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GREEN POTENTIALS ON STANDARD H-CONES
by
N. BOBOC and Gh. BUCUR

INTRODUCTION

The aim of this paper is to deep the concept of potential on
a standard H-cone introduced in Lli&, We suppose that the
Ton o * ; A "
standard H-cone S5 and (4§ dual S are reprezented as H-cone of
functicns on the same Green setqu,and we denote by (x,y)-5G{x,y)

, - e
the Green function on (Qx {2 associated with 8 and § ({37 ). an

L

element pe S is called'Gteen—potential if there exists a positive.

measure/u.znygzsuch that

p(x)=C, ()= \Gx,y)dp ( v)

We giQe varieus charétarizations of Green potential ,
particularly cin element pc S is a Green potential 1£f for any
Z@fs,zsﬁgn Z’#O the ha$moni¢ carrier of q with respect to the
€6 —natural . topology onﬂ},is non enpty. We show that if pé%s

XD

is such that and A B n p=0 for any increasing convering %Dhér
; T Il

g}
ofi;iwith co-natural open subset Dn, then p is a Green potential.
The same property fails if Dn As: natural open subset ofngg. Also
we charaterize the elements sc S which are orthogonal on the set
of all Green potentials,

The above results, extend the similar oneS given by B,
Fuglede‘( Fal il Gnobhe framewoxk'ofnfiﬁ& potential theory on
a harmonic space for which fhe natural and co-natural topology
(afs well fine and co~fine topology) coincide and the axiom D is

fulfilled.

l. Preliminarxies and first results

a) Standard H-cones and thelr representations
e %- 2 .o
Giving a standard H-cone S and noting by § its dual, then

for any weak unit 1w~ 8 tha sot



K :w{taf‘ | £(u) £ j’
endowed with the natural topology is a compact convex set such
that for any S1¢ S, 5 we have

slg;ss,)r:w’”(s} t(s,) : (i) teK .

If we denote by Xu the set of all nonzero extreme points of
Ku, then Xu is a Gg -set (with respect to the natural topology). For
any se S the function

K,3t—> s(t)s=t(s)cR,

Lo & - v i o i o ey et B < el b o s e B
18 a lower semlicontinuous affin

o

& Lz,,,xmi,lf::sn on Vu" Cbviously for

any s,, S,&S we have

) 2

45,5y ¢ 5|

ul,;:a«z e le“SZ . °
u }“u

The set

C ot

Prcfily, ¢ ses ]

is a standard H-coMe of functions on Xu which is isomorphte.. with

§ 41f we ddentify any element s S with the funct:ian'z{y . Jftent
u

the furécticn s will be noted simply by s.

_r
£

u :
The paire (':?,Xl) is called the saturated representation of
S asseclated with the weak unit u Dj This representation has the
pxczpc‘»r ty that for any element te S such that t(u)d oo there

exists a pozitive finite measure U on X for which we have

/ +
tts)= (BaL, (- Ss(xadﬁﬁexs

for any se S.

e s
In an analoglits maVymey » choosing a weak wnit u in § ,

the set
e 4
K= gsc‘;( xf(S) £1 QS

uw

is convex and compact with resepct to the natural topology given
by S (this i:opoloay is usually termed N‘é;‘cwnz—xtm:a.l").

Noting by X o> the set of all nonzero extreme points of K u*

He
and identifiyng any element te- S with the function

e
X «T5=> t(5)e R
- 'Kh ’ﬁ’ 3
we Obtain a standard H-cone of functions (;g) on xu“which is

<)

(¥
“
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= O o
¥ e e
isomorphic with S and the pair ( 8’,xul is the saturated
M s S
representation of s~ associated with the weak unit w . As usually
W c% ‘
we denote by (; », the duality between ] andgf i.e the map
* o
©" x$ 5 (£,8)~ L £,5> i=t(s)
o P
and we denote by G the map from Xu b Xuﬁinto R, defined by
(xr(g )'“"W""' Gixp% }gw(\}{-i;%"} ©
I+ is known ({37 , Proposition 5.5.1) that this map is lower
semicontinuous with respect to the product of the natural and
¥
co=-natural topologies on Xu,and qu respectively and moreover for
G 5
any . positive meﬁﬁurajfx (respv) on Xu(reﬁp X,y¢8uch that the
%
function GP_(resp GV‘) defined by
Ve X A
X 35— G. (B):=elx,3 )ap(x)
4 N :
(resp X > ¥=>G, ()= ) Glx,g)dV(5))
* # Ot
is finite on a dense subset of xu&(resp Xu)'we have %#,émif
c
(resp. G‘)}ey) and :
# " e S :
<\ G/“ ,Gy> '.’::S (3/'« (€ )Cl")? (& )-«SG}, (.e{)(ﬁ/&u(x) »
5 ,'A.' %
Also if A is a subset of Xu(reSp X, ot andf&,j) are as above wve
have
A : Ao @ (PR r:**
8B Gy =\, B e paYig), i(vites
. 1 Ay‘ 3 & A 2 . S
(resp.¢ B G/A—,ss?xS{ B }:,s§d/4~(xh (¢ )s€&8)
and therefore,
o e . =
B'G, (x)dp(x)= }B" & ()Y@ (5 ,x)
., 7 an 25 = .“,,‘A . % ]
(resp.y B G/,, (B Y a ke g)mgﬁs i )d/&@ﬁl(x,g 1) .
: e . * +*
Let now v be another weak unit of § such that v is u -

w O * .
- continuous, {i» may consider now S as a standard H-cone of

WA
e~
functions on the set XV&.In fact there exists an injective map

denoted by ¥ from X & into X defined by

%_i
€ Y stepemonan
e ) v(@ §
We remark that the previous map is continuous if we endow

- et £
j§;¢and xviwith the co-natural topologies and thexefore Pis a
o #er

= 2 PR . = e o m e rer N L5 SR e O



e A (F i, %)
SGc ) ST Xv,x,{m%)* =l
* \((r*" is @ 1 G ~subs £ < ,
i.e. X {D}xu&,} s a polar Gy-su aet o Xv;&*:[f we denote by
; b s

G" the map from Xuxxv@,_into R, definec by

G’ (%mz e

2

we remark that for any £¢ X _+ we have

G (x, P{g))=dx, % };am(‘(xp*: i, -
' v <§)

If/u o po%xh_vc measure on X u* such that G/“C-cf then
there exists a measure ,h on Cp("__..) such that G /,u . Indeed
it is sufficient to L,ake/u -"{v /L«\)@CP . Cmnxrersély for any
positive measure+ cm,){ wSuch ‘that Nt (X %,\Lio(X )) 0 and such
" that G“’ QS there exists a measure M on }xﬁ. such that G/\ -—G :

Indeed it is sufficient to tu}\e/«« of the form
/Mmu mw-«d()QcQP Ytz .
£)

Hence .‘cor a ﬂozitive mﬂasure/b\ on X, ~sueh that G}L&S

pet

o t {300 -*
we have G}«A G, =0 for any Hnmeasure% on X « iff /:L;,(Qp (Xul)zov

o

: F - ; ,* o
Eugther, if u 'is a weak unit of § and (\)C,Xu,-a)is the
-?;1."’

saturated representation of S associated with the weak unit

U . E o * *' s

u and if we consider a subset YC,,XU*which is nearly saturated

, &
with respect to S5 then we denote by 5,(7) the set of all
elements 8¢ S for which there exists a positive measure /’Ls

o

on Y which represents s i.e.

(Er8D = Si"c,y} S Lt c;/_“>

We rerﬁar}c that SP_.(Y) is a band in the convex cene S
with respect to the specific order and moreoverYbeinc; nearly
saturated we have p¢g SE("‘*{) for any universally continuous e
elementp Epis 8

We remember also (see [:1:},) that an element h &S is
substractible 1if for any s& S we have

r“}é_:ss

7

The set of all substractible elements of an H-come is

(€%



sl
band in § with respect to the specific order. An element pe S

is called a pure potential of § if for any substractible

element h of S we have
h <p=> h=0 ,

#*
Theorem 1.1. L@t'ﬁfczxv& a nearly saturated subset of

X:; with respect to S%is Then the fellowing assertions are
equivalent:

1) Sééf) is solid in S with respect to the nafural order
St of Sy |

2} Any uﬁiversally.baunded element of S belongs to Sr(fYSa

B)Ki%iv semi-saturated with respect to S i.e. any subset
K of h \:fp K compact with respect to the co-natural topology,
is a polar subset of nga

4) Any pure potential of S belong to Sr(jf).

géggﬁa l)ﬁﬁ) follows from the fact that any Univarsally
bounded element '. of S is néturaliy dominated by an universally
continuous element . of S.

2)¢33) follows from {2 ), Proposition 1.2.

3}&5&) Let p be a.pure potential of S . Using the fact
that %1?{) is a'band in S we consider p!, p'l= 8 sueh that
p=p/+p’’, p'@gSFKqTE and p'" is such that pliAg=0ifor anv
qeisrm(ﬁf3n i@ want to show that p"mOa Let us consider véQa
weak unit in S%-, v¥:s d£-sugh that v (pll)¢o0 . On the
saturated set XjL of representation of S%-we'consider a
positive meas ure/x such that

<t,p">-égt(“§)d/k(§), b e
Considering now the map @ '~5y defined by

e Py 4

= _
we deduce that for aﬂyziéfs (ié(si)) we have q'’A g=0 and
therefore the mckJure/u~a098 not charge the set CP(‘() i.e.

there exists a sequence (K ) of subsets of X_ \QP(KY3 wéutuy



e Lo
' *
are compact with respect to the co-natural topology on Xv*"

and such that

i

/‘% z-m»s‘”t’ /‘n”::/ }\

SinceTJ.s: semi-gaturated in X:w and since the set
Xj,g\ C?(Xia-} is a polar subset of X .we deduce. that for any
ne N, K is polar (with respect to o )

If for any neN we denote by p:ﬂ’ the element of S
defined as an H-integral on S% in t’ne‘ following way

S 3 t-5g’! (t)= gt( 214, (§)
we remark th.at/u_n being éarrid by a polar set we have
q’;\,ﬁ{q-&(‘) for any ge S, . cu\.c;v

Since g°* ’,;(»f;, g’} is a pure pctentiamnq (13,
Theorem 4.5, we deduce that g’ ‘-'O for any n& N, q"mﬂ

4)=1) Let:p bedn elenment of S/L(\f) and 1et qes be
such that q ¢p. Since the set of all pure potentials of S is
a band in § we may consider q’, g’’e S such that qr:q'%q”,q.'
is a pure potential and q'’ is subs tractlb@,. By hypothesis
we have q’e S@‘(\f). On the @the;: hand the element g’’ being
substractible and g’’'2 g &< p we have q";g p and therefore

e 8, T
Hence qe Sp EF ¥

L
e
b) Harmonic carrier.If (ff,xv) (resp(j) ,Xué,) is a

.
saturated representation of S (resp S ) with respect to the
T
weak unit u (resp, ¥ ) then for any se»‘f (resp t@ﬁo ) the

harmonic carrier of s (resp t) is the set

: = X \‘v‘ = jf ;
carr s=§ xe xu\ B . sfs for any Vel - }

N
(resp carr twagg X \ Ep Vt?{"t for any Vé% } );

#
e € 2q O
where Xu (resp X ,,)1 the closure of Xu(re P Xu’ in Ku
o
resp Kué and ‘zj;{( resp U:S) is the set of all neighbourhoods

of ¥ (resp%),
K

If X is a set such thal S ana s are represented as



(6

P :‘; P
standard chohes of functions on X then sometimes is usefull
to consider for any s& S the harmonic carrier of s with respect
to the co-natural topology on X i.e. the cosrsest topology on
X which makes continuous any element of S;’
° This new harmonic carrier of s is denoted c.n—-carr s and

it consists from all points x e X such that for any co-natural

: ' w7
open neighbourhoad vV of x we have

gt o a#s .
5 o ‘o

If H(xesp H ) denote the band in bv(reSpf) qe«\nerated by t
,.mt of all elementsof *f)( esp f}o ) h:s»vinq an émpty carrier and

if we put

{C;Lj?‘s/\i ; (9)1161{73
(resp H m{te‘,j !tAhmG (¢)h e—Hf} )

then we have
: ‘ o+ e -
Xumxhu Xp (resp. X =k v Xp )
-

where X =X ~nH, X wX oy HE i

i geibt 15

Fe ke 3 & yJ__
(res_P Xh""‘xuﬂﬂf}e Xpﬁxu* ENHE .

We recall {(see (3], Theorem 5.5.3-5.5.4, Provosition 5. §.¢

sy that the sets. X 75 are Borel subsets of Xu respectively

¥0 %

and the maps @, Q on Xp, respectively X defined by

g(;r( a‘)g =carr £, {G’f(x)} scarr W
are Borel measurable . Moreover ifm is a positive Borel rﬂeaﬁur@
on y:&( res : ) such that G/b(n,sp G/“) belongs to H/(rec;p j )
then /u,gH \*p/«(x )=0,Cu & B2 p/u(x ) =0
(resp. “’cj“e;: H%w.«:; (x)=0, G/,{ s @#(x )=0)

Proposition 1.2, (R.Wittmann) For any bounded elernenf

)
s cf‘-!y we have carr s#{.
Proof. We consider the set Xu’ the com?g%,ct space :ﬂ}{u
- . . \ . &
and kf&;, convex cone of positive functions on \f OCbviously ‘me

is a convex subcone of (:]0 such that any element of iis the

- 7 i : ; : £Y
restrtction ¥ p X of a finite continuocus- function on f Also



e

the convex cone jO+R+ separates linearly the points of Yand

contains any positive constant function. Then ,using a theorem
of R.Wittmamn( C67) ), for any bounded function A& Ejp there

¢ -
exists the Am‘mng@ﬁé_ compact subset Ks of Y such that

for any natural neighbourhood V of Kg we have
Xumv
B S=g
From this fact it follows that if s#0 tham K_#f. The

assefrtion follows now since we have

Kgr:_carr Ch - ;

Theorem 1.3, The set Xh'(re Do X ) 1s a polar subset
of xu(resp.xﬁﬁ),
Proof. Let K be a compact subset of X, and for any Eé Sg et
vi;;ﬁ’%é;,é be element of S;;r defined by
Sy 8-3{L,s7 = <t0,B~ s >
Since t gto and(to,u?u;v@ there exists a positive
measure# on X such that
: {,t,s?’mgs(x)d/-x-(x) (¢ )se S.
From the preceding c‘onsidera‘cions we get
=5 (s/,d/« gs d/u.,
i.e./u- is carried by K and therefore the eleme_nt tr-%(';/‘.‘, belﬁngs

S1¢8,€&8, 8;=s, on K=5

# : A #*
to H . Hence any specific minorant t’ of t belongs ta H and
in the same time being dominated by tz it has a non-empty

carrier if L0
*—

We conclude that =0 and therefore the element ty & S,

being erbit'rary we have

sS€S ‘;B s=0, IK polar ., ‘
: * : ;
Theorem 1.4, Any element s& H (resp.H ) is substractible.

+ : : . S %
Proof. Let v be a weak unit ¢n S such that (v ,s><oo
e
and let/bt be a positive measure on X ® such that

s(x)= SdX;Y‘i du(y) -

We have



# e o
= 5 ; # —=)
X (Xv“’)hu(xv%;v J
Since s€ H it follows that it is carried by the set
r' ' ‘ *
(X é)} . From the previous theorem the set {x &) is polar. Since
Vv n : v 'h gt
Sfo u\NS/

se H we have s Ap=0 for any p @SO, The aerticnﬁnaw using

[13 , Theorem 4,.3.

- , 5 o #
¢) CGreen set associated with a pair (u,u ) of weak units.

, + +
Tam,’ﬁ%: u,u weak units in S respectively S and noting
5 4 % :

G 0
as abovea byj respectively f_{ the standard H-cones of functions on

e.g

Z»:u respectively u*“ “.» ig knawn ( L3—) , Theorem 5.5.8) that
: . #
for the maps & and & defined as in the point b) on X

* #
respectively Xp there exists a Borel subset E of X and a

Borel a'ubc*et E of Xp such that 9 (& (%’ ))«-g for any

9((3( x))=x for any xeE, G (resp. ‘8‘ ) is Borel

P 2
measurable and the set Xp\E (resp,xp\ E) is semipeclar (resp.

uy;wsamipolar). Moreover, for any subset A of E and any seag),

t éﬁ) we have

k

(t,B" S = LB (A) 37
e
and particularly A is semipolar (resp. polar) 1iff £ (2) is

co~-semipolar (resp. co-polar). If we denote for any x&E by

%
e .
% the element @ (x) of E and then we identify the pair

# g : «
(xpx ) with x:thenethe set X% of a@a these vairs (x,x*) is

L

the saturated Creen set associated with the weak units u and u

Obviously ff and &?&becomﬁ H-cones of functions on X and X
is nearly séturated with respect to§0 and 39 The function on XuX
defin.ed by

(x,7)=>Glx,y" )
is called f.he Green function and we shall denote simply G(X,ﬁ;“‘)
inste’&écf Cild o ),

A “'Ubs‘f’tga of X will pe termed a Green set for §

(cerresponding to the weak units u and u ) if ':f) and j} are

standard H-cones of functions on (2 and (2 is still nearly

saturated with respect to ¥ andffe The restriction of the Gree



function toﬁzxéz is denoted agdin by G. Sometimes we put
'QE @fl(u,u%') when we want to express g that_§2 is associated
with the weak units u and u‘*o
'Letgg be a Green set for S (corresponding to the weak
units u,u” )let G be the associated Green function on {3 x §2

-

and let v be another weak unit of S which is u =continuous.

v * %
We consider as in the point Z) the map @ :Xuzﬁwi o

€ :
CP (01 )mwgﬁTng which is continuous with respect to the

co-natural topologies on X;;and X:;. The restriction of @ to
CQ give us a continuous map from§?<xnx>@(§2) if we consider

onjg.andCF(SZ) the corresponding co-natural topologies.

Proposition l.SoiFor any x&gfz, considered as an elément
of the standard H-cone of functions S%_on X;;, the harmonic
carrier of x is the set {Ep(x)? and the harmonic carrier of
the element cp(x') considered as an element of the standard
H-cone of functions S on X is the set fx}.

Proof, The second part is obvious because ¢ (x =

pd
=R ) and carr x= {x}. As for the first part let V be a

co-natural neighbourhocod of the point @ (x )=——

-’(,.
v*(x ) from Xv& s

S ‘i -
Since the map ¥ is continuous we deduce that ¢ (V) is a
co-natural neighbourhood of x in §2 and therefore
=1
S28 \
%B » (\r)x#x.
¥
Any balayage B on S being representable on {2 and
therefore on'q>(£2) we deduce thaffﬁ?(XZ) is nearly saturated
5 ks
with respect to S . Hence @8 () is dense in X, «with respect
to the co-fine topology. From the preceding considerations we
get % +* ~1 ~h
P E R NG ) e SN, RN B
N sy
B x& B x=B x=B XEX
and therefore the harmonic carrier of the extreme element x of

g : g s
S considered as a standard H~-cone of functions on Xvw.is the

set CQ(X) .



Remark 1.6. With the previous notations 1f we Ldentilry

A
any element xéigz_with the pair (x, % (x)),{l becomes a Green set
- #*
for S but this time corresponding to the weak units u and v .
2L
Sometimes we mark this distinction notinqLQ}nrJ?(u,v.),
“* o
The natural topologies on (¢ (u,u ) or (P (u,v ) coincide
4
whereas the co-natural topology onfl{u,v ) is weaker than the
Ly
co-natural topology on§2(u,u ).
o &'
If we denote by G’ the Green function on SZ(u,v ) we
have

(x’y)_.. = ..;‘:,:L}.:.L o

v (y)

: ‘ : ; e
d) Green potentials. If (2 =G%u,u ) is a Green set for S

and G is the Green function on§2x{Z2 then we denote by
Jé?{fl) (resp.ﬁﬁZ?JSE)) the set of all positive Borel measures
: o ; ek ;
/A.oqu such that the function qﬁ.(reup. gM_) anﬁz,deflned
by
G ()= SG(X v)d M (y) (resp *G (v)= (G(Y yidm (x) )
/;\ i." /L" Y = "/U- <) T f
belongs ‘toﬁf(resp.ffﬁ) or equivalently Gyb(resp. /w} is
finite on a denSe: subset of €2 e put
P(C2)= QG /uaﬂ. e
H*
(resp. P (()={" gﬂl f¢gfjd’ (S?)} Yo
The elgments of P (L) (rﬂsn P ((?)) are called Green

potentials (resp. Green co-potentials) ang? We remember that

any universaslly continuous elements s of ? (resp. q)) belongs
to P((Z) (resp. P(§2)) and for any point X e{Z and any subset

A of (P we have
s al 5
A is thin at x0¢ﬁ7 BA xGX'ﬁ GX
0 0
2 A
A is co-thin at xd@DB Gy #GX
0 0

3
(see [33 , Proposition 5.5.13) where G (resp. GX ) denote
%5 0 '
the Green potential (resp. Green co-potential ) corresponding

fal

&

to the Dirac measure < X;. Particularly we cget that any natural

(resp. co—nqtural) open subset of { is a co-fine (resp. fine)
— 8 = ' ‘x—

PR



O
# _
bands inf?, respectively ff with respect to the specific order.

e i$
Propositien 1.7, If v is'a u -~continuous weak unit of

#* aE *
S then flie séts PESElu,u’)) and P((2(u,v:)) considered as

subsét Oof "8 ‘coincide.

Proof. Indeed, let p@iP(SE(u u” }) and Tct/&ézﬁﬁs9(g2(u Ju)
be such that p=G, . Since (2 (u,u Y lana@§l (u,v ) have the
same Borel structurep if we take the Borel m@aauL?/u onj?fu v )
defined by/a =y s , we have

G}d(x) jG (x,y) - v (y)Q/&(y)”

= §elx,y)dp(y) =G, (x)=p .

Hence P(jZ(u,u%)ﬁP(§2(u,v&))¢ The converse inequality
may be similarly showi,

; <
Theorem 1.8. Let (J(u,u ) be a Green set for S corresponding

to the units 4 and u% .

The following assertions are equivalent.

1) P((2) is solid in S with respect to the natural
ofder.

2) Any universally bounded element of S ig a Green
potential on .

3) §] is semi-saturated in X:& with respect to S -

4) Any pure potential of S is a Green potential on (/.

Proof. The assertion follows directly from Theorem 1.1,

taking. - 7 _Q



cl3=

2. Balayages on Green sets,

We suppose t’t"‘%t’,’j is a Green set for S (corresponding to

"
the weak wunits u and u ) and we suppose that G is the Green

i‘:.?

function on (2 x (2.

g
Theorem 2.1, Let A be a positive measure on Xu*‘” such,

that G, S and let M be a subset of €2. Then we have BMG;;, 2G o,
P
1ff A is carried by’ the set b (M) of all points xe¢ X, such

that M is not co~thin at x.

iz a Gg -set n }'{‘K with respect to the co-natural towology
L.

SRR - : et
on Xu cﬁ’?%’l« 'L“/;J’Z— {_él) (fx”}) = é 2t _X,* [ /? Fat) = ZL(.’)L) Z J[‘:’f :br;;(;:[ ;/'fﬂ//ﬁ
‘9({?)62;-,’& 7")/"" Z— 03( }P

Le /u., he a nos;tjv& measure on E;g' such that "“'\:1/% is a

M

317

finite generator of 50 and such that /u((m oo . 8ince B p<p
for any pé€ f? then the eguality B p =3 18 equivalent with the

; M :
equality (B p}m f{p) ., Hence we have
M

B Gy =G ‘“‘/»(B Gai)s /g(ehy

From the relation

-

7 R O =, L
fu.l (B (7-\ )““4 'a BI\AG%'} “-:LWBLJG/&\ ,G)\%} o J B "{fu ‘.5"%"*& :

we deduce that we have

BMG.,‘mG}@j‘“gf_‘, yan(gy={*se (3ran g .

s , ehinis oy i
The last equality is equivalent with the fact that A is

f

cmrrieu by the Borel set
# = M

b (M)= igk.x'«\ B *‘G/&(E)w""@ﬂ“(g)}
, -

Corollary 2.2. LetQAbe a positive measure on Xu«- such

2
that C}&E{ and let) be a co~fine open subset of X% « Then

. ShaD ‘
we have E Gu =G AFE D is earrded by the co-fineelosure

of the set D (or 2AD) in }’U,, :
. i : e -
Broof, Since is a standard H~cone of functions on Gé
#
we deduce that() is dense in Xu" with respect fto the co~fine
>

topology. -Hence the co~fine closures in Xu& of the smats Sl

ST, B R SRS PR Gk R A éh



#
theorem using the fact that b (D) is nothing else than the

co~fine closure of D .

Coxollary 2,30 Let ?H’:JM,? (Q} and let M be a subset of
g} » Then we have EMG;., m;f?;'-h iff 2 is carried by the set of all

points x (P such that M is not co-thin at x.

Proposition 2.4, a) For any & e-g/;f{f(ﬁ’z} we have
supp? =P ncarr €N
where supp @ is the support of 3 with respect to natural
topology on C

b) For any 7\6"/5’{50(52) W ive

C.N,~Supp A =C,n.=carr Ga
where c.n.=-supp A denotes the support of A with respéct to the
co-natural topology ‘QnQ and c.n.-carr G, 1s the harmonic
carrier of G} with respect to the co-natural topology c3~n§:20
(see 31 3.0

Proof. Let D be a. natural open subset of {2 such tilat
Do supp A. From Corollary 2.3 it follows that

B2(Gx V=G,
and therefore

,ﬂﬂcarr G?, < 6
where D is the natural closure of D in(Z2 . The se‘; D being
arbitrary we get . |
€2 ncarr G, < Supp'A .
Conservely)let XOQ“'Q S carr G, and let e\lr be a natural

open nelghbourhood of x, such that

0
pSVV

=G
G% \:QA

Sincelﬁ\‘v is a co-fine closed subset of{?, we get, using again
Corollary 2.3, A ({)=0 and therefore

gupp?(’ﬁﬁ\v "XO&L‘: SUDPQ\ e

The point x, being arbitrary we deduce

0
supp A< Qncarr ({r}?s

@

¢

b} Let Xq & ¢.n,~supp ® and let \\’T be .an arbitrary



co-natural open neighbourhood of X We have A (V)>» 0 and

therefore, using Corollary 2.3

oY ;

Hence X5 & CeNe-carr Go, o

Let now x.e& C.ni.~caryr G and let Vbe an arbltrar
& pS Y

0

co-natural open neighbourhood of Xqe By definition of the set

cenmcarr Geo we have
QN
A )
B G> 7"(7'?“
and therefore, using again Corollary 2.3, A(V)> 0.

The co-natural open neighbourhood V of %, being

arbitrary we get X, C.n.=supp .

0
Theorem 2.5. Let se S be such that for any H-measure A

*® " :
- on Xu,;/‘- we have sA G, =0. Then, for any te S such that
Zt, 874 *® we have

Ea

where

Cte1):= §xel? l Elx) £ 15

Proof. Let v'be a weak unit of S# which is u%"comtinuwug
and such that £ V%,s><:a@ .. As in the introductoryp point o),
Remark 1.6.,§2 may be considered as a Green set for S
corresponding to the weak units u and v§} The Green function
G’ onﬁlzfz(u,é) will be

G’(}:,y)ﬂmG(?i’Jsz-

v’ (y)
Since <v'%,s> 4 ©® there exists a positive measure /\t QYL

£
Xv;" such that

e apty) .
‘.}(’;‘“‘
Further using the considerations from introductory
point a) deduce that
# . *
/u,. (X oz YP L )=

% +#
whevre (O i the map from ¥ . into X . defined by



Since
5% _ # * %
Xv&’\cf (xu&)w{*z@, ng_[ u (‘\Z Y=+ m}
and since
Sel yapm (g Jeilt s > & b
it follows ﬁhatj& is carried by the set
» #* ¥ e ca e e
§ pe XN Qg | eipreem T Cg Te xu | e I< uip.
The assertion follows now from the relations:
= s g {f P o
. i_;x 1j 323&? crliteul B nlte ujlsz ‘
Xv-xf‘”\[t< U ) ‘
B

x

P

: ﬂ__ 7 %
and from Corollary 2.2 using the fact that {;tﬁxf] 7\ Xv*
#*

is a co-fine open subset of xv*‘

#
Lemma 2,6. Let A be an H-measure on qu such that its

3
support is a compact subset K of Xda\gz and let A be a polar
subset of ¢2 .

Then we have

ASsY o, velia g =0

A
wherefw%(A) denotes the set of all co-natural neighbourhood
ingz,of ghie scet A, <

Proof. Let us denote by (Un)n a decreasing sequence of.
co-natural neighbourhood in Xz# of K such that

Unj‘{;n-i—'% g ’Q e
and 1et/& be a measure on£;2 such that 'ﬁgp_is a dﬁmcontinuous
generator of S&-witﬁ/A(p)< vo-  where ?:: C;a i ' 2

We show that for any ne N and any & > 0 there exists

e
a co=-natural open subset'vn of §2 such that

"

Vi,

S
M O ERIR NGO ), p(B TplcE,

Indeed, since the set A;ﬁ(52‘~Un) is polar we deduce
that it is alsogaice~polar subset ofﬁ} and therefore, *Gfkbeing

finite and continuous with respect to the codatural topology

Oﬁ~§2, there exists a decreasing sequence (anﬁ of comatural



= 3
open subsets of X o such that %~

mUnH =, W :>Am<f’2wn)w>mem

- £ R x
The sequence. ("B ' “G/u,) being decreasing on X,
and since — )
‘. X\IJMI{ W mg;z . Bw r\Q - .
e Gl v

for any meN,we deduce (see Eal, Cofollary BedeT) that
i)
inffp %G/& (y)=0 (¥ )ye K.

Ve
and therefore

W atD ) :

: T ; Mt =

O=inf D|(B G )=inf SB Calidter &
(” /k e © e

aanY

We choose m,& N sufficently large such that
e 0 s
S vvmﬁﬁg’z : < E

and we put

Tak‘é'ﬁ% now for any nel, é‘n:: a/Zn ‘and \/_n a

co-natural open subset of§l such that
V,

e n (e n

N2 A u) e
we deduce

Ve 50
[olB s aes sl

nx4

n

G 15 £
where . : ~—"'\JV Since V is a co-natural open neighbourhood

& e

of the set A Q‘U’Lé & ls arbitrary, we get
/«A(/\ ' B G | ver @)} 1=0,
/\5}3 G v&”ﬁ(A)}ﬂ) :

Theorrem 2.,7. Let p be an element of S such that for

any g€ P({2) we have pAg=0. Then, for any polar subset A of

5?. we have
Ry Q-
/N { B p \VG’?/.(A)} =0

(394
where 7/ (A) is the set of all co-natural neighbourhoods of A in

C2
; * 3%
Proof., We consider v another weak unit of S which is

e 5 srcencizess

b
u -continuous and such that

. Aot 21348

a2 WSS v



L Tige s

‘ #
In this case there exists an H«measuré/u~on xvasuch that

pix)= S(x,y) %fx(z 1
_ o
2\ ,t)»—"r'i’

Using the hypothesis and Propcsition 1.6 we deduce that

pA\G’:O
for any }(ujtiﬁ(”&(n v )) where G’ is the Green function for S

#

corregtond:nm to weak units u,v . Hence/A is carried by
X‘ \Eﬁéu v } and therefore there exists a sequence \n)n

compact subset of X ,\:§E(u A% ) such that

o

/AMZ/I
P EL
Lo
From the preceding lemma we have,

/\{P&V (G’ ;gxfw“ Ux)% =0,(¥)neN

wherezrkh) is the set of all co-natural neighbourhoods ef A in
gz (u,v ). Since the co-natural topology on (2 (u, v Y is =smaller
then the co-natural topology onéz.hhcu) we deduce that
N o
7\ .{B G"/M{ Kn,\/&Z/(A)% =0. (*¥)neN .,
Hence

N B\fpl vel ()} =0

Corollary 2.8. Let p be as in the above theorem. Then

for any polar subset A of§2 we have
S
inf B p(x)=0 (v)xell\n, plx) £ 0,
\"4
where \y runs the set of all co-natural neighbourhood of A.



s

(0

3, Characterizations of Creen potentials. ~+9-

In this section we c{;nsid&rﬁz a Green set for the

standard H

the assoc ci

5
-=cone S corresponding to the weak units u,u and G

ated Green function on P %D .

ey %
We know that any element s (r@spﬁ) form S (resp. S} may

be thought

as a .LU.TlCLlOlI onf) belonging to the standard H-~cone

of functions J (reso. J } on () which is isomorphic with 5(resp.

Ag

again deno

function on (2 the element se S (resp.te S ) will be

+ad = RS 5
A TL'M ﬂ{‘;‘“ 0. L}‘

Theorem 3.1, If pe S the following assertions are

equivalent:

L)pe PG .
2) for any gqe S, g4p and any subset M of (P such that M

is not co~thin at any point 1’0&::2"‘ carr g we have

M

Bq-—q 5

3) for any a&¢ S, g2 p and any co-fine neighbourhood L

(inG2 ) of the set {2 ncarr g we have

Vv
quq ’

4) for any g&8, g3 p and any co-natural neighbourhocd Vv

(in£2 ) of the set G ~ carr g we have

. :
B g=q :

2

5 there exists a polar set A ofS2 such that for any ge€

g4 p and any subset M of (2 which is not co~-thin at any point

x from AW

(S2 ~ carr g) we have

M
B g=q ;|

6) there exists a polar set A of {2 such. that for any

q€S g3 p and any co-fine neighbourhood ViinG2 ) of the set

AV (G2 ncarr q) we have

VA

B g=q ;

7) there exists a polar set K off{} such that for any

Je S’ g4 p and any co-natural neighbourhhod WV (inG2) of the s

RS nca

e
L

o]

1Yy g) we have

()
A
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}

8) for any gqe& S, g#0, g p we have c.n.-carr g#f where
c.n.~=carr g means the harmonic carrier of g onﬁﬁz with respect
to the co-natural topology (see i ai i

géggff The following assertions are obvious

2)=73)=34)

4 ¢ ¢

5)e6)e37)

The assertion 1)=52) follows using Pronositién 2.4, and
Corollary 2.3. We show now that 7)e=>l). Since P(£2) is a band in
S we may write p as a sum of the form p=p’+q whererp’e P (S52)
and q& S is such that gAu=0 for any ué& P(S52).

Our intention is to proove that g=0. For thus we
remark that, from theorem 2.7, it follows that

A BV,q | ~'%ev (] =0
where’ﬁT(A) is the'set of all co-natural neighbourhood (in .62}
of A. Let now V be a co-natural neighbourhood (in&2 ) of the
set §) ~ carr q'’ where q’ is an arbitrary element of S such
that q’<.q.

We have, using the hypothésis,

4t va u‘if’q o B‘V“ ,q-!*}?;vq 5
for any \f’@fﬁ%(AS (the set of all co-natural neighbourhood

of A) and therefore,

% _r . e

l<. Bv F-é- Bv VzBV 4

gisB G HAB a; o g
VeV

A % ¢
Let v be a weak unit of S which is u ~continuous and

such that (%ﬂ,q§>4cﬂ and letgl(upﬁﬁ) be the Green set for S

corresponding to the weak units u and v*. Since <vtq:>4.d° we

deduce that there exists a positive measure/A on X:* such that
alx)= Jxy dpy) (v yxe Q2

A
From Proposition 1.7 we deduce that there exists a

; 3 &
sequence (Kn)r of compact subsets of Xvi\gl(ufv )y sueh that
i

& N



D

o s
for any D& N, g is the element of S de fined by

= .
q=7 9y wheres

g (8= ;;S{f xqy ap (1)
We fix novw nO@;N and we consider & decreasind sequence
&
rhoods of ¥_ in ¥ 4 such
o v

of CO“n8tuIa1 open neighbou

(Valn

N J < . -

that V1€ N any n €N and O V=

opviously the sequence B of subsets of (2 defined
porel subseLs of §2 ‘ﬁgLUJW

yence of B
siﬂerations we dsduce

A ;—.«Q\\]n ig a sed
~oceding CORE

increases tn,§2° From the PIE
that for any element q' €S q'4 9, and any co’natural
0
neiqhbouxnond‘J'(jngliu 4y of the B P o0 ql we have
‘Bv szqf
e e
curhood (inSe U,V Jeet the set

eighb
ral

the co-natu

L E ‘J g a co~natural n
ropolody on

\7 f
310 B 9 =q’
y than the €O
obviously gle
e
Laant(e)

ay consider the speci

since

we have
»natural

,ga M~ cart q
gy ©B 52(u4v Yok

~ Remark G

g weake
AL
and'therefore

ropolo
S:l(u,u )y (see
f3] , Theozed A
. ated with qno

) we I

i.e. the map

A@¢qn0(A) ‘
from the setfﬁ; of all porel gsubsets of X, into 5 having che
followind PfODcrtLPS :
Aéﬂﬁﬁaqn (p)= “f%_q e-Sl g carr q'c,A'X
ﬁ ~qu (Bn)ﬁqn (x/Bn) for any :
-séquence (Vi§n irom?B. Above all, in our special case, We have
for any two Borel subsets Bau BR K95
Blr\glﬁ»ﬁ ~ 27 Tn, (B ) %YLO(BZ).
| Indeed: 1 f we putj; BlnB2 we have BC Bl' B{,BZ,
Ba G =B NSL m\BmQ~m
and therefore, gince
q' (B, \B)»—\(’{q @S} a'd qno, carr a'e By B Y
and any co~natuz-#al

m
0
S O aEthanglt .
b e gt

2 sars



GaiBaNB)=E0 g B e (Bl g (B .\ B)=
no 1 no 1 no nO L

=q B g (B )3%ag (sz

0 n 1

0 ) .

Having in mind all these considerations we may consider an
increasinng sequence (Bn)n of Borel subset from 83 such that
for any n €N, Bﬂmj;?_ m;&.nn.gz\'vn. |

Since €§{En)ﬁgz,ﬁ(&Jﬁn)ﬂ§2 =(? we deduce that

(Xuiﬂ

N <Rn o i) (\;«{, Bn) = o

S 2 =0 0
Takeviad q’c S, a’A g, carr a'c B_ we deduce that the

g = n :
set \/:mﬁQ\CMiﬁq-is a co-natural open subset of(? and

Kf}szf\ifﬁﬁﬁnmﬁlfﬂjgé ~ {ecarr q*ln &2,
Hence using again the hypothesis we deduce that there exists

a positive measure ¥ carried by Kn such that

: , 0

a' ()= { ¢x,9% av (9)
Kag ’

and moreover
N
B o agl=q'.
@ixom Corollary 2.2 we deduce that 3 is carried by the

e ar
co-natural clasure in Xval of the subset \/'and therefore ¥ is

. e o
carried by Xvﬁk‘vr

1’ Hence, » being carried also by Kn , we

0

</

have
e Vs —
P)} "‘Q: g "‘0: qu(Bn)‘"O
The numbers n and ng being arbitraries we get

qnoﬂﬁfan(Bn)%O,
q:%”qn =0,
g -0

The relation 1)=8) follows directly from Proposition
2.4, point b), We show now that 8)=pl). We consider the weak

# - £ A * .
unit v in 8 which is u -continuous and such that v (p)< ©9,

o \
Let/tbe a measure on X such that p(x)= S <x,$2 dm(§)., Since
7 .u..&— 3
the co~-natural topology onE:Z(u,v& ) is smaller than the
‘ *
co-natural topology ongz(u,u ) we deduce, using the hypothesis ,

that for any geS, q;%p,q#G we have c.n,~carr g#f where, in this

case, the set c.n.-carr g is the harmonic carrier of g with



2 9
respect to the co-natural topology on () =€) (u,v ). Let p=q+qf
where g& P($)) and g'¢ S is such that for any t&P({2) we have
q* A t=0. Obvionsly g’ satisfies again the .assertion 8) and

. -)a(.
5 % I ‘i

moreover the positive measure /,aa, on Xvﬁw for which
: = e
{<x,87 ap'cs)
K™ ‘

ol
' : 2SU i e ’
may be written as the from .Z_L/"Lfm » Where for any me N,/u,
4‘!"’%,‘.:/3 m

gf(x)=

';"4.‘
is a positive measure with compact support Km” ch: xv,,,\&;? .

For each me N let (Vn)n&N be a seguence of co-natural

open neighbourhood of Km such that
R} ¢ Yne N and K =V .
Vn+1C \fn E¥ine m Qvn

Using ‘Theorem 2.1 we get, for any n N,

n [ . ¢ s
B q) where qr (x) %5 d m( )

and therefore

@in.rcary qI; 4l san N

n
5 QAL Y "::7 L

c carr q. g, A 0 .

The number me N being arbitrary we deduce q'=0, p=q,

peP(E)) .

Corollary 3.2. Suppose that the natural topology on Q

is gjr,,vcﬁl%e’ﬁ than the co-natural topoloagy on{?. Then an elemen
pP&sS belongs to P((Q) iff for any aeS, q_:?;,\}f-‘ﬁ, a #0 we have
€2 - carr g#0.
?_33232' The assertion follows from the preceding
theorem and from the fact that
_ Qr\ carr qgc.n.-carr g
for any 9 E5.

Remark 3.3. We know that any natural open subset of &2

is also a co-fine open subset of (2 and therefore from previous
theorem we deduce that for any p(—‘:P(Q) and any natural open
neighbourhood VW of thasct G2 ocavr p we have varzp.'
‘We may ask if the following assertion is true:
47) if pe s is such that for any c}“éS,_q,ﬁp and .iitxy

N7

= \/
= e . PR D e e R T e T



The following example show -that, cenerally, the above
assertion does not hold.

Example 3.4. We consider on the set g} =(=-1,1) the

standard H~cone S of all lower semicontinuous functions f on
(-1,1) such that f' (—wl,O] is increasing and concave and

£ ‘ [0,1) is concave. We remark that {~continuous elements af
S are exactly the cdontinuous functions fé;g‘with lim £(x)=0,

P AN 4
the natural topoloay onﬂ@ coincides with the usual topoloqy

of the interval (-1,1) of the real line, and the duai S caa‘awLS
i, the convexe cone of all positive Radon measure/“» ongz such
that
2
S(l~x yap &
Also it is easy to see that,g?, is saturated with respect
: 3 ] i3 5 #‘j 3

to S and a Radon measure Mt onQ is a weak unit in § iff

/‘A(\o 1)\) . Also one can verify that for any x GQ the measure
is

*
is an universally continuous element of ‘3 e et witbe

}’i

*
the weak unit of § , u = 1/2, For any t6_§2\§073 we consider

the extreme element §t& S Suehl "that ¢arr §t== he and

- _
u (t)=1l namely

; 2 : ~ > -
§ S T (x+1) for z e ( 1,’;)
tgt Do for x e L t,0)
~2 (%=1} for x& (0,1)
if £t €(-1,0),
= 0 for x ¢ (-1,0]
t
\-«»(-tl:t)x for xe(0st)
=2{x-1) fior e Tt |
Lf te (0,5 7§,

SO for xE—C—l,Oj

‘§t= 2x for x e (0,t)
L’»?;%w (x=1) for e Cbyl)

if t&‘(“]:;ﬂ}-)e




Sy e

As for the element 0&G) there exist two extreme

elements of S denoted by § .. %?) 71 th carr € g=carr g'gm e

namely
% g(x)‘w 2 (x+1) for x € (=1,0 ]
2 (1-x) for.we (001) >
0 for x&(~1,0]
vfw»(v}ﬁ :
S0 2(1=-x) for' xe (0,1).

We Y€ ?"“xtﬂ’ﬁ“?? also that the natural closure ofgz is the Alexandrof
compactification of the locally compact space (~1,1) and the
only element which is aaded to (=1,1) by this 'com_aactificatian,
is the element ’/Q;) of S‘{é defined by

ﬁo(s>mo (¥decs,

The set }1 ~e consists fpeem the elements %t,
t(m(m,())x/(o W 30‘, 30 described as above and from the

following two elements denated by 3'01, ‘§+1 where
g 25 4f xe(~1,04]

- LZ(l-x L-{%’?{;é‘.’(@,l)

wr
o

Epax)= o if xe i 0
23 1F e (0 51
Since the set EEX‘ x(::(-1,1))} of universally continuous

o %
elements of § se parato the compact set Ku* , Where

ix"‘ gsé S ‘ =1 }
we deduce that the space Xﬁ,of il .nonzero extreme elements
of K:;éndowed with the co-natural tapoloé'y may be identified
with the topologic sum

C-1006 [ o1+
whereigg‘ (resp. §g) is. identified by the peint 0 frem f_-l,oj
(resp., [O,lj Y andQ coincides with (—1,0‘} (0 ,1) . One caﬁ
easely verify that the element § g satisfies the condition
4’} but it is wrot a Green potential.

Remark 3.5. The above example shows that if p is an




« element of S such th@dffﬁr any ge&8s, q:?pe a#0 we have
carr g#f we can not deduce that p is a Green potential.

IV, Potentials on Green sets

In this section we deal with the study of those elements
of an H=cone of functions S on a Green setjjz ﬁaving a
"potential” behaviour with respect to some reovering of S22
and we gilve necesSary and sufficient conditions under which
an element of S is a Green potential iff it has this "potential”
behaviour.

In the sequalggmwill be a Green set for the standavw§
H~cone S corresponding to the weak units u and a”.

Lemma 4.1. Let tfh be an increasing sequence of fine
open subsets of &2 such that§2.m:{€2n. Then the followina

assetions are eguivalent:

APE
1) inf B p=0 (V‘)péso
G '

2) AE o p=0 (P)pes,
' : \{j 3
L U_“ g=0 (¢)ae s
SOON :

4) A B n-q=o (v)pe o (),

Proof. The assertions 1)=2), 4)=>3) are ebvious. We
show now that 2)&3). Let A énd/u~ be two positive measure
on( such that G\ & SO and Qﬁ & Sy- From the relations
SB G / %fdh (¢ Ing N
and using the fact that the seminolar subsets of{Q are » anefu

negligible we deduce

NG U ,
S P nG- d/u. Sinf PQ e d/u.::
~\
' ‘Q"\Un g?;\'U"h-
=Cinf" B G dn = Be 509
Sl e e
and therefore, » and/u being arbitrary,
SoNU “GENEE
= G, =
/B =04= ’)/\B 5y =0

2} 1) Let us consider XOQQ and let npeN be such that
xoé:(]n . Considerung now a fine open neighbourhood Vor 2q

such that the natmral closure of V is contained in [j and
Ll



using [ 2 By Proposition 2.2. we have P

ey o / SN U,
(p~B bl e 5 (V), B ol e (V)
v v 2\ 4
for any n2 Nye On the other hand the sequence (B p){v nzn

is pointwise decreasing to a fine continuous function on V

as it is shown by the following relation

[/ S
2] S$PNU
p{ =(p~B np‘}é, e ﬁp) ?
by V Y
Hence
CINAT Tl
inf B mp(xa)mé/‘\ B“Q np} (xo}

W

£ 4
1)==4) ., Let pe /‘/!fQ‘) and let » be an element of

o

jr{ o* (G)) such that G\ = S_oa

Since » does not char ge any semipolar subset of (;’

we have

g
PPN N S G )=

/ i ,
= 1nf’§ A Bga M n‘i"G/gA‘ »inf/u\(Bﬂ\U P
Q'\Un ;

-/u\(lnf B G.,A)s:()

and therefore, P being arbitrary, we get
e S
N B G
o -

Corolarxy 4.2. Let (U_.). be an increasing sequence of

=0

ipal

co-fine open subset of §2 such that (2 =\ V,. The following
gy

assertion are equivalent:

1) inf ’?BQ el q=0, () d e S;
z)A*BSZKU“qu, w)q@.so*"
3);“\352\U“pz0, (M)pe Sy
4),\3‘9\U“p =9, (v )pe P(S?).

Corollary 4.3. Let (Tj’n')n be an increasing sequence

of natural (resp. co-natural) open subsets of {2 such that

U U’n-:‘g} . The following assertion are equivalent:
~x

NAUF
1ma§2 “pmo, (v Ipe S,
# .gz. #
2)\'B Mg=0, (v)ae S,
VU
3)/\1352 "p=0, (v)peP ()
4)1’\“”sz Un q=0, (¢ )gelP” (€2)
Q\Un

5) inf B~ q=0, (¥)peSg



. SexU
6) inf *n Oq=0, (¥ Yae S,

e

Proof. The assertion follows directly from Lema 4ok, and.

esvmm e O GBS

Corollary 4.2. using the fact that any natural (resp.co-natural)
open subset Qf_gz ig both finaly and co~-finely open.

Theorem 4.4. Let p be an element of S such that for any

increasing sequence (D )_ of co-natural open subsets of ) with

n'n
"D = (2 we have
AN % %
$exDn
5B p=0

Then peP(SD).

root i — 4 e =i P ! e £
roof. Let p=p p?+p3 whe P& (2, p,=G, for a

s 1

suitable measure . On X w&ﬁd p.& S is such that A G =0
/’ u =3 3

for any positive measura./&ron X"t.with ?/‘é S. We show that
e
_ " -
S - gontinuous ge a oy, - '
a u continuous generator of S nd/Pk(p)< L€§ (Dn)n

=0. Lc*/fA. be a positive measure on S2 such that

i

be an increasing sequence of co-natural open subsets of c2

‘given by
)"‘* : 1
Dn;..\' Ci,u‘? -~ 3
Chbviously (¢ =\Jp_ and by hypothesis we have
- %
U JQ\U" :
s e
Gy o
On the other hand, from Theorem 2.5. we deduce
T_35’2 \NUn /\RSE\U'n
== }‘:} = i5 :j =
As for the element p, we consider an increasing

seqguence (Kn)ﬁ of coﬂl?daf subsets of X QZ (with respect to

the co-natural topology) such that

P,=G.. =G , where 2 =0/
2 "% L m - Km
For any me¢ N we con51écr a QLCI@doinq seguence (vn)n

of co-natural open neighbourhoodg of Km such that

oV e, B

From hvnothpgxq we have

Y%wa 2AVnq

/\ B P, i/\B p=0

Using now Theorem 5.1, we deduce for any ne N,



- s a

‘ V B
ﬂt’(‘ *—«“BS‘?(‘ v I]#G% < B (an It

3 ¢
'}imW i
and therefore ‘G>\ =0, The number me N being arbitrary we get

m

pzi‘

pzmﬁa

Remark 4.5. We may ask if the above theorem still holds

encrrsmtnes SRS g 1o

when we replace the sequences (Bn)r of co-natural open subsets

ofgz by sequences of natural open subsets of_gz :

7]

The example 3.4. shows that, generally the assertion is

not true.

4

Indeed, let us consider the element §-,

of S defined
onﬂgzﬂ(ml,l) by

i 0 dE e o107
§O(x§=

2 1=x) 1 f % (051

andiilet (D ) “betan incre
n'n

o

sing sequence of natural open subset

of (-1,1) such that \J Dﬁz(-l,l), Obviously for any ne N there

~~
exists & sufficiently large number n'’e N such that Co,l~%:}czﬁp/

£

and therefore for any K2 n' we get
g .
o kf+<_g_
S0 =

Hence, we have
\ BSZ'\ s g
/) § =0
but obviously §g§é9(§2)°

Theorem 4,6, For any se& S the following assertion are

equivalent

e A in=0 (¥ )pe P(2)

Mg

2) there exists a seguence (sk}k in S such that s= S

::/)k

~

and such that foy any ke N there exists an increasing

- sequence (Dn)n of co-natural oven subsets of (¢ with_§2kaDn
- AN .

and with
BN
B S =8y (¥ )ne N.
: e
3) there exists a sequence (s;), in § such that szﬁisy
; \e=q "
and such that for any ke N there exists a gequence (Dn)n af

co-fine open subsets of (2 with () =\YUD_ and with



SN M
B By =g (¥) ne N,
£

Proof, Obviously 2)=>3),

T NN s gt

VeS2y, Let Syr 8,8 be such that sw—sl+32,' o for
s #e
a suitable positive measure o on Huﬁ. - ?, GA,_ =0 for any .

o

positive measure /,4. on ‘;y{u& with C}LL € S. Using Theorem 2,5 we

deduce that taz%‘fw a weak unit te S such that t(sz).ﬂ oo then

LJ
for any nelN we have *
s et
2\Dn bEd- 5
B e w el n-s_ == 'y
2 2 . #
where for any nell we have denocted b
1 ¥
D :"‘.2 [ t S © 7 S
n 7 n j

Obviocusly (D ) is an increasing sequence of co-natural open
subsets Of « . and QZ =D,
~y n
As for the element Sy using the hypothesis, we daduce
that there exists a seguence (:\ ) of compact (w:.tn respect: to
the co-natural topology) subsets of / «\S2 such that
= ol e oz 4 :
S 4 .lc*.;\m, where 7 e h’/Im
For any me N we choose a sequence ("\[n)n of co-natural
open neighbourhoods of Km such ‘that
< = ir - -
\Jnn%-lmvn (¢ JneN, (;:‘ \[n I{m'
OCbviusly the sequence (Dn)m defined by
is an increasing sequence of co-natural open subsets of G2
with ¢ ”,HDH'

Moreover, using Theorem 2.1., we have
S’P; \Dn Qf‘\ Vn : fa
‘“A

V
i
o}

>

m m
for any ne N

(%4 (<K

=»1) Let pgS be such that there-exists a covering

(Dn)n@_N of G2 such that, for any neN, D. is & co=fine open

subset of SE such that
B.SZ\Dn

We decompose p as a sum stl~4~sz where s,ie:P(g;) and

il
(&)

~ By S R A
for ANy e Pty
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Since G_. =g,/ we have, for any neN,
o
2\Dn
BMJZ Y o

A

TSG‘;«“&

" On the other hand using corollary 2.3. and the preceding relatior

2 (D )=0 (¢ )néeN

and therefore » =0, s lr:-O,.

From now on we suppose that (59,9"2.3 satisfies the
following axiom:
(G-P) For any increasing sequence of co-natural open

we

subsets (D of C)sueh that N/ p =t WS e a
s (B OECD 1at N/ D ={land for any peS§

have

A T \‘) :
e

e

Remark 4.7, We may ask if in the preceding axiom we can

replace the sequences (Dn)n of co~-natural open subsets of ‘ﬂ;.c’gz

by sequences of natural (Resp. fine of co-fine) open subsets

Gf 7.
Generally the answer is negative.
a) Let us consider the H~cone 8 of all positive

increasing and lower semicontinuous real functions on (-1.1).

)

Its dual S° may be identified with the cone of all positive

decreasing and lower semicontinuous real functions an (-1,1)

i
such that if fgS and gc S we have

o
a( g””‘é“?/“q

where /ug is the Lebesque-Stieltges positive measure on (-1,1)

assoclated with g. In this example the natural and co=-natural
topologies on Q =(-1,1) coincide with the usual topology.

Tak;{“?é’*é‘%; pe S
G 1
( o if xe& ("'lp“"é“j
pix)= 1
Ol Af e (=, 0 :S

1 1f 2ol



anz(ml,oju (1/n,1)

we have pe;So)Dn is fin a@nd co-fine open,

e (# )neN,

xzfmﬁm(fl,i}

-
19

and
1)'\

’ (-1,1
G =
7>

On the other hand we

Pn =1 on (o,1)
-‘)1{,
see that (S,(2) and (S ,(}) satisfy

axiom G-F.
b) We consider the standard.H-cone on (-1,1) dgiven in
see that

3-4. Using corollary 4.3, is easy to

Exemple
We show that (S,S2) does

not satisfy

# : :
(s ,)) satisfies axiom G.P.

ayiom G-P. Indeed taking qaroop a#0 and for any neN

Dnm(ml'ol k}(ﬁ'l)

wWe have;Dn is co-natural open subset ofQ=(-1.1), (Dﬂ)n is
increasing

"~ E e S

et I
and

e
/N B g=g(0) (L-x) —on (0 ,1)
Theoram 4.8. Suppose that (5,(2) satisfy axiom G-P.

©

are equivalent :

bt
631

Then for any p< S the following assertior

By pa Bl
2) For any increasing sequence
subsets of,{énuch that \J D, mj],we have
I ND
/\ B "p=0

o
3) For any seguence (Dn}n of.co-natural open subsets

(Dr) of co-natural open

of,ﬁ? such that UHC'D 4y for any neN, we have

5}’\D
AVE p =0,
m S
?rogﬁ. Tha assertion follows from Lemma 4.1. and Theorem

)y

®
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