,

The conclusion (a) for Nm:ei is the same with the statement in Lemma 2
Viila (A5 and (L7

. : i i AU gy it 7 o

Using (45) we have Pi(T):h(y G (ID, where h is a polynomial of

- Ui e % 3 - : ; 1] s 5 :

degree (n+3) and y"(t), t&]0,T), is the solution in S". The conclusion (b)

. o R =
for €(=ei means P?(T)Q-RP , where k=dim y and P?(T)Q Lq(bB,P) (W) 1sg <22,

Since V' (T) & L2 P ond ke D) Lq(fE P) (V) 1=qg<eo it follows
21 (T)¢ Lq(i@’,p) (iicg ==
By hypothesis dU(T)6~Lq(€E,P) (V) 1€q==0, and we obtain that h(;u(T),

g (1)) € Lq(fu,P) (V) 1£q<ey, for each ue(l, which proves (b) for d(=ei.

Since h is a polynomial of second degree in the variable d we obtain

(18)  EPO(TIE[n (o), M <N D 2 n PN A2

where h] is a polynomial depending only on N, Y, k and DjN,DjY, Djk’ Jele s

By hypothesis

~and the conclusion: {¢) feor = e follows from (48) with



- 28 -

i Pt }
Ci“(Cu)l/Ziﬁ max \h](yo(T))}2J1/2, S
OC fi:TO ' 500 \

> A -
Lo 1ol (). (c) betrue tor Fft'xé and let & be such that (¢l=fs

‘:\" \ I s
Thenc(ﬂﬂ.+ﬁi with i“lwﬂ-and

. Vv .7(' N (< s B ,?T' o K;\) 5
Gy e L Eay Emleon . Fen o]

= X )

& o
By hypothesis (Pn(T)) n‘..(Pi(T)) ](1)G—R for some k>1, and

k
~ (o
7 ¢

(50) )}P" (1)) ”--.Uq('f)i"<1ﬂ<u>z Gentt o2 be o

s
S ; i/
K k=dim Y~ ,

where-ﬁfu(t), t-Cﬂb,Tf, is the solution in a system DPsY. Using (49) and (50)

the conclusion (a) for I||=1+1 can be written as

. < o -
en - =0 Py (>O(1))[Pi(T)Q(\]J (M ,¢"(m)] (0
4 I
: (O o0 -Pkp ;
Since (a) is fulfilled for < and Y replaced by = we get
S
: e e { e o o
22} Fb -fgf;—;(x =G0 e g (), d (1))

i G

Now we are in position to apply Lemma 1 for the equation defining

ijQ(xI')9d), h’here

Vi=y, p=d, Lij:'d(T\"Y)ij - dim el and ok YaN=(z,.0) s the Weector in (5],

oPsY. which is of the form (23), and for the polynomial h(y,p)=L

By definition of 0Ps, the system (42) is included in any system oPs and
any system oPsY contains (11). So. Tirs: n+3n3 components of g)u(.),are cefined
by (xu(.),XU(.),YU(.),NU(.)), the solitionin LIt The matrices el ) y¥ ()
are nonsingular and X" ()Y (t)=T, tg}{p,T], (see (7)), and by hypothesis

o

NY(T) is nonsingular and d"(T)& Lq(zu,P) (V) 1gqeo .

Define a metric subspace 5%%QC( @,T]:Rk) by the following conditions

e



- (53) \{%0):(XO,T,IQQﬂ,O,.",0), where yo=(xO,I,I}QB> is given in (5) and

0E€R is the null e?ement]

' : o : . i 2
(54)  the matrices X(T), Y(T), N(T) are nonsingular and the firs n+3n coinpo-

nents of (%K.)G”C([D,fj;Rk) areroeEd) T o) I

=

, 5 % é
It is obvious that d{¥'(.))=(det N(T)) is a continuous functional on}].

Using Remark 4 it follows that Y'(T), KY(T) and d"(T) fulfil the hypo-

thesis in Lemma 1 and from (b) for u=0 we get

N .
Ao e Uiss HF i u u o
o 0:%3ﬁﬁ [ “”Hﬁ”QWu“%d“”L(Qhﬂ“
. NEEZ e ”Q (‘afu N o 0 G
=& [ (06T, ;i_q,')’}uj“’)u obs; T (2 (1), d%(m) )
0 el m G Wl O et oo ]
-=L€</ (x (TS =L ATk (T el e e
i QLUI“IJ i
” n :"
e e e T
j=1 Y 2
ol L Xu( ) =)
......... el = ave > (Sr it i = 5
Since IQWL (l{[u:O 5 F ), we have j;jzéqu ju=0 i = =
and using (47), from (55) we obtain
ﬂ\.‘ M 2 ’ ~s A 1 %
(56)  ELLGMNQGFOM), M) =€ (O Mty ), a ()] (o)
e 5 : :
Therefore using (52) and (56) we get
z Y - ) 2 f“’ e : g
(57)  E ;ff;—é%xo(T)):(J)P”E‘[(xO(W))U’i(T)Q(‘( (sl (D)
: - :

which represents (51) and the proof of (el complete.



avs e

from (47) we obtain Pi(T)Q(%’u(T)JdU(T))G}Rf'1 for seome
3

=e, the proof of (b) is complete.

Since QE,P;

o : . K
k]y k and using the same argument as for ™

The conclusion (c) for lo¢[=1+1 is a consequence of (b) and the estimate

(48).
The proof is complete.

Now we are in position to give the proofs of theorems 1 and 2.

Proof of fbigrem 2

ot eyt 1 st 3 PSSRy

(¢

12”f‘”

>th\dﬂ4¢

By ‘hypothesis the conditions in\[gﬁma 6 are fulfilled. From (a) and

(b) in Lemma 6 we get that for each v(:(c{},...,c(n) and t 30 there exists

€ t‘?O siich that

0’\,
f X il s .,\/;."_ - o | ¢ ) ‘,r;,‘j a1,
['n DXL] (/\/' (tyxoyd/\ll’-w Lﬂ(,t ;?::zr] | f(x)) (V) H.“’ Cb(R )

(&

: e / ; . fop bl

respect to Lebesgue measure, P(t,xo,ox)ap\t,xo,x)cx, with P(tsxo’”)élcu(? )
v

for each t> 0.

In addition using (c) in Lemma 6 we get that there exists T % 0 such

- ol 3
6 o s (W) - 0ctaT
it 0

where in 0 is a constant which depends only on the bounds of' the derivatives
& :

Y "/
on iy grrand Cppps, wWhere Cq are given.
i

Applying Lemma 3.1 in (5], part 1) forle(iZ n+k+1l we obtain that

- - e
“p(t,xo,.)gi C k \Cl‘-ﬁ & \V) Os\. [ Fo

and the proof is complete.



Proof of Theorem 1

By hypothesis the conditions in Lemma b are fulfilled. Take Wiz i
(1)&3;fis defined in (19). In this case d"(T)=(det NU(T))nlz(pu(T)) T where
pu(T) is defined in remark 2. Using.Leﬂma I we obtain that dU(T) fulfils the
hypotheses .in Lemma 6 with p=n and Towa deduced from Lemma 4.

Therefore the hypotheses in Theorem 2 are fulfilled with p=n and using

theorem 4, we get the statement.

The proof s complete.



4, ON THE REGULARITY OF THE PROBABILITIES ASSOCIATED

WITH A CLASS OF STOCHASTIC EQUATIONS WITH DELAY

The eqﬁations we consider are defined in the first ?art
(see (%)) and can be assimilated with a class of nonatici?ating
coefficients equations for which the existence of the smooth
density is analyzed in [8] and [9]. Generaliy as it a?pears in
L8] and [9}, the problem is solved assuming that the diffusion
matrix is a global nondegenerate one,’

The problem we consider has the particular feature that
the diffusion matrix is a degenérate one and the main tool in
getting the result is a simple version of the Malliavin Calculus
as it is stated in Theorem 2.

The strong solutien in (%) exists and 1t is constructed
succesively on the intervals of the length h supposing that sthe

initial condition XZQ(S)'°"’Xbo(S)’ sg;[fh,O], is a continuous

~s

function.

As in Theorem 2 the original solution x(.)=(xl(.),..,,xp(.))
in (%) is embedded into a family of solutions (), ug;Rmp,
which for each T»0 fixed fulfil the following properties

alioe ) generate the same ?robability measure Tl on
c(fo,T};R™) for any wer™?,

b) x%(T) is differentiable in u of any order in LZ(QZ,P)

and DO“\;XU(T)E ﬂ Lq(ﬁer),
gyl
¢) the matrix [?}xu(T)/B u]uzoz (T) is a nonsingular

ore ol 0 M) e LSy
gyl



L0

The embedding is based on the changing the original Wiener
process w(.) inte a new one wu(,), and it is performed separately
on each interval EO,h] ; {h,Zh],..., Lkh,(k+l)h],... . On each

fixed interval [kh,(k+1)h] the equations (%) are replaces by the

equations of the type (5) where n=mp, f=(f1,f2,¢..,fp)

g.=(gi,@,.,.,9), 6-the null element in R™. This time

i (p= 1)

r

£: RN, R (£ (F,x)), A(E, )= 26/ x(£,0), g i)

i
~ Sl 2o

=('gi/Lle(Xl), Alx,x)=A(x,x)=> Bi(x), g=ica ¢ Vs and the

i=1

matrix u(z)=((l;(z)), i=l, ey, j=1,5..,0, has dts elements

2

00 _
in [%?(Rn*Zn Jsueh ithait (YG(x)L{(z)) is positive definite (= 0)
2
and (YG(X)[L%Z))ijé Cb(Rn+2n ), where G=(ql...gm). The correspon-

ding system (5) is written for Q;x(t—h) and the solution for

té{kh,(k+l)h] is constructed by considering that x(t), té-[O,kh],
is the solution in (%) and the initial conditions are XO(S)=X(S),
s €[(k=1)h,kh], X(kh)=Y(kh)=I; denote this system by (%) and let
=

7 t)=(X'(t),Xu(t),Yu(t)lee the solution in (%%) for

te [xn, (k+1)h]. Using Ito’s differential rule it follows

11 u(

(Xu(t))— =Yt ) te?[ﬁh,(k+l)h], and by the usual rule of deriva-

tion we get

(xxx) M°(T)= [2x" (1) /2 u]uzo=x i £)6 (x° (1)) U(z° (£))
h

where zo(t) iguthe:sedution An @k for u=O.

(xl)), CZ& ClG1 and assume

ik
Denote Gl(xl)=(gl(xl)...g
Il) det @’l (=

Denote Aj+l(§%,xj)=f}f]+l/2>xj (§<,xj), j=l =l and assume
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T the matrices Aj, 122, o Py are constant and

5)
|det 275k, > 0.
By a direct inspection we get that the matrices XO(.),

YO(.) have a triangular form

5 :
e ) W 6 fkllm) AR )
e ) 16 @ )YO(.)= k) o .
&x P L) e pr_l:(,)I Ypl( ) ...Ypp_l(.)I
1

where Yll(t)x(xll(t))“ r Xyg Yij are (mxm) matrices, I is the
identity matrix and ) is the zero matrix.
Tt is easily seen that Ynl(t),'j=2 ,..,?}té;[kh,(k+l)h],

are given by Yzl(t)=M2(t)Yll(t), Y31(t):M3(t)Y11(t)"" ;

Ypl(t):Mp(t)Yll(t)’ where

- . Wavd =2 .j"‘l St
Mol (bkn) ) a Sl ) and SET R
3 3 j
: (3=2)!
£ -2 ~ j-1
e 972, k) Mj(o>=(—1)j Gz

kh

We define

—

= 8n, -1 %k * & g =
Ulz)=(1+ [z 7 [6]0] {ol‘t Xll[IMz.“Mp]

where(ﬁl@l:(detc&l)l and 0, is the zero matrix with (p-1)m lines

and m columns.

The corresponding matrix in (k%%) becomes



g

e o (1+ 12 (0)] %) "laet @, x, (1)) QM (t) [n\ (0 .. 5 0] ae
= = PR ¢ 1 s C
)kh 1250 2 2 P l

e o ; Dt -1
apdisldet MET) )i AN L (0 B iE det N(T) o ﬂqu(Q,p),

gal e ax
where
I «
i M, (t)
2 e 5.2
N(T)= : [;M (£) ..M (£) ]| at
ih 2 P .]
Mp(t) |
Using a stopping time f:inf{té(kh, (k+l)h] : )Xﬁ(t)—-ll% ? g
oS . o/ rw'
we get max \ M. (t)(gc] 3 max )M (t)-M. (0)] ¢ clf’ and
te [0,2] selo,el !

o 2
det N(TA%Z )2 (4% -kh) P méﬁo for f sufficiently small where

NoJ =

e 1 %
I -2«N2(O) ~§Np(0) S
1/2N, (0) ... 1/(p+1)N, (0) N3 (0)
3 2 P
0 <A =det : ;NS (E)=A%. AT (E)

e

\j/pND(O) s 1/(p—1)Np(Q>N§(O)
f

Since (2;~kh;€ L (SB,P) we obtain (det ﬁ%mﬂ% ))—%é N Lioe
gyl 9 b

for any kh< T <€ (k+1)h and using Proposition and Lemma 6 as in the

proof of Theorem 2 we get



THEOREM 3

e S

Assume that Il and 12 are fulfilled for (%). Then

(det MO(TSM%;/"\ Lq(gz,P) and the probability measure P(T,.)
gzl

generated on R"P by the solution x(T,.) in (%) has a smooth

density P(T,dx)=p(T,x)dx with p(T,.)g CE%Rpm) Foroanyg 0.
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