INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

by

Nicolae MANOLACHE

PREPRINT SERIES IN MATHEMATICS

BUCURESTI

No.34/1985

peolezasus

by
Nicolae MANOLACHE*)

Juny 1985

^{*} The National Institute for Scientific and Technical Creation, Department of Mathematics, Bd. Pacii 220, 79622 Bucharest, ROMANIA.

On the Normal Bundle to Abelian Surfaces Embedded in P4(©)

by

Nicolae MANOLACHE

In this note one computes the cohomology of the normal bundle N_X (and its twists) to any abelian surface X in $\mathbb{P}^4(\mathbb{C})$ and one shows that N_X is simple.As a by-product we reobtain the results of Decker about the smoothness of the irreducible component of the moduli scheme M(-1,4) of rank 2 stable vector bundles on \mathbb{P}^4 with $c_1=-1,c_2=4$, along the orbit of the Horrocks-Mumford bundle by the action of $\mathrm{SL}_5(\mathbb{C})$ (cf.[2],[3]).

As is very well known, an algebraic torus of dimension 1 can be embedded in \mathbb{P}^2 . By a result of A.Van de Ven, an algebraic torus of dimension $n \geqslant 3$ cannot be embedded in $\mathbb{P}^{2n}(\mathbb{C})$, while, for n=2, Horrocks and Mumford showed in [6] that there are certain abelian surfaces which can be embedded in \mathbb{P}^4 and that there is a vector bundle E of rank 2 on \mathbb{P}^4 such that any abelian surface in \mathbb{P}^4 is projectively equivalent to the zero set of a section of E.Thus, we assume X=V(s)="zero set of a section ser(E)" and we have an exact sequence:

(*)
$$0 \rightarrow 0 \rightarrow E \rightarrow I_X(5) \rightarrow 0$$

We recall briefly, after [6] the construction of the vector bundle E, which is invariant to the action of $N_H < SL_5(C)$, N_H being the normalizer of the Heisenberg group H of order 5. Namely, take $V=Map(Z_5,C)$, $E=exp(2\pi i/5)$ and $\sigma_* T \in SL_5(C)$ given in $Aut_C(V)$ by $(\sigma_X)(k)=x(k+1)$, $(T_X)(k)=x^kx(k)$, for $x \in V$, $k \in Z_5$; then H is the group generated by $\sigma_* T$ and it is realised as an extension

$$1 \longrightarrow \mu_5 \longrightarrow H \longrightarrow \mathbb{Z}_5 \times \mathbb{Z}_5 \longrightarrow 1$$

where μ_5 is the group of 5th roots of 1.0ne shows that N_H is a

semidirect product $H \rtimes SL_2(Z_5)$. Let θ be the generator of the Galois group of $\mathbb{Q}(\mathbf{E})$ over \mathbb{Q} , which acts on H by $\theta(\mathbf{E}) = \mathbf{E}^2$ and take $V_i = \theta^i V$ (namely the action of H which is the composition $H \xrightarrow{\theta^i} H \longrightarrow \operatorname{Aut}(V)$). Observe that θ^2 ="taking duals". Then $V = V_0$, V_1 , V_2 , V_3 together with the 25 representations of the abelian group $Z_5 \times Z_5$ are all the irreducible representations of H; in fact V_i are also irreducible representations of N_H . Considering \mathbb{P}^4 as the space of lines in V,H acts naturally on O(1) and $\Gamma(O(1)) = V^* = V_2$. The exterior algebra $\Lambda^0(O(1) \otimes V)$, together with the multiplication by the element $\partial \in \Gamma(O(1) \otimes V) \cong \operatorname{Hom}_{\mathbb{C}}(V,V)$ which correspond to id_V , gives the Koszul complex \mathcal{K}^0 :

 $\begin{array}{c} o \longrightarrow 0 \longrightarrow 0 (1) \otimes V \longrightarrow 0 (2) \otimes \Lambda^2 V \longrightarrow 0 (3) \otimes \Lambda^3 V \longrightarrow 0 (4) \otimes \Lambda^4 V \longrightarrow 0 (5) \otimes \Lambda^5 V \longrightarrow 0 \ . \end{array}$ The image of ∂ in $O(k) \otimes \Lambda^k V$ is $\Lambda^{k-1} \mathcal{T}$, where \mathcal{T} is the tangent bundle to \mathbb{P}^4 , and the symmetric pairing $\mathcal{K}^1 \otimes \mathcal{K}^{5-1} \longrightarrow 0 (5)$ given by the exterior product induces the natural pairing $\Lambda^1 \mathcal{T} \otimes \Lambda^{4-1} \mathcal{T} \rightarrow 0 (5)$ compatible with the action of $\mathrm{SL}_5(\mathbb{C})$. Further, one shows that $\mathrm{W}:=\mathrm{Hom}_H(V_1,\Lambda^2 V)$ is an irreducible representation of $\mathrm{N}_H/\mathrm{H} \cong \mathrm{SL}_2(\mathbb{Z}_5)$. W is unimodular of degree 2, so that it has an invariant skew symmetric pairing, unique up to a factor. Using this pairing and maps from the Koszul complex, one builds a self-dual monad:

 $0(2) \otimes V_1 \xrightarrow{P} \Lambda^2 J \otimes W \xrightarrow{q} 0(3) \otimes V_3$

(i.e. p is an injection of vector bundles, $q \cong p^{\times}(5)$ and qp=0). The bundle E:=ker(q)/im(p) is the Horrocks-Mumford bundle (see also [1], [7] for the explicit description, without representation theory, of the maps p,q). In [6] it is computed also the cohomology of E(n), using the symmetries of E.One shows that $\Gamma(E)$ generates E and then that a general section in $\Gamma(E)$ has smooth zero set. Then it must be an abelian surface.

As $\Gamma(E)$ is an irreducible N_H -module of degree 4, the algebraic tori X=V(s) are not invariant by the action of N_H . In order to compute the cohomology of the normal bundle N_X (and of its twists $N_X(n)$) to X=V(s) it is convenient to use the group $G < N_H$ generazed by H and the element in $SL_5(C)$ denoted ι in [6], which extends to V the reflection map $x \rightarrow (-x)$ on X.In Aut(V) ι is given by $(\iota \times)(k)=X(-k)$ and its image $\overline{\iota}$ in $SL_2(Z_5)$ is (-identity). Then G is a semidirect product $G \cong H \rtimes Z_2$ and we shall write (A, M, n) is $(A \in \mathcal{M}_5, M, n) \in Z_5, k=0,1$ for $E^{2mn} \cap K^n \cap K^n$.

It is a standard exercise to compute the character table of G

4 a }	C _{m,n}	Ca	The second secon
1	A.	1	I
50 ¹ (a)	0	θ ⁱ (∝)	V _i
1	1	wa L	S
2	Esn+tm + E-sn-tm	o	Z _{s.t}
5θ ⁱ (α)	0	$-\theta^{i}(\alpha)$	√s,t ∨# vi

The character table of G

where $\{\alpha\}$ is the class containing only the central element $\alpha \in \mu_5$. $C_{m,n} = \{(\alpha,m,n),(\alpha,-m,-n)|\alpha \in \mu_5\}$ (hence $\#C_{m,n} = 10$ and there are 12 different $C_{m,n}$) and $C_{\alpha} = \{(\alpha,m,n),(m,n)\in \mathbb{Z}_5\}$ (hence #C = 25 and there are 5 classes C_{α}).

We shall denote by Z the direct sum of all twelve $Z_{s,t}$ and we have the following formulae:

$$V_{i} \otimes V_{i} = 3V_{i+1} \oplus 2V_{i+1}^{\#}, V_{i} \otimes V_{i+1} = 3V_{i+3} \oplus 2V_{i+3}^{\#}, V_{i} \otimes V_{i+2} = 1 \oplus Z$$

$$V_{i} \otimes S = V_{i}^{\#}, V_{i} \otimes Z = 12V_{i} \oplus 12V_{i}^{\#}$$

 $S \otimes S = I$, $S \otimes Z = Z$

Z⊗Z = 12I⊕12S⊕23Z

which can be established easily from the character table. We need also:

$$\Lambda^{2}V = 2V_{1}^{\#}$$
, $\Lambda^{3}V = 2V_{3}^{\#}$, $\Lambda^{4}V = V_{2}$.

The symmetric power representations will be computed by the well-known formula:

 $s^{i}v = s^{i-1}v \otimes \wedge^{1}v - s^{i-2}v \otimes \wedge^{2}v + s^{i-3}v \otimes \wedge^{3}v - s^{i-4}v \otimes \wedge^{4}v + s^{i-5}v.$ For instance: $s^{0}v = I$, $s^{1}v = v$, $s^{2}v = 3v_{1}$, $s^{3}v = 5v_{3} \oplus 2v_{3}^{\#}$, $s^{4}v = 10v_{2} \oplus 4v_{2}^{\#}$, $s^{5}v = 6I \oplus 5Z$, $s^{6}v = 26v \oplus 16v^{\#}$, $s^{7}v = 38v_{1} \oplus 28v_{1}^{\#}$, etc.

Then the groups of cohomology of E(n), as G-modules, are given by the following table, as we can see restricting to G the results of $\lceil 6 \rceil$:

Table of Hⁱ(E(n))

n	HO	HZ	H ²	H ³	H ⁴
-n (n 711)	O.	0	00	. 0	02An-10
-10	0	0	0	28	41
9	0	0	0	2V2#	0
	0	o °′	o	2V2 2V3	O
es 7	0	0	0	v ₁	0
6	0	0	0	·o	0
- 5	0	O	25	0	0
A	0	0	0	O	0
-3	0	V ₃	0	0	0
= 2	*0	2v ₁ [#]	0	0	0
er 1	0	2V#	6.0	o	O
o	41	28	0	0	0
n " (n>1)	An	0	0	O	0

where $A_n = s^n v_2 \otimes 2s - s^{n+1} v_2 \otimes 2v^{\#} + s^{n+2} v_2 \otimes 3v_1 - s^{n+3} v_2 \otimes v_3$.

In particular, $\dim H^0(E(n)) = \frac{(n+4)(n+6)(n^2+10n+1)}{12}$.

From here and the exact sequence (*) ,using also the duality on X, we have the cohomology of $I_X(n)$ and $O_X(n)$: For n > 6 $H^3(I_X(-n)) = S^n V - \theta^2 A_{n-5} + S^{n-5} V$, $H^4(I_X(-n)) = S^{n-5} V$ $H^3(I_X(-5)) = 3I \oplus 2S \oplus 5Z$, $H^4(I_X(-5)) = I$, $H^3(I_X(-4)) = 10V_2 \oplus 6V_2^\#$, $H^3(I_X(-3)) = 5V_3 \oplus 4V_3^\#$, $H^3(I_X(-2)) = 4V_1$, $H^3(I_X(-1)) = V$, $H^2(I_X) = 2S$, $H^3(I_X) = I$, $H^1(I_X(2)) = V_3$, $H^2(I_X(3)) = 2V_1^\#$, $H^2(I_X(4)) = 2V_3^\#$,

 $H^{O}(I_{X}(5))=3I.H^{1}(I_{X}(5))=2S.H^{O}(I_{X}(n))=A_{n-5}-S^{n-5}V_{2}.$ for $n \ge 6.$ All the other groups vanish.

The cohomology of $O_X(n)$ is known from general results (cf.[8]), but as G-modules we obtain:

$$\begin{split} & \text{H}^{0}(\text{O}_{\text{X}}) = \text{I}, \ \text{H}^{1}(\text{O}_{\text{X}}) = 2\text{S}, \text{H}^{2}(\text{O}_{\text{X}}) = \text{I}, \text{H}^{0}(\text{O}_{\text{X}}(1)) = \text{V}_{2}, \ \text{H}^{0}(\text{O}_{\text{X}}(2)) = 4\text{V}_{3}, \\ & \text{H}^{0}(\text{O}_{\text{X}}(3)) = 5\text{V}_{1} \oplus 4\text{V}_{1}^{\#}, \ \text{H}^{0}(\text{O}_{\text{X}}(4)) = \text{lov} \oplus 6\text{V}^{\#}, \ \text{H}^{0}(\text{O}_{\text{X}}(5)) = 3\text{I} \oplus 2\text{S} \oplus 5\text{Z}, \\ & \text{and for } n \nearrow 6: \ \text{H}^{0}(\text{O}_{\text{X}}(n)) = \text{S}^{n}\text{V}_{2} - \text{A}_{n-5} + \text{S}^{n-5}\text{V}_{2}. \end{split}$$

Then $H^2(O_X(-n))$ are G-dual to $H^0(O_X(n))$ and $H^1(O_X(n))=0$ for $n\neq 0$. Note that $H^0(O_X(n))$ contains :

for n=5k only components I,S,Z

for n=5k+1 only $V_2, V_2^{\#}$

for n=5k+2 only $V_3, V_3^{\#}$

for n=5k+3 only $V_1, V_1^{\#}$

for n=5k+4 only $V,V^{\#}$.

Now,denote by T the restriction to X of the tangent bundle of \mathbb{P}^4 , by N the normal bundle of X in \mathbb{P}^4 .Observing that the tangent bundle of X is $0_X \otimes 2S$, we have the exact sequences:

$$(1) \qquad \circ \to \circ_{\mathsf{X}} \to \circ_{\mathsf{X}} (1) \otimes \mathsf{V} \to \mathsf{T} \to \mathsf{o}$$

$$(2) \qquad o \longrightarrow O_{X} \otimes 2S \longrightarrow T \longrightarrow N \longrightarrow o$$

From the exact sequences $(1)\otimes O_{\chi}(n)$ and $(2)\otimes O_{\chi}(n)$ we obtain, for $n\geqslant 1$: $H^0(\top(n))=H^0(O_{\chi}(n+1))\otimes V=H^0(O_{\chi}(n))$, $H^1(\top(n))=0$, $H^2(\top(n))=0$ and then $H^0(N(n))=H^0(\top(n))-H^0(O_{\chi}(n))\otimes 2S$,

 $H^{1}(N(n))=0$, $H^{2}(N(n))=0$. By duality on X we have $H^{0}(N(-n))=0$. $H^{1}(N(-n))=0$, $H^{2}(N(-n))=\theta^{2}H^{0}(O_{X}(n-5))$, for n > 6.

The exact sequence of cohomology of (1) gives : $H^0(T)=2S \oplus Z$, $H^1(T)=I$, $H^2(T)=o$; from (2) we obtain the exact sequence :

(A) $o \to 2S \to 2S \oplus Z \to H^0(N) \to 4I \to I \to H^1(N) \to 2S \to o \to H^2N \to o$ so that $H^2(N) = o$, and by duality $H^0(N(-5)) = o$. We have also the following inequalities, whose meaning is evident:

$$31 \oplus Z \leq H^{0}(N) \leq 41 \oplus Z$$
, $28 \leq H^{1}(N) \leq 1 \oplus 28$.

To decide the "I-content" we proceed as follows : consider the exact sequence $(*) \otimes E(-5)$:

$$0 \longrightarrow E(-5) \longrightarrow \mathcal{E} \longrightarrow I_{X} \otimes E \longrightarrow 0$$

where $\mathscr{E} = \mathbb{E} \otimes \mathbb{E}^{V} = \mathbb{E} \otimes \mathbb{E}(-5)$ is the bundle of local endomorphisms of E. From here, knowing that E is simple (because it is stable), we obtain the exact sequence of cohomology:

(B) $0 \to H^1(\mathcal{E}) \to H^1(I_X \otimes E) \to 2S \to H^2(\mathcal{E}) \to H^2(I_X \otimes E) \to 0$ and from the exact sequence

$$0 \longrightarrow I_X \otimes E \longrightarrow E \longrightarrow N \longrightarrow 0$$

we obtain :

(C) $0 \to I \to 4I \to H^0(N) \to H^1(I_X \otimes E) \to 2S \to H^1(N) \to H^2(I_X \otimes E) \to 0$ Recall now that, for a vector bundle F given by a monad $A \xrightarrow{\alpha} B \xrightarrow{b} C$ we have $H^2(\text{Ind}F) \cong \text{coker}(d)$, where $d:\text{Hom}(A,B) \oplus \text{Hom}(B,C) \to \text{Hom}(A,C)$ is defined by d(u,v)=bu+va, if certain groups of cohomology vanish (cf.[7],lemma 4.1.7). Since we are in the conditions of this lemma (easy to verify!), $H^2(\text{C})$ is a quotient of $Hom(O(2) \otimes V_1, O(3) \otimes V_3) \cong V_3 \otimes V_3 \otimes V_2$, and it is an N_H -module, defined compatible with the action of N_H . We have, using the table of tensor products for G-modules $V_3 \otimes V_3 \otimes V_2 = 3I \oplus 2S \oplus 5Z$. In fact it is not difficult to make the computations over N_H , using [6].

We show that $H^1(N) = 2S$, hence $H^0(N) = 3I \oplus Z$, $H^2(\mathcal{E}) = \partial W$, $H^1(\mathcal{E}) = Z$. For if $H^1(N)$ would contain an I then by (C) , $H^2(I_X \otimes E)$ must contain it, hence by (B), $H^2(\mathcal{E})$ must also contain it. But $H^2(\mathcal{E})$ is a N_H -module and as such it should consist of ∂W . U or Z pieces, so that if as G-module $H^2(\mathcal{E})$ contains one I it contains U as M_H -module hence 3I as G-module, absurd.

Thus we have showed $H^0(N)=3I\oplus Z,H^1(N)=2S$, $H^2(N)=0$ and, by duality : $H^0(N(-5))=0,H^1(N(-5))=2S,H^2(N(-5))=3I\oplus Z$.

Take now the cohomology of $(1) \otimes O_X(-1)$ and $(2) \otimes O_X(-1)$: $0 \to V \to H^0(T(-1)) \to 0 \to 2V \to H^1(T(-1)) \to V \to V \to H^2(T(-1)) \to 0$ $0 \to H^0(T(-1)) \to H^0(N(-1)) \to 0 \to H^1(T(-1)) \to H^1(N(-1)) \to 2V^\# \to H^2(T(-1)) \to H^2(N(-1)) \to 0$

Since $H^2(N(-1))$ is dual to $H^0(N(-4))$ we consider also the cohomology of $(1) \otimes O_X(-4)$, $(2) \otimes O_X(-4)$. One obtains firstly $H^0(T(-4)) = 0$, secondly $H^0(N(-4)) = 0$, and then $H^2(N(-1)) = 0$. Then $H^2(T(-1))$ is a quotient both of V and of $2V^{\#}$, so that it must be zero. It follows $H^1(T(-1)) = 2V^{\#}, H^0(N(-1)) = V, H^1(N(-1)) = 4V^{\#}$.

Take now the cohomology of (1),(2) tensored with $O_X(-2)$ and $O_X(-3)$. One obtains $H^0(T(-2))=o$, $H^0(N(-2))=o$, $H^0(T(-3))=o$, $H^0(N(-3))=o$ and the exact sequences :

$$0 \to H^{1}(T(-2)) \to H^{2}(O_{X}(-2)) \to H^{2}(O_{X}(-1)) \otimes V \to H^{2}(T(-2)) \to 0$$

$$0 \to H^{1}(T(-2)) \to H^{1}(N(-2)) \to 8V_{1}^{\#} \to H^{2}(T(-2)) \to 0$$

$$0 \to H^{1}(T(-3)) \to 5V_{3} \oplus 4V_{3}^{\#} \to 12V_{3} \oplus 8V_{3}^{\#} \to H^{2}(T(-3)) \to 0$$

$$0 \to H^{1}(T(-3)) \to H^{1}(N(-3)) \to 8V_{3} \oplus 10V_{3}^{\#} \to H^{2}(T(-3)) \to 0$$
It follows $H^{2}(T(-2)) = 2V_{1}^{\#}$, $H^{1}(T(-2)) = V_{1}$, $H^{1}(N(-2)) = V_{1} \oplus 6V_{1}^{\#}$. By

duality, $H^1(N(-3)) = V_3 \oplus 6V_3^{\sharp}$.

Proposition 1. In the above assumptions, the normal bundle N to $X\subset\mathbb{P}^4$ is simple and its cohomology is given by the following table

n	Но	н1	H ²
processors designed and the second se	nkidoseen (Sirke e Vel 19 vosas) kustus, jokusele ruikikusi maugaya kiri taliforkeen kaliforoga yiriga in siiti	And All Developing in Subject of Marketing Control of C	9
(n 7,6)	0	O	62cn-5
and fine	o	25	31 ⊕ Z
em A	0	4V2	V ₂
-3	0	V ₃ ⊕6V ₃ #	0
- 2	0	V1⊕6V1#	0
-1	٧	Av#	O
0	31⊕2	25	0
n (n ≥1)	c _n	0	
where	$C_n = H^{\circ}(O_{\times}(n+1))$	DV-H°(Ox(n))-H	$^{\circ}(0_{x}(n))\otimes 25$

Proof.We have only to show that N is simple.For this, consider (1) and (2) tensored by N(-5):

$$0 \longrightarrow N(-5) \longrightarrow N(-4) \otimes V \longrightarrow T \otimes N(-5) \longrightarrow 0$$

 $0 \longrightarrow N(-5) \otimes 2S \longrightarrow T \otimes N(-5) \longrightarrow End(N) \longrightarrow 0$

and take the cohomology.As $H^2(N(-4) \otimes V) = I \oplus Z$ it follows that $H^2(T \otimes N(-5))$ contains at most one I and none S,so that $H^2(GndN)$ and its dual $H^0(GndN)$ contain precisely one I (N admits at least the multiplication by a scalar as an endomorphism) and no S.But we have

$$0 \longrightarrow H^{0}(T \otimes N(-5)) \longrightarrow H^{0}(\operatorname{End}N) \longrightarrow 4I \longrightarrow ...$$

$$0 \longrightarrow H^{0}(T \otimes N(-5)) \longrightarrow 2S \longrightarrow ...$$

so that it remains $H^0(\mbox{GndN})=I.H^2(\mbox{GndN})=I$ and then $H^1(\mbox{GndN})=I.H^2(\mbox{GndN})=I.$

Proposition 2. The irreducible component of the moduli space M(-1,4), of stable rank 2 vector bundles on \mathbb{P}^4 with $c_1=-1,c_2=4$, which contains the Horrocks-Mumford bundle E has dimension 24 and is smooth along the orbit of E by $\mathrm{SL}_5(\mathbb{C})$. This orbit has also dimension 24.

Proof. The family \mathcal{A} of abelian surfaces in \mathbb{P}^4 has dimension 27, because the moduli space of them has dimension 3 (cf. [6]. Theorem 6.1) and only finitely many automorphisms of an abelian variety are restrictions of automorphisms of the ambient projective space (cf. [4], p.326). For an abelian surface Y in \mathcal{A} consider the vector bundles F obtained by the method of Serre, as extensions (cf. [5], [7])

$$0 \longrightarrow 0 \longrightarrow F \longrightarrow I_{\gamma}(5) \longrightarrow 0$$

corresponding to elements ξ locally generating $\operatorname{Ext}^1(I_\gamma(5),0)\cong H^0(O_\gamma)$, and denote by $\mathcal F$ this family of vector bundles. In fact $\mathcal F$ consists of the orbit of the Horrocks-Mumford bundle by the action of $\operatorname{SL}_5(\mathbb C)$, as any abelian surface in $\mathbb P^4$ is projectively equivalent to the zero set of a section $\operatorname{scf}(E)$ and $\operatorname{Ext}^1(I_\gamma(5),0)=\mathbb C$. We have $\operatorname{h}^0(F)=4$ for a F in $\mathcal F$, hence the family $\mathcal F$ has dimension = $\dim \mathcal F + \operatorname{h}^0(O_\gamma) - \operatorname{h}^0(F) = 24$. As $\operatorname{H}^1(\operatorname{End}(F))$ is naturally isomorphic to the tangent space of the moduli scheme $\operatorname{M}(-1,4)$ in the point corresponding to $\operatorname{F}(\operatorname{cf}[5])$ and $\operatorname{h}^1(\operatorname{End}(F)) = 24$ for F in $\mathcal F$, it follows that $\operatorname{M}(-1,4)$ is smooth of dimension 24 in the points of $\mathcal F$. (Note that we made no distinction between vector bundles with $\operatorname{c}_1 = -1$, $\operatorname{c}_2 = 4$ and those with $\operatorname{c}_1 = 5$, $\operatorname{c}_2 = 10$, when we referred to the moduli spaces, because they differ only by a twist with $\operatorname{O}(3)$.)

REFERENCES

- W. Barth, Kummer surfaces associated with the Horrocks
 Mumford bundle, in: Journées de Géométrie algebrique
 d'Angers (Juillet 1979), Alphen van den Rijn, Rockville:
 Sijthoff and Noordhoff 1980.
- [2] W.Decker, Über das Horrocks-Mumford Bündel, Preprint No.61, Jun: 1983, Universität Kaiserslautern.
- [3] W.Decker, Über den Modul-Raum für stabile 2-Vektorbündel \mathcal{F} über P_4 mit c_1 =-1, c_2 =4 und $H^1(\mathcal{F}(-2))$ =0, Preprint No.62, Juli 1983, Universität Kaiserslautern.
- [4] Ph.Griffiths, J.Harris, Principles of algebraic geometry, Wiley 1978.
- [5] R.Hartshorne, Stable vector bundles of rank 2 on \mathbb{P}^3 ,
 Math.Ann. 238, 229-280 (1978).
- [6] G.Horrocks, D.Mumford, A rank 2 vector bundle on \mathbb{P}^4 with 15.000 symmetries, Topology 12, 63-81 (1973).
- [7] C.Okonek, M.Schneider, M.Spindler, Vector bundles on complex projective spaces, Boston, Basel, Stuttgart:

 Birkhäuser 1980.
- [8] D.Mumford, Abelian Varieties, Oxford University Press (1976).
- [9] A. Van de Ven, On the Embedding of Abelian Varieties in Projective Spaces, Annali di Matematica Pura ed Applicata, Serie Quarta, tomo CIII (1975), 127-129.