INSTITUTUL - INSTITUTUL NATIONAL
DE PENTRU CREATIE
MATEMATICA STIINTIFICA SI TEHNlCA

ISSN 0250 3638

ON THE EXISTENCE AND UNIQUENESS OF
INSTATIONARY CONVECTION IN POROUS MEDIA
by

Dan POLISEVSKI
PREPRINT SERIES IN MATHEMATICS

No.33/1985

lk%M}
N

BUCURESTI






ON THE EXISTENCE AND UNIOUENESS OF
INSTATIONARY C‘ONVECTION IN POROUS MEDIA
by

; o
Dan POLISEVSKI

May 1985

i _ .
) The National Institute forn Sclentidic and Tehnical Creation
Bdul Pacii 220, 79627 Buchanrest, Romania






ON THE EXISTENCE AND UNIQUENESS OF i
INSTATIONARY CONVECTION IN POROUS MEDIA

by
Dan POLI&EVSKI

Abstract - This paper mainly deals with the strong
solvability of the initiél~boundary value problem'for the Darcy-
Boussinesg equations in two or three dimensional bounded domains.
First, the existence is proved by the Galerkin method. Then, via
a maximum principle, the unigueness theorem and a stability

criterion are derived. »

1. PRELIMINARIES

Let flbe an open connected bounded set in B® (n=2 o
3) locally located on one side of the boundary 05l , which is
a lipschitz manifold composed of a finite number of connected
components; let real €3> 0 be fixed and let us denote with Q the
cylinder £2 x(0,8) . .

With the assumptions and apprqximations which are
frequently used for the thermal convection in a homogeneous
porous medium saturated with an incompressible fluid, the
géverning evolution system of the Darcy-Boussinesqg equations for
the filtration velocity u, the éressure p and tﬁe temperature T

may be written in & non-dimensional form as:

div u=0 in Q : (1.1
Y u'+u= - VptaTe in Q (2}
T + u V7= AST in Q » (2.3}

where ¥ » 0 and a0 (the Rayleigh number) are two fixed real



numbers, while ¢ is the fixed versor of the gravitational accele-
ration, As we are in the non~dimensional case, we can assume that
ng can be included in a n-cube of edge——lemrth 1

Let o be a subset of {2 with positive surface
measure and let us cﬁ.enota with F 2.2 N\ ETO; the boundary
conditions are: .

N = 0 on 3&"}{(0?6) - (1.4)

u
@;.2 =0 on P’y(ae) ' AL 5]
T =& on . % (0,8) - o

-where V denotes the unit ontward normal on o4 ~and é =6 (x,t)
is the most important datum of our problem.
. Also, u and T have to obey in some sense to the
initial conditions: .
i =t e O S
T () = 70 in- ) : (1.8)

Let us denote with

W

H =gué‘;L2(u§2’) ! div u =0 infl, u-¥=0 on&ﬁ}(l.s)

the closure of :
}5 (,il)mguii«g}(ﬂ) div u = 0 in ,Q,,?

in L% (£) , and with V the closure in Hl‘(ﬁ.) of
TD -—-gse é’faﬁ)f s =0on [ 57

We assume that 7!?-0 is @ufficiently smooth as
V={sc~;ﬂl(£)[s.~zoOn i’; ; ' (1 10y

:
As usual the scalar products and norms in L°(.Q),

B L) and Hé(,ﬂ_) are respectively denoted by

(u,v) =3u e v g lul = (uw?/?
= 172
((u,v)) = é'\u ,_Az} s lell =g
1] g m ol on

((w,v)) = (Vu, Vv, Ju] = ((u,u))/?2
and the norm in Lp(&) (p#2) by | ip, We agree to use the same

notations for the scalar products and norms in the corresponding



e Ty ey
S, 0 ;2 © n :
vector spaces, i.e. L7 (M)= L7 (32) and so on,
"Reminding here the Friedriaéﬁ-ﬂ inequality (see {1}]
Isif (¥) sev (Ll
we remark that | is a norm on V, also.

We start the study with the following hypothesis:

Benk,e: i ki aay (1,12
Lennntiay ‘ T
% n2 () with (1°-Z(enev (1.14

Remark 1.1. From (1.12) it follows that & is a.e.

equal to a function of c*( 0,67 , #/2(D2)) and hence %(0) in
(1.14) makes sense , L

Lemma 1,1, For any h> 0 there exists an element

G, €u (0,05 B (D)) (1,15}
satisfying a.e. in (0,9) '
6, =6 oo 920 ' e
= it i
|sVe, | <n sl (¥ sev LA

Proof. The construction of @%'is the same as in the
steady caée, which can be found in [23 . The only new point is
that the vector-valued function L(G) (t) :=L( G (L)) where
L=H3/2(:5§l)~§ﬁz(£2) is the lineear and continuous "lifting of
trace" OPerato;> has the property

L(z)En (8,8; 17 (L)) ‘ (1.18)
But noticing that V '

QCE))! =LY,

ey

the property (1.18) is a straight consequence of (1.12),
Keeping the right to choose the parameter h >0 late:

in a proper way, we introduce

S=T-»Eh (1.;9)
Thus the system (1.1)-(1.8) becomes:
div u = 0 in O (1,20

u +u=~Vp+ a (S+-Zk)e in Q (L o21)



=

Y's' ~AS + uV(s+ &) = (A -¥E) inQ (1.22)

u «¥Y=0 on g2 X(0,8) Bl Ay
ds = w}b on P ,‘:{(‘C,‘@) (L.24)
£ - 4

Gt gy

S £ 0 oh . b L (1.25)
u 0y = Cennnt Q) (1.26)
s(0) = s%=2"-5_(0yevnn’(Q) (1.27)

2, THE WEAK SOBUTIO"\IS

et us supnasm that u,p and S are smooth solutions
of (1.20)~(l;27); then, making the dual product of (1.21) and
(1.22) with véﬁ}f(“ﬁ) and Tef} (&), one can easily obtain:
d_(u,v) + | =a (s+G 2.1
= u, v u,v) = a (84 @ eevV) c(2.1)
d : : 7P Pgre T\
¥ g (8+ B, ,T) +((5+8,,T)) + (u¥ (5+8y),M=0  (2.2)
Taking in account that ,}{Z(ﬁm) and V(2) are dense in H and
respectively in V, the relations (2.1)=(2.2) suggest the following

variational formulation of the problem (1.20)-(1.27):

" Problem 2.1, Find uéiLﬁQ(D,e;Hfﬁﬂl(il)) and
SeL(0,8; LZ(EL))Q LZ(O,Q;V) satisyin§ the initial conditions
(1.26)-(1,27) and the equations (2.1)-(2.2) for any v&H, respec-
tively TeV; 3 -

Theorem 2.1. The Problem 2.1 has at least one

solution.,

Proof. In oxrder to prove the existancé of the
generalized solutions of the Problem 2.1 we employ the Galerkin
method. Let

$v Qjam.ﬂl{(@) ana€ ? LS U (23
be two sequences which are freevtotal in H, respectively in V. For
each i eimg denoting with Hi the space spanned by the set

7

%’ij jzl,...i} and with vy the space spanned by the set



i‘i}ji jml,.”if , we define an approximate sclution of the Problem

2.1 by i'

u, () = jz; uij(t)vj and S, (t)= EE; Sij(t)Tj
= j

satisfying for any kéigl,.a.ig the system |
fugr v ) + (uy,v) = alsy +}§h, eV, ) (2.4)
‘e [ -
%(ﬁ,fs)+<wi,agi+ (u, V(S; +6,)T =

Ve '(2.¢5)

= 4 J 3l \vd
%(vh;’ Tk) . ( f‘whf’ “k

B, (0) = w? (2.6)
D -

54 (0) =8/ (2.7)

where ugésﬁi and Sg€:V1 are choose such that
ugw&up strongly in H (2.8}
Sgw}SO strongly in V (2.9)

For any ke.gl,...i? » let us write (2.4)-(2.7) in

terms of its effective unknowns, that is u (t) and Si Gty

3 i
> ey Yl g (Vievi )u
j=1 Wk ﬁj j=1 J J
i .
=g > (Ty,evy )8, 4 + a (e setel (2. 10
j=1
st (romasie Lotmms,, é\v VZ,,r)
i Lo i Z j h? ke
jzl ‘1,. 511 jml =] : 5“
-(VZ&, ,VT) (2.11)
: 0 0
uik(o)mﬂikzz the k=-th component in H, of uy (2512)
0 4 : 0
S k(o)"sik'“ the k-th component in V, of S, (2.13)

As the (21 x 2i) matrix
(vj,vk) 0]
0 .(Tj’Tk)
240y - R.41)
e

is gbviously non-singular, by inverting it “takes the canonical

form of an ordinary differéptial system with(ét least)continuous'

O e ey e L\ S W) FESTERIE R B S e S G S R I e e B e e el el S P S G i 1



=(2. w} cief;d On SOl bley Mf *F;,L For telo L

, e muéli«,f,m} (G b
Shhin
~(2,11) by Uype (t), respectively S g%{t) - andti/(‘orrespondlngly these

equations over k from 1 to i; it follows
P o € :
(uig ui} + (uig ui‘) = a(S;+ é’h, e ui)

Vi s 4 ~ - 7
Y (B , 8)-(V8B,, sy

which yield the next estimations:
L g 2
R R R R HEIE-AREE 1

g%“%‘sﬂ s, §2<‘§hr i -"l'\“‘"?f!@msi\*

VE s,
&, {Sils
where we have used property (1.17) of'fh With the Friedrichs’

inequality (1.11}, the precé&.ding estimations become

4 to,}2 +]u 12< 2a2c? 31 P +2a%|%,|° (2.14)
3162 s J2¢nls ]2 e luf +
2 Zcé iéil? + 2§V€h§2' (2.15)

2h %J u, | +“g§.€§si;2 + hluig_2+cx.«h—aazcgh,gfsln?‘

VAN

< 4aj2n‘¢§n{2 ol \E" +2\V‘&’ iz =:G(t)
‘Choosing h <(?‘.+8azcg)"l and integrating from 0 to some SLYO 5] E

it gives

-
an\u, (0]2 +¥]s, 02| P glui(t)\ 2at +
. Q )
. ;g \\ “;)\%2 dt;\ézh\ug]? +‘;{gs§l’%2 +SG(t)dt (2.16)
a

{u K and%v (1)% are bounded and

As
i Gle) dt \§G(t)c‘1t < oo
from (2.16) itqfollows that
%ui{ LT L 0,0 @17

isi% e Routad U L () (2.18)

e



In particular this yields eix@ fonr any'i and hence (ui, Si) is

-

a global solution of (2.4)~(2.7). == St

Also, by puting s=6 in (2.16) we see that
%5,{ is bounded in Lioevy f2a
From (2.17)~(2¢19) we learn that there exist

we I°(0,90:H) and S€ 1°°(0,0;L% (.2))) L% (0,8;V) for which, passing

‘some subsequence still denoted with % ?, we have

Uy = u weakly star in s (O,G;H) (2.2

S, e § weak ly star in 1= (O 8; L (2.)) (2.2
l .

S, —> 5 weakly in 22 {0,8;V) (2.2

Let ¥ be a real function defined on IO 8] of class

el with W(8)=0. Multiplying (2.4) and (2.5) with ¥ and integra-

ting on [p,@j we obtain & @
W(O)(ug_, vk) - §(ui, Vk)‘f/’dt + S(ui,vk)‘{)dtx’
) 0
& _
ag(s +%,, ev)Wat ' (2,23
$ s g L :
{Qf“’“sy 2 593 (Si,fr )y Prae + §< Bl
¥§<\(s T, ))de <V§hy kwatm
?(u Vs, +&), oo aeat (2.24)

In the light of the conyergences (2.,8)-(2.9) and (2.20)~(2.22) we
can try to pass {2a23) and (2.24) to the limit. All‘the terms
converge easily except the right hand side of (2.24):
)ty Vs, 8,1 in ) Hae =
g(u V'rk, S, +,g;h YWate
But the lnjecticn of Vain L (§l) being compacte from (2.22) we
find also :
s, —=$5 strongly in L?(0,0; L% (Q)) (2.25)
and with (2.20) it implies : @
S (u Vis+&,),T )Wdt»—awy(uVTk,s+‘é' y Hat =
-«-S(u Vis+B, 1,7 ) Yat :

0
Conseguently from (2.23) and (2.24) we get at the



; o ”6} .
g*f’(@‘!(;;i v Yy Y = g(uv )(;V at * g(u V. )Sth-*

=a S{(Mch, ev, )“v/dt (2.26)

‘{@W(O) (s? L) --~§::§ (8,7,) ¥rae+ (( ‘,h,"‘ \Wae +

+§§}<ST>)<ML+Q3 (e o, )P ate -
é’ uVis+6, )1 )Y ae (2:20)

All the terms in (2.26) are continuous in H with respect to the

Vi ~argument. Thus, choosing ‘»;’«'%;"((0,0}} we remark that (2.26)

Xy

becomes exactly (2.1) for any v€ H, in the aistributic;n sense.

Moraaver} it is easy to see that

~~t(u,,v) = =(u,v) +ta(s+ Z;Thﬁem)&i'«. LZ((G,@)),

(¥)IveH;

This means u’é& LZ(O‘,Q;H) and
' (u'*u-a€8+¢} Ye,v) =0 (%) vel:

As the orthogonal complement of H in L2(~£?_) is

e gwéL?‘(m&}; { 3)}9&Hl(ﬂ_) such that w=Vp )Z
(for a proof see [3] ), there exists p(t)€ ' (Q) such that

‘ u'+u-a(s+ g, Je= Vp . (2.28)

If we choose V€ (B),'@]) with i{J(G})xo and
W(0)40, multiply (2.1) with it and integrate on to,@] , then
we obtain : ‘ :
“'V(%) (ulo) ,v)- §(u,v) W’dt+§(u,v)%‘/dt =
=a § (5+ 7, ,eiv) pat (2.29)
Thus (1.26) followsﬁby subtracting (2.29) from (2.26); as we

have proved that uc H (0,8;:H(L))we see ﬁhat)at least,

re 3

uéC (0,8:8(%.)) and hence (1.26) makes sense, Moreover; from

&

(2.28) we find that v(t):=exp(t) rot u(t) verify the problem

vtmwgg\g;;:;;gg?(sy(“;h)e LZ(O,Q;LZ(.Q.)) (¥ denotes 'il««,
vectorial product)

v(0)=rot u'enL’(2)
which obviously has a unique global solution in Lmv(O,G;LZ(.Q.)).

This implies rot u%;Lm(O,a;LZ(Q.,)) and as the space



- 9 o
EHGL (Q-)gdiv ué:L (LY, rot ueL 9y,
W =0 on 0.2 }
is isomorphic to 2l Uy oo 47, it follows ué%L (0,0;ut (123,

This last result enables us to paas to the limit ove:
k+ecc in (2.27), all the terms being continuous in V with respect
to the T, -argument; then choosing e 59((0,@)) we see "fhat
(2.27) is equivalent with (2.2) for any Té&V, in the distribution
sense, . ‘

Finally we chose again #)éicl(EO,QK) with Y(8)=0
and (V(O)%O, Multiplying (2.2) with it and integrating on ZO,@j
we obtain

v ‘Mo;(o(o) rr)m‘ar g(s T oy Y(Eh,i’)‘;‘)dt h

+S (s mw«mg’( V@h, V) Waes

m—f(uV(s+”5 ) “myPae . (2.30)
and (1.27) is glven by the substraction of (2.30) from (2.27),

In ordér to precise the sense of (2.4), let us
consider for any (u,SY, solution of the Problem 2.1, the function
defined a.e. in (0,8) by

< A(8),T >= ((s+’é’hm)),

<B(u,8),T>= (uV(s+5,),T) APITE VY,
where<{,:>denotes the duality product between V and V'; Tt ds
easy to check that A(S)€L%(0,8;V’) and B(u,s)e Ll (0,8;v’).
Therefore from (2.2) it follows

Y& (s,m= als)-Blu,8) - YT, T o0, 0)
and this means S’éELl(O,G;V’) and

‘a’s'=-A(S)«~B(u,S)~}"C§£ - (231
it the weak generalized sense, Moreover S is a.e. equal to a
f&nctiégééo(@,éﬁv') and this is the way inh which we understand

oo ]



3, THE STRONG SOLUTION

i

In this section we impose an additional condition

2

concerning the differentiability of the datum & with respect to

‘the time variable; thus we replace (1.12) by ‘
= vl 9.0 2 (o)) (3.1)

It implies correspondigly that E;h given by Lemma 1.1 has the

property . :
g, €1 0,0:m% (2)) : (3.3)

We have also to remark from the very beginning that
ug, from (2.6), and Sg, from (2.7), can be choosen in such a way

that, besides (2.8)-(2,9), they satisfy

ugu~@-u0 strongly in Hﬁiﬂl(gl) (3.3}
0 0 : : Pres
Siwm$*8 strongly in VO H" (L) (3.4)

We will show here how these assumption can be justified:

The Banach space WmV?)HZ(Jl) with its own topology given

}

by the norm | | = I H + I ﬁ' is separable with V(L) dense,
W 2

. e Y I ‘
that is there exisy a.SQqueube ijgjéimgfy(ﬁl) which is free
and total in W; W is a linear closed subspace of the Hilbert
Al
sp@ceéV and let us denote with W i¢s orthogonal in V, As V
endovwed the norm f ? is also separable with W(2) dense, there

existy a sequence gzjgje nggﬁil) which is free and total in WlT
; =
el 2 5 f =
jéIN“‘”<“‘) defined by gij_L Zj and
szmwj,j} 1, is free and total in V; we might think that this is
exactly the sequence gTjg 5N in (2,3). Finally we see that Si

Thus the sequence iTj}

can be the orthogonal projection of Sq& V{XHZ(JZ) onto Vi' the

space spanned by gTji jnl,...i} : |
In the following we shall prove that under the

hypothesis (3.1)(the weak solutions. of § 2 are strong.

Theorem 3.1, If (u,S) is a solution of Problem 2.1,

then

<o



~y

u’€ L°(0,05H) ana s'€ £°(0,8;12(.2)) ) L2 (0,0:V).
'Eroof. We derive from (2,4)-(2.5) in particular

(81 (0), v ) + (u), v%h—» a<sg+‘ahm), e-v, ) (3.5)

= (u 5’(8 '+ C, (G)) ’ Tk) (3.6}
Multiplying (3, 5) and (3. 6} with uik(O) and respectively 5 (O)

and adding over k we get

Eué(oyig ‘ E‘; ysg«{y‘gh(ﬂ)!

?f[,s (0) }As +Zx?’ (0)? +>f G, (0))+c l’!?,‘O.Z‘,
ggi+vh(0
'Taking in account (3.3)~(3.4) we see that :
\u;(oﬂ £ ¢, and Islf_(c))f L (3.7)
Let us differentiate the system (2.4)-(2.5); we
obtain
¥, vy + (ul, vy = atsf+ g/, eov) ~h )
w’f Tt USE, T + (0] VIS, +B,), T,) +
Huy Vis{+80) 10 =- Y (6,10 -( V&L, V) (3.9)

Multiplying (3.8) and (3.9) with qik(t), respectively Sék(t)’

and making the sum over k from 1 to i, we find

v g2 g 7 7y .
7 Sedel P+[of]? =asyr B!, eu;) (3.10)
‘ = S
ggt[sig%ﬁs{ i 2+(u§. Visg+ @) s +(u, V&, ,50)=
= X(ggrsi)“( Vg;p VSJ{) (3.,11)

Remarking that
¢ N o
2(uf Vs, s)=(uf, V(s)")=0

from (3,10) and (3.11) we receive the following estimations:
d1.,12 2 20 o ol (3.12)
Lug]? +1ug] 2 2% Yo P 2a2 [

¥ &lsi) 2+t 1Pn st ) 2nlug] 2a vl | B2
+3]Vé’]2+3 }E;Lj\uiiz (3.13)



where C, is given by (1.11}. In the light of (2.17), (3.2) and
(3.7), the estimations (3.12)-(3.13) are similar t'o-(z,lzi)f-
~(2.15), Therefore we obtain analogoisly .
% ;baur‘dmd in %% (0,8;m)
%s
£g!
v

and there exis

bounded T Bt A L2

s b

r-e- M\}W

bounded in LZ(G 8 V)
Fer® (0,8;:H) and s 170,0;22 (@ NN Liw, 87
for which, passing just in case to a subssgquence

uiw‘ku?{tweak}.y star in L;_ (0,8:H)

S;Bw& S%weakly. star in Lm(O,ﬁ;Lz(_Q-))

s{—> g"weakly in L% (0,9:V)
But uj'_ and .S'i converge to u', respectively S’, in the distribution
sense and thus the proof is completed. D

| The following weak maximum principle is.formulated

uin terms of inequality in the sense of Hl (£1). That’s why we
start by recalling this notion and some propositions, following
1.

Let uwi«?;H (£2) and EQ@., we say that u i$ nonnegative
on E in the sense of H (.Q.),, or briefly, u}.O on E in HI(.SZ_), if

(1

there exists a sequence u & W (..l) such i:hat u (x),f, 0 for xXeE
and un._a%»u in H' (N._Q.)., Let v@Hl( £2); naturally, we say that

ugvon E in Hl(ﬂ_) i€ v-—u}O o E in Hl(Q)O As v may be a

7
constent, we define ‘

aup us= J.nf%m(fi}%l ugmon E in H (.9.) §
Also, for any xe 9 , we say that u(x }0 in (the sense of) H (_Q_)
if there exist B(x), a neighbourhood of x, and ¢, a function
from W( ) (B(x)) thhCF 0 and P(x)> 0, such that u>~<@ on B(x)
in 85 (L). Let us remark that the set gxcﬁ.§ u(x) > 0 in H (Q)}

is open.

Proposition 3.,1. If u.;?:O on E in Hl(m@-), then u>;0

a.e. on E.



Proposition 3.2.If sup u<@m then for any M;/> %up u we
AL, : 02
have

max % uwM,Of}zéj Hé}é(_g) and
max%‘uwl\fl,()z;?o on.¥ in H’i(WQJ .

Proposition 3,3. Let uéw(;)(ﬂ) (p,}% 1); then

v=max Eu,ogcﬁ w(;) (&) and we have in the sense of distributions

(?u in §w .\1! w(z)> 0. in Hl(ﬂ);
E”'V - &
L 0 .otherwise
Now we are able to prove our main results: the maximum
principle and based on it, the unigueness.,

Theorem 3,2, If (u,S) is a solution of Problem 2¢1., then

S& LM(Q} with

e 0 ;
s + @h;fﬁ(mg gleymy) (3.14)

3 0 oo o g : ?: -~ £ O 7
where C( @;T. )= mahi?LIL%(\O,@;L'@(&.?ZS)?)zT gm }'
Proof. The p.}feperty (1.16) implies:
S(t)+ &, ()= B(t) on [} a.e. in (0,0).
As S(;E,LZ(O,@;V) from Proposition 3.2 we have
R(t)’zmax§:5(t)+ & (ty-c(g,1%,0 3@- L0,
Apealing to Proposition 3.3. we get also
Vis+ Eh) when R#0
VR=
0 otherwise
Noticing, via Theorem 3,1, that R’€ Lm:-(O,,@;}:.2 (D)) and hence

=
2 : Lo Wi
1RIME(R,’R):: _ (s'+ Ln,R} when R#0

B et
o} ol

t
0 otherwise

and taking the scalar product of (2.31) with R(t), we find

0=

] ¢

S r|? +f!R){f2 +(u VR,R)= \g-%th}z +][r ] (3.15)



71’ . \
and by intQQfat10€$?g,t), for some ¢, it‘implies

fR(t}ZEQER(G}{zr a.c. on (0,8) (3169
Ag S€0)+'E%(Q)mTO in £ it follows that ﬁ(@)m@, and (3.16) gives
iR(t)imO. Reéalling (3.15) we see that ﬁR(t)H md, that is

BB (B ) ondin w2y, ae. dn (0,00,
According to Px@poéitign 3.1 this implies
: S () +""Z’f‘?:h(ﬁ:,} g’c(‘z:;z”ﬁ a.e. in Q ,

Analogously, with R{t)mmin%S(t)%‘@(t)+C(‘¢Z§',T0) ,O; we get

S(t)+ &y (£) o e
Thus (3.14) ié.proved and S€ I'7(Q) because

Ehﬁﬁz(o,e;ﬁz(&))q Q) . L

Let (ul, Sl) and (uzg 52) be two solutions cf the
Problem 2.1 carresppndinq to the initial data (ug, Tg{}r&spectively
(ug, Tg)e Denoting with
u=u, ~u, ’ stl~82,
we obtain from (2.28) gnd (2.31) by subtraction

I +u -aSe= Vkpl“pz) (3.17)

Sedeantsy ¢ B(u,sl&-Zﬂ?h)-4~B(z12FS) =0 (3.18)

Taking the duality product of (3.17)-(3,.,18) with u, respectively S,

we get

- i +{ul? =(ase,u)

o
]

81512 +]s]? =(aVs,5,45,) (im ox 2)

2

which yield the following estimations
d Jul? + 2]ul? 2als] fu] £ (u]? + &%[s]? (3.19)
\g’%t[slz + 28K 21<0§u}§s§sgﬁs]g’2 + Ké[u!z - (3.20)

where Kommingc(zp'}?g), C( Z,Tg) f . Using also the Friedrichs’

inequality (1.11} from (3.19)-(3:20) we receive



#

a:

e

u;z < (321
dt 5552 X VR 2 s

whereii%is the following (2 x 2) matrix

: 2
(f -1 a
\ifg =
2 NP -1 "'2 1“‘:‘
CG . "KO 3 i

Integrating (3.21) from 0 to some t, we are lead to

”

' {u(t)}z \ui "ug X :
gexp @%ﬁ (3.22)
Is(t)l o ]T(i -1 1 %

In particular, with (ug; Tg)m(gg, Tg) in (3.22), we have proved:

Theorem 3.3. The Problem 2,1 has a unigue solution.

Finally, the relation (3.22) permit us to establish a[&a /
stability result -7.::, that is

Theorem 3.4. Any perturbation of the initial data (1.7)-

-(1,8) decraa$e§ exponentially in time if :
max-{ ‘Z;If&o(o,@;ﬁ}o('bﬂ )9 nmin %’ng‘w ,)T%Lq}?( é’iiﬁg
o o . (3:23)
Broof. 1f condition (3a23) is satisfied, then\ﬁ%has

distinct eigenvalues wich are also strictly negative and the

proof is completed using classical results on spectral decompositic

(G

Remark 3.1. The relation (3.23) is equivalent to the

unicity criterion (se&'EZJ },in the steady case. []

)
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