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ABSTRACT -

We discuss the problem of the existence of perio-
dic and stationary solutions of affine gtochastic dif-
ferential equations. We prove that under a contrclla-
bility condition the system has a pericdic sclution
andiignly 1f the linear part dis eyvponential by gtanie
mean sguare.
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1. NOTATIONS AND PRELIMINARIES

The following notation will be used throughout this
paper. R? is the real n-dimensional space. E(Rn) is the
O~algebta of Borel sets of B 16 A ds o mabRix (op &
vector) A* is the transposed. V

'H>0 (H>=0) means that H is a positive (semi) definite
matrix oI -isothefidentd bty matrix da R ; A(A) ad the
spectrum of the matrix.-A and p(A) is the spectral radius
of &.

-
F

Colgg (2

o
J

Throughout this paper ({Q } ds @ giverp probabilis

ty field; the argument wef W

=~

i1l not be written. By Ex



. We denote the mean value of the random variable (fandom
vecter) x.

If x is a random vector, by cov(x,x) we denote the
covariance of x; cov(x,x)=E(x-Ex) (x*-Ex*). An n-dimen-
sional random vector = is said ?o*be Qa&ssian %f'there
exist aecR” and H 0 sueh that e S for
alliuenr” (i=y-1). If in the above equality H is a posi«
tive definite matrix, we say that x is a nondegenerate
Gaussian random vector.

An nedimensiional stochastic process x(t), t20 4=
satd to be & Gerperiodiec process if for all tl""’tm and
all AlGB(Rn),...,Am&B(Rn), m>1, we have

P{x(tl+e)5Al,...,x(tm+ek;Am}=P{x(ﬁNeAl,.u,x(gnhgAm}

If the above equality holds for all £y, Ai andeg il o0
then we say that x(t), t>0 is a stationary process.
The process x(t) is weakly 6-periodic if Elx(t)!<e and

Ex(tie)=Ex (t), EBx ({t+o)x* (t+te)=Fx (E)x*(t) for all-t=0.

2. LIAPUNOV EQUATIONS. STABILITY AND CONTROLLABILITY

In this preliminary section we shall preve some re-
sults concerning Liapunov type equations in the space H
of all nxn symmetric matrices.

A liheamssoperator P> ispositiver 1 £ H=>0 Tmplies
T(H)=20.

Let Wl bealinear positive overator and:6x0. Assume

e

that there exidls n >1 such that

-
\
}
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CLiapunev eqilint ion

(L) H-T(H]=6



189 a positive cemidefinite solution 0 then

. oo (]
Tim 11 [0 and B0, e | @ (0]
Lo i=0

Proo £

Let H be a positive semidefinite solution of (1).

We have
: . e
@ B =) Tle s i
320
Since T is a linear positive operator and
T =1
e
Y T7(G)>0 we get
i=0
n -1 ; ;
o % :
3F 51= PG 5,50
e 3;0 ‘ 1

Using-:again (2) we obtain

Il
) <=6 I={1-8)H

wiztlhc0< 8]
Zno‘ n 5
e R BT (B (1)

ing jn
&7 )=t Sl t1-67 1
Therefore
jnO o
5y 2 (I) 1< (1-5) 711

g el 2 s - :
Since T . ig a lineer positive operalor we nave
1 :
e e a0

and from the above inequality it follows that



1im T 1=0

I

The last assertion follows dlloctly Erom A2 .

We remark that if limllT'lI:O and 1if there existy
n - i-re
(@] .
nO;l such: that z 7 (G)>0 then (1) has a unigue posi-
. j::O 2 ¢ .
tive definite solution, namely H= } T (G) .

"j=O

Now, we prove

Lemma 2

5 the equatlon (l) has a unlqpa pOgltlve deflﬁlt SO~
lution then liml!letzo and there exists n 21 such that
n -1 Lo - -
o :

) 1) (G) is a positive definite matrix.

§=0 ‘
Proof

Let .H be the unique positive definite solution ©of
(3) o he i the prcof oF Demma ¥ (see (3)) it follows

that the series Z TJ (@) is céivergent, A simple caleu-
B Ol
lation shows that H,= ) 1) (G) is a positive semidefinite
‘ ‘, 3=0 :
solution oFf (1). From (2) it follows that HzH,
Since H+ (H-H ) is a pOS]thC definite colutlon of

(1) we get H;=H; tnus E 7! ()>0. Hence there exists
; i=0
i e i
S
n_y1 such that J ' (G)>0. According to Lemma 1 the
i=0 :

proof is complete.

We apply Lemma 1 and Lemma 2 to the well known

Liapunov eguations.
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Let Abe an hxn makbrix and (G=0.
Applying Lemmas 1 and 2 for the operator T:H-+H de-
fined by T (H)=AHA* we can conclude that:

a) if the Liapunov .eguation

(4) H-AHA*=G

has a positive semidefinite solution H and if the pairv
(A,G) is completely controllable then p{A)<l and H>0,
B a gk .

i=0

b) if the equation (4) has a unique positive defi-
nite solution then p(A)<l and (A,G) is completely con-
kol tableg

Application 2

Consider the Liapunov equation
(5) AH+HA*=-G

It is easy to prove that H verifies (5) if and only if

e x4 t * e
ePtuel ton=- [ e®%ce®"%as for all t20
0 ; :
Let to be a positive number. Since thetpair (A,G)
t % s * S
iz completely controllable if and only if fOQeALGeA tat

is a positive definite matrix we can use the result in

Application 1 to conclude that:

a) if (5) Has a scelution B0 and £ (A 6 o com-
pletely controllable then A is a stable matrix (i.e.
(

max ReA{(A)<0) and (5) has a unigue positive definite
= Qe ¢
(o A

) e A G b
solution, nemely 4= ¢ —Go et

b) If the equation ‘(5) has a unigque positive defi=

nite solution then A is & stable matrix.eand (A,G) 15

e



compiletelyscontroillable.

3. PERIODIE SOLUTIONS OF A CLASS OF APFINE DIEFERENTIAL |

EQUATIONS 1IN THE SPACE H

Let us consider the following equation in the

space f
m

(6) T (e)m (o) 4 (£) A% (£) + L By (€)M(E)BE ()46 (¢)
o

where A(t), ? (t) and C(t) are nxn 6-periodic continuous
matrices. In aadltlon we suppose that G(t)=0 for all
=0,

By M(t,s,H), HéH we denote the solution of - (6)

which verifies M(s,s,H)=H. We shall use the notation

Mo(t)“—=M(t,0,0)

Let C(t,s) be the fundamental matrix associated with
t+ e d“}{:::"‘ TR
the system St A )
It is easy te wverify that
, m £ '
(7) =Mt s, H=Ct,s)HC*(t,8) + Z ch(t,u)Bj(u)M(u,s,H)B;(u)C*(t,u)du+
j:l 2 :

+ffc(t,u)G(u)C*(t,u)du

Remarkll

Using the method of succesive ap@roximations for
Volterra equations one sees easily that i1f H=0 then
Mt s, B0 for -all, t>g and thus’according (7) we have
Mitis )0 for all tos il B0,

Consider now the following linear equation in ‘the

space H.
AREEI i i ) 7 ) BX (t
(8) —at R CIFR(E)ES (D) + ] B (t) (t)Bj I

=k



Denote by Rilt,s H) ., Héll the selutien of “(8) with
R(s,s,H)=H. Define the following linear operators

Mt ps Jatl = i, e s)S(H ) =Ry e 1

and S=T(6,0). ;
Ltris: casy: towveri fy that
(9) T(t+6,5+8)=T(t,s), Ti(tte,0)=T(t,0)s, Tit,s)=E(t,u)Lu,s)

for alil t,s and-u

(10) M(t,s,H)=T(t,s) (H)+[ T(t,u) (G (a))du

(11) M_(£)=[TT (£, ) (G (u))du

From Remark 1 it follows that if H20 (H>0) then
Rilt 8 B =00 (Rt s H)D Ol ondal 1ens,

Thus T(t,s), t>s are linear positive operators.
Remark 2
It is easy to prove that
j"l 35 ; E
M (Fge)= ] 8 (M (6)) For all =i
o : o
i=0
Remark 3
Using (9) one proves easily that the zero solution

of (8) is exponentially stable if and only if

1im |18™11=0
ire

Remark 4

Tt is easy. . to prove that M0 Gl =08 s el -tispess
riodic solution of (6) if and only 1 £ Me O HE=H, and
thus by (10} we conclude that M(E 0 ,H), t=0 rclanc-me=

rlodic solution of (6) if and only if Hiwvcrisies



(12) HwS(H)xMO(e)

Thus, according to Remark 3 we can conclude tha£ if the
zero solution of (8) is exponentially stable then the
equation (6) has a unique g-periodic positive semidefi-
hite solution. L

From Remarks 1-4 it also follows that if the zero
sedution of (8) is expo lChtlquj stable and if there
exists nCZI such that M (n 8)>0 then there exists a
unique 6-pericdic noq1t3vo ﬂ@fwnite solutionyof e}

namely M(t,O,HO) with
B E Z s M_(e))

Fropocition 1

Assume that the egquation (6) has a §-periodic

positive semidefinite solution M(t,0,H), t>0 and

there o b n,zl such that M. n 8)ds positive dafi-

nite. Then the zero ao1uinon of (8) is exponentially

stable and H>0, H= Z gt O(e)).
1=0

Proof

Let M(t,0,H), H20 be a #-periodic solution of (6).
Then H verifies (12). According to Remmark 2 and apply-

ing Lemma 1 for T=S§, GIMO(G) we can ccnclude than

lim 1S 11=0 and B0, H=J S (o (8)).
ive 120

Propeosition: 2

If the equation (6) has a unigue. f9-veriodic posi-

' 3 R PR L R e S S LR Rl S e e : :
Erves@e o b0 co b ion then the Doreo csalution of [8) 45

v
et
\ﬂ
S:
’}
:;"'
r—r
=
)]
+

exponentially stable and there evicsts no
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Suppose that the equation (6) has a unique 6-perio-
dic selution M, 050, #t=0 with.H>O. From Remark 4 it
follows that the equation (12), has a unigue positive
definite solution. Thus Proposition 2 follows directly

from Lemma 2 and Remarks 2 and 3.

4. PERIODIC SOLUTIONS OF AFFINE STOCHASTIC
DIFFERENTIAL EQUATIONS

Let us consider the system

m
(13) dx (t)=(A (£)x(£)+E(£))dt+

j_l(Bj<t>X(t)+hj(t))dwj(t)

where A,f,Bj,hj gred=pericdic, s and wj are standard
independent Wiener processes.

By x(t,z), t=20 we.denote theisolution lof W13 with
x(Qnza=2, 5

Ft r £t20 will be the o-algebra generated by

We consider only solutions x(t,z) where z is independent
of {F,,t20} and Elz|°<e.

It is well kneown 11, [2] *%hat s {t, z)llc a Markev
process: and the transiticn prebabililty S functionipils < trn)
associated with system (13) satisfies p(s+6,x,t+0,A)=
=pils X, /A) for all B=s<t xeRn, AeB(Rn); we shall call
this preperty O-periodicity.

Let x(t), t20 be a colutien of (13).

Let m(t)=Ex(t) and N(th=covixit),=(t)].

It is easy to proﬁe that



J? 7y
o

5 m
(14) Wep ()N () +N (£)A* (£)+ ] B, (£)N(£)B% (£)+
j:‘.:l 3 J

m -

+ § (b, (£)+B, (t)m(t)) (h# (t)+m* (£)BZ (t))
This equation will be considered in the space H. We
denote byva( )(t) the solution of (14) corresponding

to the function m(t) and which verifies N t0)=0.

m(.)
Remark_5

From Remark (4) it follows that if H20 (H1>0) then
N(E. 0,020 (08>0 for all £=0; thus, since
N(t,O,HO):cov(x(t,z),x(t,z)), (HO:cov(z,z);
m(t)=Ex (t,z)) we conclude that if gevi(z,2)>0 then:

Covlxli 2 =2 >0 ftor all =0,

We remark that if x(t,z) is a solution of (13)

and m(t)=Bx(t,z) then N )(t):cov(X(t,EZ),x(t,EZ)),

irrmnnins

t=0.

Remark 6

A e AN

.7

It is obvious that the solution of (13) x(t,z),
£20 is weakly 6-periodic if and only if Ex(8,z)=Ez and
N(t,0,H) (with H=cov(z,z)) 1is a 6-periodic positive
sofiidefinite solution of (14) with m(t)=Ex(ts2).

Consider now the following linear stochastic
differential system

vm
(15) dy(t)mA(t)y(t)dt+‘z

; Bj (t)y (t)dwj (t)

1

In order to prove the main results in this section we

shall use the next stability lemma
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T

The following two assertions are equivalent:

(1) The zero solution of (8) 1s expenentially sta—

ble.

(11) The zero solution ‘of (15 s exponentially

stable in mean sguare.

Proof

Suppose (i) holds; hence there exist a>0, B>0 such
that

o(t=g)

IR (t,s,H) |<pe” bRl e el

Letiy(t,a,%), 425 be the soluticoniof (15) mith e o =)=

KRS R_n.
We can easily verify that R(t)=Ey (t,s,x)yv*(t,s,x)

is a solution of (8). Hence By (t s, Xyt s xRt sixat)

We get
Ely(s,ﬁ,x)lzsye“a(C“S)ixl2, t>5>0, xeR™
Thus (L) =i (133
Suppose that (ii) holds. We have
IR(t,s,xx*)ISYIea"a(tus)lxx*l' for all xc¢R"
; n ,
Since every HeH can be written H= z c,e.e* , where c,
j21 171 i i

il S
are real numbers and eicﬂ ; e;ejzo, lei[:l, j#l, we can

conclude ithat ((i)i= (1.

Theorem 1

B )

Suppose that the zerpo soliit ton o s i Sanonans

tially stable in mean sguare. Then

(L) There exists a 8§-periodic solution of system (13

)



(Ef) 1€ Xl(t) and xz(t) are two 8-periodic solu-

tiors of system (13) then they have the same set of joint

distribution  fupetions.

(1ii) IE x{t,z) is5 a 6-periodic Soliition of Y13)

then Ex(t,z)=mo(t), cov(z,z)=HO where mo(t).is the

unique 6-periodic solution of

dm(t)
dt

(16) e s b

and

i
N

y (8))

Proof

Let 2

_ V(t,x)=x*P(t)x=mely(s,t,x)I2ds, >0 ; xc¢RD
€
Since ‘the transition. probability function associated
with system (15) is 8-periodic one sees easily that
P(t) is ®-periodic. v -

From the hypothesis it follows that [3] that
Pleyeyl, (0) “‘and

LOV(t,x)=—IxI2, =0 X(.,Rn
where LO is the parabolic operator associated with
system (15)

LV (t,%) =x*-d-g-§‘-) Wb *A® (£) P () 34x*D (£)A (£) st

m
+ § x*BR ()P (t)B, (t)x
j=l 3) ; J

Let Ll be the parabolic operator associated with - system
(13) . We have



m
L,V (&, %)=L V(£ %) +23*P (£) £ (£)+2x* } BE (£)P ()hy (£)+

J=1
m
kN b el i)
g=p J
Obviously
lim sup LlV(t,x)=¥W, Ihatmlsalyerie V(t;x)=¥

R+o |x|2R R+ |x|=2R

From Theorem 5.2 in [3] it follows that the system (1:3)
has a ¢-periodic solution. Thus the assertion (i) is
proved. We prove now the assértion (amiad s

. Let X(t,S),‘tZSEO be the (random) fundamental
matrix asgsociated with system (15). From the stability
assumotion of the theorem it follows that E!X(t,s)lzs
SBe_a(tms), (o.,B being positive numbers).

We have

Vil z) =%t 0)2

Since X(t,0) is measurable with respect et the

o~algebra F, and z is independent of {Ft,tZO} it fol=

t
lows that 'z dis-independent of X(t, 0), t=0 and thus we

geit

@7) Yim E[y(t,z)l2=0
t>w

Hence -1lim Ely(t,x)|2=0 for all xeR'.
t~>~ 0

But Eyi(t,x)=C(£,0)x, where C(t,;s)lsuthcSiundencns
tal matrix associated wilEh thematries Al ).

Therefore

@8y lam (e, 0) =0
tre

Let x(t,z), t=20 be a s-periedic solutionsefas(li]) .
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Since Ex(t,z) is a 8~-pericdic solution of (16),
from (18) we conclude that Ex(t,z)=mo(t), where m (t)
is the unigque 6-periodie sclution of (16).

Using Remarks 6, 4 and 3 and Lemma 3 we can con-

clude that cov(z}z)=H = 2 gt (M ( )(e))
: i=0 o ;

We prove now the assertion (ii).
: Let'xl(t)and X, (t) be two'e-periodic solutions of
(137
Since X4 e X5 (0] 39 o seolution ob-(15), from (17)
it follows thaL llm Elx (t) = 2(t)l=

tre
Further, we have

" * 2 ¢ 2
IEelu xl(t)—Eelu % (t)|<El1u.xl()_éuﬁk2ﬁﬂls

Shalmla (€)== ()l | for all weR™, €20

Hence

1w x](t)_

L e e L w0

o
: * -
Aigb! xl(t%

iu*xz(t)

But ' Ee Ee are 6—-periodic functions.

Thus

i) ik (CE)

SEBIE
=Ee Eid)

Bewe l( for all ueRn and t=0

Therefore xJ(t)'and xz(t) have the same distribution

funetiones, "and usingithe Markev pioperty of x, and

=7
X, we can conclude that the asserticn (ii) holds)and
thus the theorem is proved.

Pemark 7

Under the assumption of Theorem 1, by using of Remark 2



7

we can conclude that if x(t,z) is a #-periodic solution
of: (13} then cov(z,z)>0 if and only 1f theve onists

21 such that re it '
n,zl such that e (e)(noe)>0, where m_ is the unique

O

O=pepicdic solution of (16},

Proposition 3

Xists a weaklv f-periodic solution

13) with the property that there
B) =0 (mo(t)zEx(t,z))

exists n =1 such that N (n
.-....,4.,.......».,‘,3_. AC) ....._,_,...._,.m,...,,__,,:.j:.... mo ( . ) O

then the zero solution of system (15) is exponentially

stable in mean square and cou (bt z) st 23150 #>0

mo(t) is the unigue 6-periodic solution of (16);

. ;
cov(z,z)~i£08 (Nmo(.)(e)).

Proof

s ereroomre

From Remark 4, Proposition 1 and Lemma 3 it fol-
lows that tlie zero solution of system (15)-6ids sexponen=

tially stable in mean square and cov(z,z%zz Sl(NIn ) (81 )>0,
O &

i=0
where mo(t):Ex(t,z). But mo(t) 15,3 f8-periodic solution
of (16)s Since the zero solution of (15) is exponential-
ly stable in mean square it follows (seetl8)) that
mo(t) is the dinigue 6-periodic solution of (16). Prom
Remark b dt. follows that . covixlt,z) 2tz 0 for all
t20, thus the proposition is proved.

Theorem 2

Suppose that the followina two assertions hold:

solution

19}

D
)

ol

—d
-

H
o]
(0]
=

.
O
(el
}. A
Q

(1) there exists

x(t,zo) of 13} ity cov(zo,zo)>0ﬁ

sl £ x(t,z]) and x(t,zz) dre two weaklv 0-pario~

et



f&

then

P ]

i) e D D e T ok
Ezl E42 and Bz 2z Lzzz

Lk 2

Then the zero solution of (13) is exponentially

stable in mean square and there exists n 21 such that

N L)O%ﬁ)>0 where mo(t) is the unique 6-periodic solu-

tion of WG

Proof

Let x(t,zo) be a weakly efperiodic solution of
(13) "with cov(z ,z')>0 Let H =cov(zo,z Yeeand ml(t)=
=Ex(t,z ) Let N (t), t=0 be the solution of (14) cor-
respOndlnq to mxt)—m {t) and which wverifies Ny (0) H <
From Remark 6 1t_follows that N, 1S 9= perlodlc.

We prove that Ny is the unique 6-periodic positive
definite solution of (14), (with m(t)=m1(t)). Indeed,
let Nz(t) be an another 6-periodic positive definite
solution of this equation. :

Let‘zl be a raﬁdom vector independent of U%Jtzo}'
and sucéh that Ezl=EzO, cov(zl,zl)=Hl=N2(O).

It is easy to prove that Ex(t,zl)=Ex(t,zo), o= D
thus Ex(t,zl) is_e~periodic. Hence by Remark 6, x(t,zl)
is a weakly 6-periodic solution of (13). RAecording te
(i1i) we eenclude that H1=HO; hence by Proposition 2
and Lemma 3 we deduce that the zero solution of system
(;S) is exponentially stable in mean sguare and there

exists nozl such that ! (n g§)>0. A= ipthe proof of

(<)
Proposition 3, we get tbdt ml(t)*mo(t) where mo(t)

is the unique 6-periodic solution eof (16}, The theorem
is proved. The next result follows directly from Theo-

rem 2.



Proposition 4

If £(t)=0, t20, under the assumption of Theorem 2

it Fol lows that the zero soluibion of cvsionm (15) 19

expenentially steble 1in mean sguare and @ theore oSt

nOZl guch thateN (noe)>0 where No(t) 1s thefselution

BN A IR s O

of (6) with G(t)=2hj(t)h§(t).§g§ N_ (0)=0.

5. PERIODIC SOLUTIONS OF A PARTICULAR CLASS OF
AFFINE STOCHASTIC DIFFERENTIAL EQUATIONS

Consider the following system

€L9)  dx (E)=(RAlE)x (t)hE (b))dET ? I, () dw 26t)
j=1 ) J-

where A,_f, hj are O-periodic,

Throughout this section, the following notation
will be used

C(t,s) is the fundamental matrix associated with
A,

U(8)=C(9,0) m(s)=[’C(s,5)f(s),ds,

FiE)=(, (6),....h (8), G)=[C(0,9)F (5)F* (s)C* (p,5)ds

: o

Since the transition probability function associated
with (19) is 8-periodic and the solution x(t,z) of
(19) is a Markowv process, using the Markov property
one ?roves casily (see [3,p-98)) &hat x(E;a) 1c 6-pc—

rliodiciid i andiendy el f

iure (0,2) iu*z

Ee =he for-all weh s frl)

In this section we use the following elementary lemma

which can be proved easily using Ito’s formula.

}Mﬂzli%y;



)
g

i

Lemma 4

e e TS

et (L) be' an nxm deterministie continuous matrix.

We have
Pl B[ (eI (8)_~1/208 LI E)es u L an (T
(w(t):(wl(t),..ﬂ,wm(t))

Theorem_i

The system (19) has a 6-periodic solution if and
enly 1 Eathicic e dicht b<R' and H>0 such that

(20) (I-U(8)b=m ()
(21) U(8)HU*(8)-H=-G(8)

If the eguation (20) has a solution b and if the

eguaticen (21) has a solution H=0 (H>0) then there exists

a 6-periodic solution x(t,z) of (19) with the property

that.fer each +>0 x(t,z) is a Gaussian (ncndegenerate

A
Gaussian) random vector.

Lokt callt iz, t=0 be a-0—pericdic solution of (19).

We can write
t : £
x(t,z):C(t,O)z+fOC(t,s)f(S)QS+C(t,O)fOC(O,s)F(s)dw(s)
Since z 1s independent of {Ft,tZO}, applying Lemma 4
we get

(22) Eeiu*x(t,z)

st Eee b e L
:EelukC(t,O)zelu*fOC(t,s)r(s)oselu*foc(t,s)F(s)l*(s)C%(L,s)ds u



Hence

s ks (0 LudU(0) 2 iutm(o) - & (e
gt x(@,z):Eelu U (o) iU m(e)=1/2u*G(0)u n

But x(t,z) is U=periodic. Then

(23) Bl e iutU(0)z tutm (6)-1/20*G (6)u

S foraall uﬁRn

Let us denote by gl(h) and gz(u)‘the left hiand side. and
respectively the Tight hand side in {23)%
agl 3G,

13 ~ = * . 5 e = ?’W_’n:- ’ b . 2 0
The relation = lu:O'au luzo implies (20) with

2 2
) gl 3 g2 . :
b=Ez: from ——=; .———=; . one obtains (21) where H
: 2[u~0 S mLE
ou : Ju

is the covariance af iz,

Suppose, now that bR} verifies (20) and H=20 veri-
fies (213. .

Let z be a Gaussian random vector such that Ez=b,
coviz;z)=H and z is independent of {Ft,tZO} z Thereﬁore
(24) Eeiu*zseiu*bml/Zu*Hu , uer?

By ‘s simpile calcul&ﬁioﬁ one may show that 2z verifies
23). Thus x{t,z) 1s o G-periodic solution of (1),
The last assertion follows directly from (24) and (22).

In the case of system (19) the eqguation (14) be-

comes
(25) i§€~ 1 (£) N (£) 4N (£) A% (£) +F (£) F* (£)

From Remarks 6 and 4 and from the proof of Theorem 3

it follows that the next proposition holds.

Proposition 5




(I i z) is d weakly emperiodic‘solution @il

if and only if Ez=b verifies (20) and H=cov(z,z) veri-
fies (217

(i1) If x(t,z) is a weakly 6-periodic solution ef

(19)uamd i f oz e o Gaussilan pandem vector then x(t,z)

is a 6-periodic solution of (19).

We denote by K(t) the solution of (25) with K(0)=0;
(K(t) =cov (x(t,0) ,x(t,0)), x(t,0) being the solution of
(19) with x(0)=0). Since Y‘t)—f C(t,s)F(s)F*(s)C* (t,s)ds
we get by a simple calculation that K(je)~

-—z Lo, L

Thus, by Proposition 3 we can conclude that the

following result holds.

Theoggm‘4

XL the 'eystem (19) hes a weaklyig-periodic solu-

tion xi(€.2) and Sif 'the pair (Ule),c(8)) 1s completely
controllable then p(U(8))<1 and Ezn(I~U(e))"lm(e),

cov(z,z)= ] Ut (8)G(e) (U*(a))t. -
120

From ehe 'prcofs eof Theorems 2 and 3 it follows that the
following theorem holds

Theorem 5

e ——

Suppose that the following two assertions hold:

(1) There-exiets a b-perigdic solutiom x(t, Zs ) 9£
(19) with cov(zo,zo)>0.

(£1) If xf{t,z,) and x(t,z,) are twe 6-periodic so-

¥>0 ' then

V>0 cov (2 PNED Elien

lutieons ©f (119 aith cov(zl,zl

22 . =Bz and A Ia b b
Ezl Ezz anc Lzlzl 2,253

Thien o () )<l and the pair (U(6);6(e)) is eom-
pletely controllable




N

. P

& 4
lil

Remark 8

T A i N A

It is easy to prove that (U(8),G(8)) . is completely

controllable if and only if the following system

aor ‘

.,,_...:.:_‘[\ X “i"T i i

AR x (L) HE (B0 (E)

; . n 7 ;

is controllable, i.e. for every xéR , x#0 there exists
a piecewise continuous function u:[0,n6] » R" such that

xu(ne,o)ﬁx (n is the dimension of the system)

The next result follows directly from Theorems 3 and 3.

Corollany 1

We have:

(1) If plUlo) )<l they every O-veriodiec se luticn

¥4t,2) of (19) has the property thats for agciital,;

x(t,z) 18 a' Gaussian random vector.

(1d) If p(U(e))<]l and if (Ul9) ,GEE)) is completely

controllable then every 6-periodic solution x(t,z) of

(19) has the property that for each 20, xlt z) 15 . a

nondegenerate Gaussian random vector.

£y

6. INVARIANT PROBABILITY MEASURES

In this section we suppose that the stochastic
differential equations considered in the preceding
sections have constant coefficients and we shall dis-
cuss ‘the problem of the existence of a stationary
solution.

Let us consider the following stochastic diffcren—

_tial equations with constant coefficients

n
(26)du= (Axtf)dtt J (B . <th ) dw, (&)
-

mn
(07) dy=2vdtt J B ydw. (E)
' )



(28) dxx(Ax+f)dt+Zhjdwj(t)

)
It is known [2] that the transition probability function
p associated with system (26) is stationary, i.e.
p(s,x,t,A)=p(0,x,t~-s,A). We can prove easily that-the so-
lution x(t,z) of (26) is a stationary process (statio-

Napy st tonl s £ and only if

u(A)=fp(O,x,t,A)u(dx) Eor a1t 0 and heB (B

(1L (A) =P {zeA} )
A probability measure p on B(R") which has the above
property 1's said to be an invariant probability measure
of the system (26).

We consider only invariant probability measures
which have second méments. :

Let L:H > H be the linear operator defined by

m
L (H)=AH + HA*+ ) B, HB%
j-’-‘j—l 3 J

From Lemma 3 it follows that the operator L is stable

Lt:O)

(i.e. lim e 1fandionly if the zero solution of

B>
(27) is exponentially stable in mean square.

n ; : :
For every a¢R we consider the Liapuriov equation

(29) L(H)=-0(a)

where Q(a)=
]
Denote

Ne—g

(h.+B.a) (h*¥+a*B%)
i 3 J J J

g

M- (ti=] o = (0 (a)ds

It is obvious that if L is stable then the egquation (29)
has a unique positive semidefinite solution H, namely

H=f§eLt(Q(a))dt.



A
A\

It is easy to verify that a symmetric matrix H verifies
(29) if and only if : : :
Lt B1SS -
el Bt e Bl ae - ies 1 o

Thus, the next corollary follows directly from Lemmas
Isand 2, | :

Carollary 2

(1) If the equation (29) has a positive semidefi-

nite solution H(a) and if there exists tO>O such: that

Ma(to)>0 then the operator L is stable and H(a)>0}

H(a)=["e" (0(a))at .

()= of the equation (29) has a unigue positive

defiq}te solution then I 1= stable and there exists
£ ol)g
O -

s

IcH - hat M e
e 876

AsBertion (i) was proved, in a different way, by
Kleinman [4]. :

Using the same reasoning as in the proof of results
concerning periodic solutions we can conclude that the

following propositions hold

Eroposition 6

The system (28) has an invariant prebability mea-
sure if and only if there exist btRh, Hz20 suchithat
AB+£=0, AH+HA*=-Fp# :

If b and H>0 (H>0) are the solutions of the above

A i ey

equations then there exists a Gaussian (nondegenerate .

Gaussian) invariant probability measure: of SyiStem (28}

Rropocsition

The system (28) admits a unique nondegenerate




Gaussian invariant probability measure if and only if

max ReA (A)<0 and S(An ) is completely controllable.

Proposition 8

Ifi the sero solukion of (J47) 15 exponentially 'sta-

ble in mean square then there exists a unique invariant

probability measure Mo of system (26); % has the pro-

perties:

[xu @x)=a_ , [(x-a ) (x-a_)*u, (@x)=[2e"" (a(a ) dt,

=)l
where aoz—A B

P ]

Proposition 9

1f the system (26) has an invariant probability

measure i, WaElh Ehe property that there exists ty

that Ma (tl)>0 (a1=fxul(dx)) tilen thic wero selution ©f
1
-1

(27) .15 esoonientially stable dnamean square and a;=-hA £y

>0 ;uch

feea ila=a ) sl (dx) =f;eLt (Q(a;))dt

In the case f=0 Proposition 6 was proved by Zakai
and Snyders [5]. Necessary and sufficient conditions
for the existence of a unique nondegeherate Gaussian
invariant probability measure of the system of the
following type

‘m r

dx=RAxdt+ ) ‘B.xdw: (t)+ ) Idv sty

were given by Brockett [6].
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