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ON FLOWCHART THECRIES II (nondeterministic case)

By Gh. Stefénescu
2

Abgtract This part of the paper givesan algebraic specification
of the semantic of simple nondeterministic program, i.e. with
sequential composition, parallel composgition(random choice) and

feedback(random iteration),

Introduction

Many years, as a man, the computer was able to do only one linear string
of operations in its consciousness. In the last ten years, due to some theo =
retical and practical progresses, there was possible to constfuct a computer
which work as a lot of people, i.e. more than one devil pass through a
program and work together on the same problem. In order %o do correctly
their job, they musf to synchronize, to communicate one with the other,
Dijkstra (4], Hoare [87] and Milpner [9]. Of course, we want efficient
programs. Since the programmer can not expect the exact order in which
different devils finish their jobs, we have to allow the computer to have
& nondeterministic behaviour, namely a devil may wait signals from many
others and choice one, from the existent ones, in a random way. At the actual
stage of -our(my) knowledge it seems to be quite difficult to have an exact,
mathematical semantic (one way in which we can simplify the problem is %o
give an operational semantic by interliving; i.6. to.put one devil to do
the entire job: it chogce in a random way a devil x, skip there and do
an atomic step for x).

Here we give an algebraic semantic for the clasical nondeterministic

programs (those which has, as possible behaviour,a linear, but nondeterministic
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string of operations).

In the previous paper [101 we defineda common generalization of iterative
algebraic theories [57 andw-continumalgebraic theories [1] (stronger than
iteration theories {"ﬁ), namely the so-called theories with strong iterate,.
Phe main result was to show that (a quotient of) the abstract E-flowcharts
over such a theory T is the theory with strong iterate freely generated
by adding > +to T. Here we look for an analogous result, in the nondeter-
ministic case. In this more general case the things seem to be more natural.
The corresponding structure is, roughly speaxing, a bit more strong than a

theory with strong iterate for which the dual category is also a theory

with strong iterate. But there is a more direct way to give this stiructure:

We call a repetitive reticulum T +the set of matrices over a semiring

witth —efi=t s swhich has,beside + and - a % -operation that fulfils

§
; = : ; 2 S g 2
four natural axioms (an axiomatization of Nt h e

If 2 denote a set of atomic flowcharts, we define the theory Fl>1 0 of

g : ot
abstract X-flowcharts over T (the flowcharts with vertices from X, connected
by morphisms from T)with matural — +,% ,% operations (union, sequential

composition and repetition). Every 5~flowchart over T may be represented

. A | B] : : : :
as a matrix fo= eEE%mﬁj , where e is a string of its atomic elements

(1labels of its vertices) and the morphisms A,B,C,D from T , respectively
give the out-of-the-box behaviour of f , the inputs from exterior into the
box, the outputs from the box to exterior and the into-the-box behaviour

of f . As in the paper of Goguen and Mess8g.er 1#1 we have access only

to the visible behaviour of the flowchart {there to some sorts of a multi-
sorted algebra), namely to its inputs and outputs. Hence we allow the
flowchart to be changed (for example, to minimize the number of its vertices)

by deletion or adding inaccessible or coinaccessible parts or by folding



L

or unfolding soue vertices, if its input-output relation do not change.
Mathematically, we define an equivalence = on FlE,T (stronger than
he bisimulation of Park [ 3] and which preserves the computing paths) and
show that the quotient RFlE,T = Flst/E is the repetitive reticulum
freely generated by adding % to T (as X-polinomials over a ring R , with
equivalence = reduction of similar terms, is the ring freely generated by
adding X- to R ; in a more categorial language this is the coproduct of
a gilven structure with the free one generated by a set), eachtime when
RFIE m is a repetitive reticulum. The main technical result show that
5
RFlZ,T is a repetitive reticulum if the simulation relation (the bagic
relation for defining ¥ ) has the confluent (Church-Rosser) property. For

arbidtrary 3, in that case we are if T ds M{o 1y the repetitive
: $

reticulum of matrices over 30,1}. Hence the usual nondeterministic flowcharts

RFl; is the repetitive reticulum freely generated by 2.
“3

v
10,11

It remains an open problem to see if RFlE;T is always a repetitive
reticulum, eachtime when T is.

We point here some limits in the application of our results. Particu-
larly, our equivalence = says that every ¢ &3 is isomorphic with the
matrix of its components (its behaviour is known if we know for evefy sheadl
the behaviour of < wheﬁ we restrict @ to its di-input and j-output).
This is not always true. For example, the interliving operator ll€2%21

3
(whicﬁ make one devil from two) has the matrix of its components equal to

[}] (as wil1 = w , the first component is (1+O)H = 1).
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Part I: Algebraic foundations

1. Repetitive reticula

The aim of this part is to give an algebraic structure, called
repetitive reticula, which in our view models the ‘connections betfween
vertices in a flowchart. To mske the things more readable we restrict

ourselves to the onesorted case.

A gemireticulun MR is a category in which the objects are the
natural numbers and the set of morphisms, with usual matrix multiplication

as composition, are
M_(m,n) = the set of mxn matrices over R,

(R,+,0,°,1) Dbeing a semiring (i.é. + 1is an associative and comnutative
addition with © neutral element, « dis an aséociativo multiplication
with 1 neutral element and o is left and right distributive with
respect to +).

Ye shall denote the component-vige addition of matrices also by + ,
by O and 1 the zero matrices and the identity matrices of adeguate
dimensions, by x? ey MR(1,n) the zero row vector with a 1 on>p1ace i
and by y?AQ MR(n,T) the transposition of x?. {0,13 will denote the
boolean semiring, i.e. + and « are the usual boolean opegations or

and and.

A semireticulum

R jatas petioiilnn 2t dAnt e helds oo =ail

A repetitive reticulum'is a reticulum T endowed with an operation,

called repetition,

% 3 T(n,n) > T(n,n)
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(which intuitively means to nondeterministicaly repeat the application of

a morphism zero or more times), which fulfils the following axioms:

e A/x‘*»s-‘in = A""“A+-1n y 1f AeDln,n);
(B e Capih ARl 7 e o Re gl ),
Rz a(BA)® - (AB)%A » if A€ T(m,n) and Be€ T(n,m);

o s %
=T

(R4) if Ao = ¢l hen A°¢ =3B » for every i€ T(m,n), BeT(n,n)

and gé—M{O”}(m,n).

The following proposition shows how one can compute the « of g

morphism when he know the % " of its components.

Propesition 1.1, TIn a repetitive reticulum

e p)- A e
i = b
B D | ot W
where W = (CA*B + D),
Proof. TFirstly we shall prove that
Ly s Horing Yy 1 o]
= and = - .
0 0 0 1 (66 D DEE D
Indeed,
* oy
K ma ™y s 1 1 1 1 -
= L:\. Bj £ ,'A B] = Sk
@2 g 0 0 ROJEBicie = s 0 0,
AKX
0
Hence
& m K T o
G 0 0 z

Using (R1) one can see that



At W] (0 B i"s 0} SRiELE ] e N
o o { 3 = i e
0 0 0 Vl 00 e e j 0 T

In o similar way one can prove the second equality.
With these identities we may return to the starting equality and

compute:

L (R3)
fﬁ* A*b} 0 0 j % [‘A* A%B 1 0
Lo 1 A" oA BaD) 0 1 wea*  wd
2% A%Buca® AT BW _
WOAK T

Pasic exomole. Let S be a set (of states). Then

RelatiormS(m,n) = the mxn matrices with elements relations on 8

. 2
with usual operations (+ = union, ¢ = composition afae AN et U )

igs a repetitive reticulum. Particularly, if S hag only one element then

Relations, = M; .
el LoNSq ,io,q}



Part I1: Tlowchart theories

24 Detinitions

Notationg: [n] = {1,.,.9n§ and w :-{0,1,..,3 .
£ (1, VY,0,°,1,%) is a repetitive reticulum and 3 a double ranked

alphabet for the set of atomic flowcharts (rin’routzjiw#“g give the in=-

and out-ranks; their monoid extensions to ¥® will be denoted by T

T too), then a 2 —flowchart over ‘T with m inputs and n outputs
is a double f = (1l,e), where-eeX® and 1 E;T(m+rout(e), n+rin(e))0

In a matrix representation this means (typical, ever string e &‘TN is
oo

Chi= 61"'8161 , where le| is the length of e and. eiéfﬂ for ié:ﬂel] )

5 e1 T " s ew /M»-S{VLQL),W\‘

v (e 5\ r (e
ine dn el
mn A B
= (

e1 lout\e1)
: c D
e(e\ Tout(q(ei)

where the left-up corner A gives the vigible behaviour of the flowchart
(out of the box), the right-down corner D gives the noﬁvisible(internal)
behaviour of the flowchart (into the box), the B-part gives the inputs from
exterior into the box and the C-part gives the outputs from the box to

exterior. For example the 'G,zﬂ ~flowchart over M from figure 1
: 10,1}



may be represented as it is shown there,

3 f‘g‘"\ f::'l ("f""v
/ .
g0r Lio 1 00 ) )\\ —
5 e
- 00 060 -0 ( /
5 - P
; g _'_«1.}{{ \H .U; r !// *L,__
ﬂ,& 000 00 0 0o LQ« \[THE[
*c:?:- 0.0 i ¢ 00 [\ \\J/":/

Figure 1.

We denote by ¥l 5 T(m,n) the set of ¥ -flowcharts over T with m
g 4
) o 2

inputs and n outputs. Lvery f€ T(m,n) may be represented as the visible

flowchart (£, A) and every o€2X as the flowchart

I‘out(ﬁ) q
r, (s) ( 0 I 1
T 1 0 -

The fundamental operations on flowchart, in the matrix representation,
look as follows (the sharing of rows and columns with respect to ranks of

atomic flowchart from 2 is preserved and we omit its writing):

union

n e e'

1

- e mfAUA* B B‘T
m A B m Al B =
= {J —t = e &) D 0 :

e @ D et C! i

e! Gt 0 D!
~




p ¢ @
m ;"AA'[ B AB‘T

o} - e = e CA! D cBt
= 0 E I
& :

el C'i 0 bt

we

e il o
e LB n l AR i A% l
= C D e , CA*‘ ¢ A%B U D__l

From now on we shall not write the sharing of columns with respect to &
as it is a direct consequence of the sharing of rows.
e shall define a derived operation which shows how can be construct

anvtmwn - matvriz of flowehards T o oo
L1

8 m n :
BE V2 e O Y Baf aman
o ie(m] jetni

In the matrix representation this is

A1,] e ¢ ¢ [&[‘n B11.Q.B1n O .‘IO
ﬁx.’ ¢ e o O »clO BA ovOB)'
mi mn m1 mnn
eH CH e (0) D11v-.0 O 5 [0
If‘ j = i 0 C1n 0 D1n G .0
ij
) ¥
em1 ('m1 i) (OFrt e sl0) Dm1 250
: T 1T+ 4 ¢ € G «t s
0 e OrFn o) Qe S
mn mn | mn



3. Bguivalent flowcharts

9 - A <« 3% : . a
Denote by Rels(e,e'), for e,e'e " the set of relations g from
shea

ftell to lie'l] which preserves labels, i.e.
Lf e e then e =ralt g
it i ice is

e e s S S a e S Lo ST
(L‘,‘g,l\} has a natural exvension to inpuvs

» \He o L) ~ 1
L e Hio,ﬁi(lin(e)’ v lat))

zevy,
obtained by replacing every (4 in the matrix ¢ by the /identity matrix of

appropriate dimensions (if this d4 is on i- row and j - column, then

hes imensions ayg r. S, et e isamil S vith ~extension.
these dimension ay rln(ol) ; rln( J)) Similar with ¢ extension

ut

The basic relation, Let f=(1,e), f'=(1',e') & Fl? “bm,n)  and

¥

g@Rel (e,e'). We say that £ is simulated via @ by L' o and write

X
1oe3 fl o af

S
[ | 6] e
LE—T-Dfin~ Youtci} goutD“

e

Perhaps the following figure gives some points for its intuitive understanding.

& e
D / =
S

g

1

Figure 2.



It may easily be see

n that this is a transitive, reflexive relatiion,

‘Qur equivalence on flowcharts is that generated

ihis means that £ dis e Molent wibh FV auwide this
ToE=net, 1f there enict & £ o such that
i

1A e “}:‘7 L] et there exist £ 31 . C1
e this equivalence may be written as

ther»e vy et 2> 2 o 41y - Ee b S ey
theretexisity of §,< such tha £ ?-*‘;' £ é’f. SEh

the compatibility of simulation with flowchart

property (namely, for eve
1 o ,lv b oo S "‘-
(ORI OO S U i i S U _L,i o i
1
L= Bl R
The following lemsa shows
operations,
b) f1c f? S f{
= Ee O
0T
o ciEa e
c) f1 "E;'ia .‘1‘ .
Proaf, Cbvious. [J
Hnerosidion B, 2
composition and repetitio

Bmoeli, By-usins trd

[

of

e equivalence = is compatible with union,

vial simulations siven by

we can suppose

<
gimulations have the sawe length,  The

f



s bhen the above proposition’shows that W e
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] f Rl\l \, m st

)

RF1.

and % are vell- 5 m

Tiamples ot eguive lent floweharts:

iy
s
[¢
5
(@]
3
(S
&
i
=)
i
>
PRt
-n

i
]
|
!
]
‘4
- 3 ::,‘
S

i

]

j
o
&
o

LY

e,,e.

(40]
[}
&
=)

sl oo o

and

il

J

n

Jo\ i 2
e o e
,i | f e CoiliDes =D if D,,U D,y = B ,UD,,.
a J

4. The main result
A [ B
Ve wandt tho have a foriula for the semantiedol == in 2 repebitive
S l D

reticulum @ , when we know the meaning of T in Q by @

o oy e : e ey s T o 2 e R



denoted by Q?T s 1 its monoid extension, when @ is a monoid with the
-

operation
n n!
: = mo A 0 B o
wolAc [ B Fian Al } B! m' 0 A 0 B!
i Eomag 4
e lsadp ol c'g D! e & 0 D 0
e L~O 5! 0 DQ
The desired formula is
" g i B
S 8 A : *x
f e S = BY U @ (DYW._(e : -
L Bl L D B RO

e g

The right expression show what can be heard from outside after zero

(or directly, (?T(A))’ one ’ %i "(VT ¢)), or more inward racks,

is the repetitive reticulum frely generated

RFlg

by adding X% to the repetitive reticulum T (in a more categorial lang ago
R}}‘l2 m is the coproduct, in the category of repebtitive retieula, of T
b

and the free repetitive reticulum generated by % ), eachtime when RF1l_

2,0
is a repetitive reticulum. A
EProof.
We have to show the property of universality, namely that there are a
repetitive reticulum morphism  In: T e HFEE p ond a rank-preserving
=

function TI.: 5 -—> RF1l, ,, such that for ever repetitive reticulum

2, oy S

(Q,U,O,‘,ux) and every repetitive reticulum morphism $ ot e )

and rank-preserving function (gi: S~—>» (0 there exists exactly one repe-

titive reticulum morpfism %ﬁ:: llZ lr~—> Q such that Imk€”= %& and



. 1+
St :
Tk e D
I 1=
T
4y
Boaaus s R
NG o § 1
\‘\ S i
A1 D '
¥ Y /Li/ ‘uk\ ]
;}f UL e \
G
) 2 "& ‘Vt
2 » Q
Y,
IT and 1%: ape the above embeding of T azpd % in RPlo ) na
E ) Lng +
: 1
=il and Iolg) =t meres :
- e 4 a1 0l
f gl ""%fi: by 3 § e
We define %, on Fl. . as was shown
b § ’l
’ e\
i
f .

Ny
il

foo o

$u(d) U Qu(B) fele) (D) ¢sle))

The first problem-is to show that this is a well-defined function
on RFlz,T ¢ namely

¥

if f = £ then ¢ () :L{é*?'(f') ;

In fact it is enough to prove this implication only for the simulation

S f-m§%*f' then <?w(f) x(%*(f') 5

Remark that for §€~Relz(e,e') we have <-{)().a(e)§o11)G = giﬁ{ﬂ(e') 2
5, 3 5

Hence we can apply fto

s A e Nt Yem 1
%T(D) e out = qT(D)Jin%x(e e yout%T(D )Vg(e )
the axiom (R4), vwhich gives

#

(uDIFlN)™ ¥ 0 = Fopp @D )gpleN)” .

out out

Now since A — A' 2 C = youfc' and Byin = B' , one can easy see that

¢F(r) = @(n) U u(B)fs (o .(%13)%((;))*%(0)

= (A1) U (B G (0 ) (D gl ¥ ylet) = )

mely
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The

the

typical notations:

and” d.. for

Propogition 1.1

Compogition:

(‘?i‘i‘(fc ,[“) =

i

Repetition:

The third p

repetitive reticulum morphism

i

i

aa'U [ b ab']

ava' U [b b']

Shofop

('f:ix ( T)) \frl}i( ¢ ) ¢

aa' Zb a

(aubd¥e)- (2t brd Rer) =

1"00 enm

enough to see¢ that

we are done

every

4

SEsiEg

flowchart

0']

Prp

0 sho

lwe]
b
e

0

|
1.0

aUa'U bd%e Ubtar¥e:

second problem is to show that

sake of simplicity we shall dropp the writing of th,CF?
; 4

(A),

b Lor L{)T(B)({)ﬁ,‘(e)’

a¥eb'g l}?’

gl

‘J LC'

The main technical result to be use is

bt : o
gﬁ preserves the operations. For

and use

¢ for CPT(C

that from

¢

(a vodXe)X = xéﬁf)%.

(g2)

f has an equivalent representation as

j‘o = 1
;m--.u«-‘»-»-u—i

/ o
T4 By
SR A& e Bt s
Eaiel) e ey
= e i1 |0
{58 -



w TO 2 B"? 4 D g
el 0 el D j
e
A t Bw ¥
W...o.«lw‘“"’"f” oo :f“ o {:E'
e 40 D

As a

result 5.3 and the appendix A we have the following

Corollary 4.2. RFlg .
“’M'{on%

[

e

e S

1

1

direct consequence of this fundamental result, the main technical

ig the free repetitive reticulum generated

<)



B, The main technical resuls

Propogition 8.1, RFIE,T(1,1) with addition = union, multiplication =
(4

composition and 0,1 the vigible flowcharts (0,N), (1,A) has a structurs

of semiring with W1 =1,

Proofia T s (1,1) the union is associative, with O neutral

i)

element and with 1 U 1

]

1 and the compesition is associative, with 1

neutral element, hence in RFIZ ~(1,1) too. Moreover,
g

§

iy el e ey i"yu” B B‘]
FsE = e Cs D 0 } e! C! B 0 = Pl
e' G 0 D; e C 0 D g
and
Rlawrng 308 inl
Fle ULy = B ’6(;\u;x')" T CB onr w1g Bt 3
e C 0 D 0 8 ge 8 ?e'
el o e s e
c e < 2
AA U AAY 3 AB B AB!?
& [ BotE v B
e c - et 0 s |
e CA! g a8 b en!
elle s g R = sae g
Proposition 5.2. RF;E,:(R,Q) is isomorphic with the set of mxn
matrices over the above semiring RF1 (1,1), Hence- REL a reticulum,



Morover, the isomorphism is natural, namely

flowchart union = matrix additiecn

and flowchart composition = matrix multiplication.

. = > 1 n :
Proof, The components of f& ¥l ~{m,n) are X Tz Yy and their
Ny = «

matrix is equivalent with f,

C naon el . i
b e XD Gl )
1494 1290 | ™ 1
itk tial m. n n m
s ety Bt 0] B B
m men m m
N n \
<) Ly1 s aE Dt @ GRG0
: 9 é e < £ »
ol - . 5
m.n n : :
[Xffy.3 = e 0 a0y S gl
e n
° 5, 2 7 (1 (% L]
2 : =
n
e Cy1 e a0 Ot 0 B e 0
. ¢ & .
: € . < . r [
=l
e 0 e Oy D .00 B vse D
L n Al
P m o
X1B... 0

Q
B
@

©
o

a
o
©

i
[¢2)
D
@ <o
i
(¢p]
(S uiice 0
e

Reciproc, if fijchlz ~(1,1) , then they are the components of their
5 o

matrix,



e G D A e e
i e in 5
011 () ]),«I,}OQOO e ¢ 0 O ‘ﬁ&o ¢ @ O .coO
(2] & (J 5 “ 8 % & 5
e ¢
- e 0 Qoo S oge o g ves sl
- iiTal in
> i b O 0 a0
- - k] i
e &0 s 2 ' o "
Xi . z’il_‘}} . y_] - . ‘ « . s
e s e. Gt 2 . s - % .
: . 4 * v s = %
e, 0 Qi etanOaz s O ot s e T e a0
Riagl g0 al
& a0 T (TS
e 0 Dove0 0O 200 o 0 g
ml) - m’
: ® v 5 @ (3 % 4
mj| mj
e o B b0 S
e mn
T B~i1 °"B'n
‘;‘: e e e, = = - R
Taeete Lo e e Rl e s ) Dl aaman 0 e
= 1dies 1 : oy
wiaie i1 : : ; y
L ® © ¢ ;0-1 ¢ e ¢ 98 ! 2 . TIrasy y
0 o Oino O.ﬂ, ei. Cj.. > St
- 0
e. 0 0 o0
g ] 1 1n g
The proof of
A
Fe o hubrlo s o Bge g i
113.1 113] LlJ .‘LJ}
e and

eagy as the abov

jKJ sl

[

a3 an

exercise

to

the

reader. £3,
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Do T i repetitive reticuium then RFI, is a

M T
Theorem X,

®

repetitive reticulum, eachtime when T,Z are such that the simulation

relation has the confluent property.

Proof. By Proposition 4.2 only the axioms of repetition are to be

Ta%au 1 o A*'B‘] s .
. = : - } _f\jr g X3 ‘}’ ;
(Br) T e = cn TA"BUD S CA B SR s S =~
- er et w6 LC(AKLH)-i CA*BUDJ
e 6 : s D ' '
and I’AA’“" Uil B an® 5 . o .
: . !A’(_ , (1UAA"’)Bf :
" I , ® e P | = *
Gl Ul e e Tl : Ee
: . | ef elea”™ ‘ ca*B UDJ
ol @a% O CcA'BuD|l e :

(R2) Denote by ¥ = (A*A")*A%* ana 2 = &®a'Y U A%, Remark that ¥ =2 =

(ayan)™.

(et 3 ; T
o YB Y3! Y3
et o o O R Oy ot iy -
' CEBUD  EATE! ; ¥ Te
Ol 6
et iy Gl GBI D C'YB
¥ ' X
el ©CA 0 0 ¢i'BUD |
r Y ] YB ne
T nyT 5 B % 5 ‘ ‘ﬁ;
el €2 [ ClBUD  OIB =i
ellig v | G GBI yD!

va

(B5) Subpose X = RIAT, v = (AN, = AT oD



53 XBt XA'B : s
% ](;':fum.)B -XB!
% e b CsB! CoA'B =S
Flovis S hea A TR D CSB!
efC'X GrEBLUAD S YAt R L A i :
0" 1_Jje'C'Xie (XA U 1)B|CIXBLUD!
elic C3B! CSA'BUD S 7
9 (e}
and = 2
Y B YR B
: e [CAMY LeRVTBYD CIA'TUT)B: ¢AB
Gy ot =
el | oty CY'1PB 'YB'Y D! C'TB ‘1e
e €] 0 0 D 0 =
r v ' o yB ]

1

e AT )L CA'TRBUD CLALE R B

e Gy C'TB CLYB D

Since X =Y, A'Y 1 = 8 and XA' 1 = T the flowcharts are equivalent,

Suppose fg = gf‘. Due to the confluent property the chain of -

(R4)

simulations for this equivalence can be replaced by two simulations.

R vl enid

therefore

[A? l Bain]
() LC()) l

From Ag = ¢A' and (Réydn T follows that A § =Ratl,

We shall define a flowchart f such that

£ —> T g™,

namely



4
i

s ‘ +'B, ‘{
e, G a % C,A%B'b, U D, l

Indeed, using the equalities from Qﬁ) we prove

Ko
. /‘s S l A -‘ . - .
£ = ) e £ ag follows
e (,AKS ‘ ca* B \)Dl '

A) Aﬁ‘% == A.Kg
3 My e
1 2 = (3
3) Hhe el s
~ Koo e '8 = o,
C) CAg = CgA'™ = aoutC Mgl
5 * Y e - A% BY e A TR B
D) Lech BUD)ain CA%e B b U Da &out(c‘iA B binU Dq)

o

fle ‘ QA e

> fvds Hollows

£
g 5 1 e

;f\
"—""——‘X

oAtk l c'g%‘n S|

A) f{.’\.‘k Ll O
:: AT e ey
B) ¢M*Bib. = &f¢Bb, = £,

y AT = b At%x .
ol ot Cix 7

D) (CtA'™™*B'UYD' )b, =D CoRNHBLE T DD =D (C A'*B‘b UI))

in ot in in out

By the proof from Appendix A we have the following

Corollary &.4, RE 1.22 is a repetitive reticulum. [

’Mig 13

Open Problem. Is RTL a repetitive reticulum eachtime when 4

2 X

is a repetitive reticulum?

0



Appendix A

5 T 4 : -~ : 3 5 i X

Proposition., For every 2 , the simulation relation in RF1_ ,

S
b AR

R

hag the confluent property.
i i

/s

Proof. The proof is based on the construction of fibered coproducts
in the category: objects = sets, morphisms = relations.
Suppese f ——=2 f1 el "‘:{9* f?. We want to construct a flowchart £

§

and. two.relations a.b  such that f1

o
2

e e ot ene s Oal collumn
a D 2

vector o€ M (el ,1) a g-onesorted veetor for e & Z"é i ik -had g o

“501'15
enaipliace s 1 ronly it gy = ¢. For e we take, for indices all pair
(C%,F;)A such that
there is a 9€ % such that & is a g-onesorted vector for e
(} is a @g-onesorted vector :{:‘or €5 and R = -;[; —

and put e =9q. In addition, a and Db .are given by

el el
[ = b = b,
Y 6) sl y(cx,?) P

Now ¢a =1b holds, since for every (c(,{i) in &
e
C,

| : -
gay'(<§,§):§)" S'E{g:—'lb

Lemma. If X€E M i
Lemma., I X‘C‘§o,1}(r e

el that e e =7 -V Sihen stlhiepeiexiaks W2 € M T e}, for
A - Seu e s {o,?f( sut'ett)
which a oK vEand 0 D=y
out out
Rroof of lemma. X ¥ may be not omesorted veebors, bnd df-X_, Y.
' g 3
are their restrictions fo the sort ¢ , thenm X = U 1{0,, Yot YQ,
e 2, FE€Z
and the relations Sso‘m: = ‘Lou_‘f 2lso hol as g,*z do not change the

sorts. So, for every ad&ZX , ’\1’.’0,,;{'() igi an: index.



S S ay 7 “ENT ( — &), o3y : = D o g 3
1 forievienys gic 3 ) rout\g) 1 , namely ?out g nd so on, then
we take

tel

% ZE ="l R o orlelE ge ) ol B ) = (D
(,p) gean ’5) (

Cleapily “a7 = U Xﬁ,m X ande bl =T,

Tex,
In the general case we make the above construction for every output of

“a g and put the results tosether. (8]
2 i.)

As P [61 D1aiﬁl =Ty 192 DEbiA] s making use of the above lemma

forieach column “one ean finds | € D] such that

(o, el =o 10 T Feoubns oo Fe Dk

Now one can easy see that

= o B?. a1

insin

f R Sl el
¢ D

is a common simulation of f1 and f2 ) 8

~e



EIERENCES

11} ADJ(J.W.Thatcher, B.G.Wagner and J.B.Wright),"Notes on algebraic
fundamentals of theoretical computer science", in Foundations of
R

Computer Science IT rt 2: Language, logic, semantics, J.W.de

g‘d

Balkker and J.van Leeuwan, edsg.,lathematical Cenbtre Tracts 109,

nater RO, am 6
A. U (,u i ol Dy S IR

EZ] D. Benson, Counting Paths: Nondeterminism as Linear Algebra, Technical

Raport: CSR~13%4-83, Dept. Comput. Sci., University of Edinburgh,

{31 I. Cagstellani, "Bisimulations and absgtract homomorphisms”, in Mathema-
tical Foundation of Software Development, Springer-Verlang Lecture

Notes in Computer Science 185,22%-23%8(1985).

[41 E., Dijkstra, A discipline of Programming, Prentice-Hall, Engelewood

[5} C.C. Elgot, "Monadic computation and iterative algebraic theories", in

Proceedings Logic Colloquium 1973, North-Holland 1975, 175-230.
& q 5

{6] Z. Esik, Identities in iterative and rational theories, Comput. Linguistic
and Comput, Language XIV(1980), 183-207.

{7] J.A, Goguen and J. Messager, An Initiality Primer, draft paper, 1984,

[8] C. Hoare, Communicating Sequential Frocesses, Comm, ACH, 21(1978),
666677 .

{9] R, Milner, A Calculus of Communicating Systems, Lecture Notes In Compu-

ter Science, Y2, Springer-Verlang, Berlin/New-York 1980.

[10] G §tefanescu, On flowechart theories I, Preprint Series in Mathematics
39(1984) and 7(1985), INCREST, Bueuresti.






