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1. Id (/3475 /) @e introduced and studied the ncrﬁad
glm@st 1@&@@? space (nals), a concept which generalizes the
concept of the normed linear space . Roughly speaking such
& space satisfies some of the axioms of a 1inéar space but
the number of the axioms of the norm is increased . To suppork
the idea that this conoe@t is a good one, we introduced the
*dual® space of a nals X which is a2also a nals. Here the
functionals are no lohger linear, but "almost linear® ,.and
when X is 2 normed linear space then the dual space defined
by us is the usual dual space of X . A typical example of a
nals is the-ﬁ@tvxlof all ﬁonempty, bounded, convex (and closed)
subsets A of a normed linear space E , for the a2ddition
Al + A2 = { By +8, alé Al > agé.ﬂz} (for the additian'é

defined by Ay s Ay = cl(Al'+ A,)), the element zero of X the

2 {,‘

) , : : } I
j» the multiplication by scalars AA =4 Aa:aca |

{5

ged

€

s

L

and the norm AN = sup, ., lal {see /3/,/4/ for other examples).
The aim of this paper is te'sa?ply.whaﬁ we consider to

be the main tool for the theary‘of nals . Namely in Theorem 3.2

we show that any nals can be "embedded" in & normed linear

space . Though the embedding mapping is not cne~to-one, it has

enough properties which permit us to use normed linear spaces

techniques to study certain problems in a nals . As a consequence,

Wwe can now answer all the questions raised in /4/, among which
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the main one, whether the dual space of a nals can be'§_0:§,
the answer being in the negative. Here we note that the
algebraic éual of an almost linear space can be %ﬂo;%(see
examples in /4/). We also mention two comsequences of

Theorem 3.2 . The first (Corollary 3.3) shows that the last
axiom of the morm in /3/ and /5/ is superfluous and the
‘second (GQlelary 3.4) states that on any nels there exists

a semi¥metric with good properties. (As we remarked in
(/3/5/8/) the function ”?(x,y) :i\x—yn Joxye X s ﬁever a
semi-metric on the nals X, when ¥ is not a normed linear
space). Taking into account Corollary 3.4, Theorem 3.2 (except
for iv)) can be also regarded as a generalization of Theorem 1
in /7/. Pinglly, ‘we recall that embedding theorems for certain
subclasses of the sﬁace of bounded, closed and convex sets |
of a normed linear space, endowed with‘the Hausdorff metric
were given in /7/ (see :/6/ /8/ end the bibliography cited
there for generalizations and applications).

All spaces involved in this-paper are over the real field R.

2. Besides notation, in this section we recall the
definitions of a nals and its dual space (/3/,/4/), as well
as some known results used in the next section. .

We denmote by R the set ((Hypeeesoy)t K20, 1212 n { .
and for n=l we write the corresponding set by B+ .

An almost linear space (als) is a set X together with

two mappings s:&x X — X and mRxX—> X satisfying
(Ll)a(LB) below. We dencte_s(x,y) by x+y (or x+y) and m( A ,x)
by Nx (er Nax ). et x,yy2 ¢X and ),r (08 (Ll) x+(y+z) =
= (x+y)+2 3 (L2) X+y = y+X 3 (L3) There exists an element

0 ¢ X such that x+0 = x for each x€¢X ;3 (L4) 15 =% 3

W ?
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Lg) Alxey) =dxe Ay 5 (L) Alpx) = (Ap)x g
25 5 \ . \ f \ .‘ -~ - "
(haj (f\+ﬁ{}x = AX+px for Aywe R+ o We denote -lx by =-x,
and x-y means x+(~y). For an als X we introduce the following
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G s y :
Wy = 3 xeX o x=-x 7

'VX and ﬁx are almost linear subspaces of X (i.e., closed under
addition and multiplication by scalars), and by (Ll)«(LB},

VX is a linear space. Clearly an als X is a linear space iff
’ 7 :

= Vy y iff Wp =305

A norm on the als X is a functional H-H:X —7R

X

satisfying (N, )=(N,) below. Let x,vy&X, weW., and A c R .
S0 1 4 d § y

X

(M) nxeyn Lhixu +nyn 5 (N) Nxl< jixewi 3 (Wy) nixii =0
iff x=0 3 (N,) pixi = [Nlnxp . By (N)-(N,) it follows
=0 i xeXe An alg I hosetiber widn o lisiic ¥ >R

satisfying Wj)u(Nﬂ) is called & normed almost linear space

(nals). For a nals X we dencte by BX and SX the sets

% xe Xzt < 1§ and %;Xé Xilxi = lf respectively.

nNo
@
%.,.J
=
o

REMARK. In (/3/-/5/) we used instead of (N, ) and

(Nz) the only axiom (Nl') B xZ=yil £} x=2ll + | 2=yl 5, X,¥,2 € X.

It is easy to show that conditions (N, )=(N,) are eguivalent
y‘ :'L : 4‘

with (Nl,),(w3) ag@ (ﬂ@) .

In the next section we need some results of /4/ which

we collect them in a lemma .

2.2, LEMMA. Let X be. a nals and x,y,z eX

,‘

=b
et
oy
A}
=
5




v, € Vy , i=1,2. We have :
(1) If =iy = x+2 then liylf =iz,

(ii) If wy+vy = Wp+v, fhen wy=w, and vy=v, .

Let ¥ be an als . & functional f£:X — R 1s called

an almost linear functiopnal if f is additive, positively :
homogeneous and f(w) > 0 for each wezWX . Let X” be the set
of all almost linear functionals on X . Define the addition
in x* by (fl+f2)(x) = fl(x)+f2(i), x € X and the multipli-
cation by scalars, denoted Aof, by (Nef)(x)=F( ) x), x¢€X.
The.element OéIX# is the functional which is O at each

1

xe¢X . Then X" is an als . When X is. a nals, for fe X'

define WL

i

sup 5 [2(x)l 2 xe B} and Tt X* = {fe x¥s iipu< oo,

Then X~ is a nals (/3/), called the dual space of“the nell s,
Following /8/, we say that a commutative semigroupls

with zero 0 (i.e., satisfying (Ll)n(L3)) is an abstract

. % ; b \ \ \
convex cone if there is also given a mapping ( A ,8) —> As

of - R, x S into S such that (Ld)g(Lﬁ)u(LS) hold for x,yeS

and ),y;e R+ ¢« 5 satisfies the law of canceilation if the

relatlons slgsz,SBG S, sl+32:sl+s3 1pply that 52:53 o Clearly,
an abstract convex cone S satisfying the law of cancellation
can be organized as an als X = WX s defining in addition the

- multiplication by negative reals A by ks z%kis y SE€8.

The next result can be found in /7/ (see also /8/).

2.3. PROPOSITION. Let S be an abstract convex cone

satisfyving the law of cancellation. Then there exist a linear

gspace I and a one-to-one additive and positively homogeneous

mapping h:S~>L such that L = h(S) - h(S).
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In what follows, a cone in a linear space L is always

with vertex at 0¢L and it can contain lines.

Now let E be a normed

linear space. Ror x & B we denote
i ¥

by w(x,y) the one sided Gateaux differentisl of the norm

at x in the dirvection v, i.e.y

m,'+ e

1(§£x+ﬁyﬁ - Hxil )

3. Let X and Y be two almost linear spaces., A mapping
p ‘ ppang

T¢eX —>Y is ﬂailed a linear

operator if T(“Kl 1t %QAE)

(o 5 ¢ & ok m 2 £ -
<1L(Al) “ <2L(x2) for al

3.1. REMARKS., (i) 2(0)

By iy Worthaer) (-af

) =

spaces and in addition || T(x

§<

have : (iv) The restriction

(v) The singleton ”ml(v) bel
= e MmNy = Lo

From now on ws denote

in an als X by Vox carg Wi

the notation Ax and =x b

Conseouently for the elements

< G e a )
we ' Can uge Gl g inssead ol

The main result of this

1 n\i (" R Cind. y 4&, j_::lyge

it

05 (ii) T(Vy) € ¥y ;
X and Y are normed almost linear
)l =1ixi for each x e X then we
Tin§VX-€>VY i's one~to-one g

ongs to Vy for each vw;VYt”\T(X),

the multiplication By scalars

ok is never replaced by -x ,
eing used only in a linear space.
veV, (which is a linear space)
—lov .,

paper is the following :



3.2. THEOREM. PFor any nals (X, !l ill ) there exist a

normed linear space (E,ll‘/l) and a mapping T:X — E with

the following properties:

i) The set T(X) is a convex cone of E such that

e e A

E = T(X) -~ T(X) , and T(X) can be organized as an als where

the addition and the multiplication by non-negative scalars

. are the same as in E.

ii) PFor each z ¢E we have !
L) izl = inf~gnixlul+(nxgm P XX, €X, z o= T(Xl)”T(Xg),z

and the als T(X) together with this neorm is a nals.

354 ) The mappine T from X eonto the nales T(X) is a linear

operator and || T(x)ll = jii xif for each x € X.

iv) For the dual space ¥  the following formula hold ;

i) Boe= W ET i fes.ox, Tl

X E* rx) 20 S

Proof. Define an equivalent relation ~ on X in the
following way ¢ xr~vy if there exists an element u ¢ X such that
X+u = y+u . 1t is straightforward to show (using Lemma 2,2 (i)

Vi

for (3.5) below) that if x ~ y then the following hold @

E3 30 X+Xq N Yy, 1 Xy ¥y
(3.;4) ,\er\;,\ay for A €R
(3.5 WX = Oyl

4
(3.6) f(x) = f(y) for each fe X"

it

Let X* = X/~ and let T, be the canonical mapping of X



mﬁaXT,i&cyﬁﬁx)mx:x:§yéxiyfVX§¢UMﬁg(L}%{LS)
it is easy to show that X® is a nals if the addition and the
multiplication by scalars are gefined by x° i'y“ = (Hiy)?
xEx*, yey® and Jex®=()ox)* , xex’ respectively, the
zero element of X* is 0% and W x™u = Hx iy s mow o Nhern
T1:Ximwﬁxf ig a linear operator from X onﬁo X* and ﬁ}Tl(x)m 2
= il xul for each % € X |

Now X" is also an abstract convex cone for the addition
and the multiplication by non-negative real scalars as in X°
satisfying the law of cancellation. By_Prcpasition 2.3 there
exist a 1ine&f space L and a one~to-one additive and positively
homogeneous mapping T, X* — L such that L = = T, (X )=1 (T“) .
Clearly TQ(I“) ig a nals if we define the addition and the

multiplication by non-negative real scalars as in L, while
> e \ ’

i

o o 2 \ > \ i
for X < O we define /\QT@(X“} = Tp(;ﬁux“) s and also
o v i

Htmg(x“)ﬂé = i x"}jj » Then T, iX" wwﬁwg(x“) ig 8 linear

@
E8
H
N
i
4
hy
A.Q‘
H
4
#4
PO
»

¢ A A S &) ¢ ] : & - vvlu
vl = Eg(xl ) QE(XQ ),Ki el

Then s is a semi-norm on L-and for x%¢X” we have bizg{x*}) =
=iz 1 -~ Let E = 1/lter & and let TS be the canonical

of I onto E. Then E =T. ‘2(£ )T TQCK ) and
T,(X")) can be organized as an als for_the addition as
in E and the multiplication by scalars defined for x”" ¢X*
(x*)) = T3€}«6T2(x“}) . Clearly for

A 2 0 this is well defined and we must show that if

.S ~ ~y Pt el SR o ot S S « 2
oV e 1" are sueh thed ﬁxil?(a 3 ) e (m (y2)): then
. 3

b



(3.7) T3(=1eT,(x%)) = T(-1oT,(y7))

From our assumption we get that S(Tg(x“)sz(y“)) = 0 ‘and
so for each & > 0 there exist X475y, " € X* such that

V$2(x“)mT2(y“) = Tz(xlﬁ)sz(yl“)) and Hlxl“ni+ H\yl“ny<:g 3

. Then

-] O Tz(xn )““’(“"1‘3 Tg(y“ )) = “‘“lOT?_(Xl“)""(""10'}?2(3’"1“ ))

and so

s(wlﬂTg(z“)»(»IOTz(y“)) £ il mlez(xl“)H%+iH~10T2(yi“)Hi =

i

L2 "4+ Wiy ®

whence s(alnTz(x“)m(~leT2(y“)) =40, d.0u, we ﬁave (BeT)is
Note that T3$T2(X“)~w% T3(T2(X“)) is a linear operator.

For 2ZeB, 2 = T3(1)A, 1l€L , define |} 21 = s8(1) ,
which does nof depend on the representative 1e¢'L. The normed
linear space (E, lW-i ) énd the mepping T:X —>E defined by
T = 1,71, satisfy all the conditions required in (1)=(iidi) .
For the proof of (iv) we need the facts (I)~(IV) below,
(1) If "T(x) = Tly) v Sy ek, then fix) = f(&) for

each f e Segx o Indeed, if T{x) = T(y) then
5(Ty (1 (x))-0y(2, (1)) = 0
and so for each ¢ > 0 there exist xl,gi_éﬁisuch that

To( ()-T5( (9)) = T,(1 (3 ))=2,(2, (7))

XUl + ity 1l < ¢
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Since T, is linear and ome~%to-one it follows that Tl(x+y1} =
= ”.1"1{;;!~z~::~;:1} v B (}:4—:;?1} f"\f’(;-j;-wzl} » whence by (3.6) ,
flxty,) = £{y+x,) « Then | £(x)-fly)[ (f(ﬁl)mi(vl,f £
< Xl + iy < € o .

(I1) Wehave S.«= {f0irfe m<?\w} . Indeed, let
£, Sy and define the functional f on T(X) by £(%(x)) =
= foix) : x€X o By (I) this is well defined and by Remark 3

féwm,vD 2 0 . Hence by (iii) we have fe T(X)F and U fli=
=lf M =1, Conversely, let feESm:Y)» éﬁﬁ deﬁime the
functional £, on X by £, (x) = £(1{x)), x¢ X. By Remark 3.1
Eimi )y 16 Followe thad T e Six :
fEhry e f,€8nyyx and £€B” is such that £1T(X) =
then fe S.x . Indeed, let z¢ E, izt <1, By (3.1) there exis

A

Tevoe L su&h-?hat g = Mx)=T{y)  and Wxu +lyl < 1 . Then

MW o= L (2(x))-£ (2(3)) ] <
(IV) We bave Spopyx = g TR s Fe g s B0

N’ f"'\

|£(2)] = | £(2(x))-£(2(y

o

N
u
i.
<

Indeed, let fOzEST(V ~ 8nd let ze E. . Since z = T{x)-T(y)

for some ¥,ye X, define f(z) = : ”Ff{j:) }w {T(y)); which
; : #*
does not depend on the choice of x,y¢X. Then f e and

by (III), £¢S.,x « We have £I17(X) = £ and so £l T( ¢ = 0.

Now (3.2) is an immediate consequence of (II) and (I,
which completes the proof of Theorem 3.2.

If (X, hi<Ml) is a nals then (nx,xn«n( ) is a normed
linear space and so the weakAcanvergence§ denoted by —> ,
can be defined in VK . The next rgsult is an immediate

consequence of Theorem 3.2 and Remark 3.1, being the last

axiom of the norm in (/3/,/5/).

3¢3+ COROLLARY. Let (X,lli<ill) be & nals . If (v

stmrn e




a net in Vo 4, v M$=ve5VX then for each x ¢ X we have that

X
W x=viit £ lim inf i x-v_ il .

3.4. COROLLARY. For any nals (X,li-/l) there exists

8 semi-metric o on X with the following properties &

G37) Lz =yt | £ elx,y) , - x,7eX
(3.8) e(xyv) = il x=vill ‘ - xeX, veVy
(3.9) p(x+z,y+2) = ©(x,5), X3¥,2€X

(3.10) Plhox, Aoy) = DR, )y X,y al, »oeR

(310 ) limk_»>% f()ox,x)ij(XﬁXﬁUsixéxy /&éﬁ+\‘£0j

Proof. Let (E,li-it) and T:X —>E be as in Theorem 3.2.

Define for x,yeX

(3412) §(x,y) = |l T(x)-T(y)!

Ihen p 318 @ semi-metric on X and all the above proﬁerties
are obvious except for (3.10) when A < 0. To show this it
is enough the following inequality holds

Rl ) f(x,5) = ¢(~lex,-loy), X,yeX

For € >0 let xi,ylé X such that

T(-lox)-T(-loy} = T(xy)-T(y;)

xqul + iyt £ §=lex,~loy) + &

Then T(wloX+yl) = T(mlox1+y) ang agiin the proof of (3.9 ,

this implies that T(-ley,+x) = T(wlnxl+y). Hence T(x)-T(y) =



e

e

= T(«la“.)«T(wlay]) and so

o

PAzey) = I T{-Loxy )=0(~Deyy ) g i xqith + 0yl <

D

oy

'("”_L‘ ";"‘*‘l(y} o {— 5

L

whence (3.13) follows.

3.5, REMARK, Te 3/ /5) we bewe wicaiiiiod b

notion of a strong normed almost linear space (snals wnich
s S &

is a nals X together with a semi-metric ¢ on X satisfying
: i s

§

conditions (3.9) with = replaced by =« , (3.11) only

for ’xo =1y (3.7) and (3.14) below.

(atd) - y x;¥7) £ Il =+(=2ey)lli , %,y¢ X

)

The semi-metric defined by (3.12) does not always satisf
{3.14) as simple examples show. In a snals X condition (3.8)

i 1 - .‘.;,/ Y 3 Lol SR S W A R, AR
also holds (/3/) and if we replace in the de:

4
»

£

fotn

>

i3]
s
a3
i}
U
T
(T%)
pet
EE
e
g
—~
LA
<o
S
ti.
oy
@

‘n all results given for a snals

in /3/~/5/ are true with the same ‘proofs.Moreover, it is
nob.difficult to show that if (X, § is a snals such that 
§q is a metric on X then ¢ defined by (Eslé)'is also a
metric on X. Taking all this into account, By Corollary 3.5

we can always replace enals by nals in /3/-/5/.

3.6. REMARK. Let (B, -1 ) be a normed linear space
and X < E an als such that the addition and the multipli-

<}

cation by non-negative reals are as in E . Then (X, li- i)

L4
&
-
.

i iff the following two conditions hold : (i)l =lexli =

selbxibg oxe Xog () T logm) 50 awe B €l . The proof



is obvious using (N,) and the well known fact (/2/) that

the function ¥ (4) = t“l(i\x+tYR ~ x# ) is non-decreasing.

The next conseguence of Theorem 3.2 is a generalization

of -a corollary of Hahn-Banach Theorem.

3.7. COROLLARY. Let (X, ii-ill) be a nals: For each
x €& X there exists fe€ 8.~ such that f(x) = lixu.
Proof. Tet (E,i-i ), T:X —>E and the nals (P(X),l 1)

be given by Theorem 3.2, and let Y = T(X) . By Theorem 3.2
the corellary is proved if we show that for each ye{SY
there exists an fe Ay(y) such that leY > 0. Suppose that
for each féEAE(y) there is w, ¢ Wy, with f(wf)-4 0 . Since
AE(y) is a w'-compact subset of E%”, there exists a finité
number of elements, say, wlyooggwn_EQY , with the property
that for each féAAE(y) there exists w, , 1 £ 1 < n, with

w20 Hen B Tl (v R™ be defined by
) = (f(wl),o..@gf(wn))
Then W (A (y)) is a compact and convex subset of R" and
E |
%/(AE(y))(W R? = ¢ . By the strict separation theorem

there exists @)é (REY", say, @ = (Cvl,.g..,:Kn) such that

(3.15) sup @(AE(y)) < ant ﬁb(Rf) ;o

i

i ! ' n
Since «(; > 0, 1 £ i < n, the element w 551:1 oG W,
belongs to W, and by (2.1) and (3.15) we zet Tily,w) =0,

contradicting Remark 3.6.
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We observed in /4/ that in contrast with the case of
a normed linear space, when Y is an almost linear subspace
of a nals X and Yey' @Fcﬁ it is possible that for no
fed have f|Y = ., On the other hand the almost
linear subspace WX of X has the property that for each
e{wx}* there exists f£¢ X° with £} |#y =¥ and
=il (/4/) and we raised the question whether Vo
has the same property . The affirmative anﬁwér is given

in the next result ihere we show that the extension F

can be chogen in VX wdwee, T 18 linear on T

3.8, COROLLARY. If (X,li-ill) is a nals and ¥e (V)" ,

there exists f€V,x such that fiVK =Y and WEM=W¥I _
£ b SR S X SpnEEE

Proof. Let (E,li+il) and T:X —>E be given by
fheorem 3.2 and let ¥ = W1} . Then (¥, 0 Y 40 a vals
and by Remark 3.1 and Theorem 3.2 it is enough to show that
for each ¥ ¢ {vY}“, there exists feVy¢ such that f[Vy, = ¥

and Hidl = dl Yl Let E, be the linear subspace of E defined by

For zek® , Zx(w1+§l}~(*2 v?)g w, ¢ “Y s Vi EVy ’ i1 2. define
£1(2) = ¥ (vy-v,) . By Lemma 2.2 (ii), £ £, is well defined .
Clearl BT £ AV oy W, = 0 and we have

early f, . fLIKY ¢y Tl Wy = 0 and we have
‘fl(z)i & W VeV, o We claim that V=V £ 121 .
Indeed, for : > 0 let xz,xg X and v. = T(x bl 0 auch

0

that 2 = Yy 7Y and §§y1ﬁ + 4 Vol £l 2l 2550 Then

Yy #WotVy = Yo+Wy +Vy  and 8o ylé(“lay

< ion



(=4=

+wl+(v1~v2) . Let ua zet

e yl+(m1uy2)

<
i3

W= y5+(mluy2) + Wy (eEWY)
Vo= VgV, (é;VY)«

Then y+w, = wtv and so ~Llo y+w, = w-y , whence
y+(;1uy)+2wé = 2W = 2y+2W,~2V

from which we get y = w'+v, where w'z(y+(~1oy))/2<5WY .

Hence using (Ng), we get | Vg Vgl HVH5|1y¢péxkyln + Uyl <

= s H &eﬁo

<tz + & and the claim is proved. Consequently 3%fl

Let fo be a norm-preserving extension of f, to E. Then

I

f‘\VY =Y and £ =€l .,

f =t W .,

Theorem 3.2 suggest the following question. Given a

O]
P
Jomened
S
"8

normed linear spac; <l ), determine those convex cones

X CcE satisfying the following three conditions;

(1) X can bé organized as an als such that the addition and
the multiplication by non-negative reals are as in E.

2 '(thfll) is anals .

(3) B = X-X ;

A partiel answer to this question is given in the'next result
where we obtain normed almost linear spaces X with the
property that X = Wy e

3.9. PROPOSITION. ULet (E,il-il ) be a normed linear space

and x € S, . There exists a (maximal) convex cone X CE
2liie 5 4

satisfyving (1)-(3) above, and such that x¢X and X = WX ?




vy

g ey

=158

oo

)
Proof. Let ¥ =& ye B y=lu, weBlea/l), fer ¢ .

Then Y is a convex cone of E such that E = Y-Y « Clearl
: ¥y

il ey Po T e P A T o s RAS i o 3 G
Y is an als if we define the 2ddition as in E and the

1

multiplication by scalars by Jey = [ily, VYel, veR ,
Then Y = @y and we -show that (Y, i-4) dis a mals . By
it is enough to show that"t(yl,yg).z O Vi € Sy s

=1 2, 3unpoge ¥ = e ,kij> 0, z; ¢ BE(XEI/B), i=l 2
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and so
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£ ¢ = §i s o S b { PR i Ry L SR LR
L(&B) 2 | Z4 1l 3 Rl m 241l 3 > 3 3

Then by (2.1) we get ’t(yigye}.g f(y,) = }2f(zg) =0,

[
Let 3 Tbe the set of all convex cones Y < B

Nt

satisfying (1)-(3) and such that xeY, Y = e v . e
partially ordered set, ordered bj get-inclusion. If (Y_K )

is a fotally ordered family of ?fx s then X e QTX .
By Zorn's Lemﬁa there exists a maximal element X ¢ i?x o

We conclude this paper with the observation that
the proofs of some results of (/3/-/5/ can be simplified

using Theorem 3.2,
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