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kel

71m r\(\ u AT A TY A YT
VARIETIE T CHARML
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1. Introduction
Iet K be an algebraically closed field of chareag LCLiLtKU
zera and V a K-variety (by this we mean en irreducible reduced
quasi-projective scheme over K.. A subfield X4 of K will be

called a. field of definition for V if there exists a Ll“Vu?13%K(
V, such that V ie K-isomorphic to V;®, Ke:The aim of this baper
- b
: ¥ \
is to show how cne cen compute fields of definition for V with

Q

the help of derivations on the function field EEV) of. V.

g

For any set A of derivations on K{V) define

'”Aﬁquk fort-all

(2

i1

.
D

R 3
Clcardy ¥= is an algebrai °“11y closed subfield of XK. 4n

jmportont. role will be played by the set A(V) of all derivations

~.

( = . : D 0 ~
& on' K(V) which are integral on V in the sense that S0 k”“
o 3 i \1]
%

P
l

for all pe¥ (here Gy denotes the local ring -of V- gk p)m Incee

our nmain result is:

.

Theorem 1. Suppose V is smooth and projective over K. The

SAETY . o ,
K ) is a field of definition for V and any other algebralcally

g OOV

o

closed fi€d of definition for V wust contain
An inpmediate ,n“equeuce of Lheo“om l'is the following

‘criterion, Suppose k is an algebra al!v closed ‘subfield of K,

V & smooth projective K-variety and zgd}d a transcendenCQ basis

. .

of K/k; then k is a field of definition for ¥ if and only if the

derivations 9/9t K—>K 1ift to derivations gx;K(V)mwax(V) whie

are integral on V.



Theorem 3 will be proved i Section'B. ' ey
In Section 4 we shall discuss the possibility of extending
hecrem 1 to singular and to open varieties. wé,wouldﬁlikevto«nOW
te that In the case of open varieties the right substitute for
DV) will be the set AV, logltefiall “"logarithmic® (in tead of -
“integral”?,derivations.(sea Sccticn 4 for precise definitions
ahd results),
biai! disu&ss the preblem”cf finding the

In Section 5 we shs

jo

1]

mallest algebraically closed "field of definition" for a conplete

et

cal ring (again we send to Section 5 for definitions and results’
The main motivation for our work concerns algebraic diffe-.

rential equations without movable singularities (cf. D‘ D])

5
* d
r.A.

recisely Theorem 1 may be taken a&s a starting point for a geneyra-

)

lisation of the “one variable theory" from 8] to the case of se-

veral variables (see

o

i] for the casgse of two variables), We shall
achieve this proﬁram in a separate paper [2].

Our proof of Theorem 1 is:not purely algebro-geometric.it
will involve a "reduction to the comples féeid @ ", Then the maiﬁ
step tovards Theorem 1 will be the following result which has an

5

interest in itself and which.will be proved in Section 2:

Theorem 2. Let f:X—>S be a spooth projective morphism of

smooth (- varieties . Then there

Pt

& a diegram with cartesian sqgua-
?

res:

! »
X< ek R > X"
f ; A S
. 4
o ik S g

such” that ﬂ is a. surjective map of (C- varleties, S" is smooth,
/
« 1s an etale covering of a Zariski open set of S, f" is a smooth

projective morphism and for any t¢S" the. Kodaira-Spencer map



5 furn i
‘P t @ ‘.F_te) e 1’.\ 5.0 v ¢ T {“ {C.) ¥
{: -
: X : o
is injéctive (where T, S"=tangent space of 8" at t, Xi=(£") ~(t}),
L=

B s okangent. bundle. ef X).,
lt/ 5 ; [ %

ke to note that Theorem 2 was proved in [131f

L

We. would 1
p.574 under a very restrictive assumption on-the local Torelll

map -of £ .at the generic point of S

2. Proof of Theorew 2

In this section we prove Theorem 2. Points of (-varieties

will alwavs mean closed points. Choose an invertible sheaf &£ on |

X which is ample relakivesto £ put<¥%=éf

T

|
{2

}téPic(X+)/Pic (%.) be the class of ¢f. modulo numerical equiva- .

& Y

lencez.

A 5s s zQ (:.' \ ~ [ [ ?
Re {,9)65 87 (X, A x(Rga0g)]

is constructible in S S ‘(note that if no Xt was ruled- then R
i
would be Zariski closed in S»¢g; this follows from [9]).

An argument for this: goes«as;follows. Let pi:Z:S><S"”>S,
i=1,2, be the canonical projections and let Yi—wﬁz be obtained
" from X—> S by base change with .p,. Let U be the Z-scheme repre-

senting the functor Z'’-—> Isom,,;(¥Y:3><,27, Y, > z')IX]- recall

_ RR Pi0dpes THESY)
that U is a countable diéjoint union of Z-schemes Un of f£inite
type. Let¢%l be the pull-back of < on V=Y >,

‘the universal isomorphism. Clearly the sets

T_ﬂw (0 v (o™ 1 1

Y=dwelU. s ‘ -
Ul_l""g}"‘iaun’ ((3. 0‘7"2.'“:'”&‘(/1 )u....o j

(Xt=fml(t)) and let

,U and let F:Vy-»V, b

U_. (here "z" denotes the numerical ecquivalence) and

|

\
|



oA

we have ReIm(U’~»2) where U’ is the unlon of all Ul Zor n3y, So,

by Ch@VdTWgy’ constructibility thgorem, we shall be done 1if we .

pProve thaﬁ Ug are empty for all except a finite numbor efn’

A

Now fior'any ugl’® let z(u)=(t(u), s{u)) denote the image of u. aundexr

e . :

—d 7 ~ it gl Sl \{ : < e s he ¥ z P o C 1 191
U-2% anéd let fuaa‘t(uymbxs(u} be  the gre aph of the corresponding
isomorphism which we denote also by u:X, m— X + Consider on

- : t(u) s (u)

: a4 1
> TR L P e SEY g Y E (P Pl SRR - 2 e &

Yl>azY2 the shieaf qy@yqzﬁ(qibyi > ¥ being the canonical projec-:

tions); this sheaf is ample relative to Z and denote by dr,(l)

u
its rertriction to [T . Now if 1x > uiX iy : X
: 3 u e Eda) r11 tiu)X s (u) o
the graph map then: S P :
® ) : € (ot 21 .-
1< ¢ (m))= S 4 Va & £
( ay r (m) )= ﬂ.;u)C (G{/S<u)’:§"wﬁ(u>

u

Hence the Hilbert polynomial hrvlﬁ Cﬁ (m)) equals to a polyno-
mial m-» (X o u»)f 7) which does not oupend on-u, .This implies

that Uﬁ L5 empty fop sufficiently biginess .l ' - ‘

\ : o
' Claim 2. Replacing S by a Zariski open subset of it we
may supposge there exists a morphicm % S—>M dnto a (=~ variety M

guch that for any s&¢S we have

This can be done Dby ¢ tunda rd manipulation .cf Chow wvarieties
(see @J] p.406 for similar argumeﬂts).Thé idea is the embed S
as a locally closed subset of a projective space P,and.tojtake

the "Furickt closUze R0 R 1 B8 by Claim 1, for sachirredu—

rl

cible comyponent ﬁj of 'R the projection R, —-—>8 will give a fami-

't

gt

—— S
Bt

ly-of oyeies ©f codimension ng and dedgree dj in g)(mj,dj being

some integeres). and hence a rational map from S to the correspon-
ding Chow variety C dj) Using constructibility of R one can

: . R L S S e ) el ]
make an elementary anolysig showing that, aftey shrinking S in



e S = TIC (me, Al )
J‘“‘f
has the.property regquired in Claim 2.

1

¢ » - ~ 2 11 ¥ S b -
Claim 3. Replacing 38 by an etale open .set of 1t one can

find & morphisn /Z:S >N onto a variety N such that‘? hagses sec—

tion and such.thatifor nnv teS the se

is a union of at most countably many fibres of s
Indeed, since ‘the set of classes of numerically equivalent

“diviseors on ‘@ fixed- varieky Is countable,‘st ig e undon ofrat

most countably many f£ibres of the map <P from Claim 2. Now we
5 H
are done by replacing M by en tale open Set el (S ) andiirepla~.
cing 8 by 8> N,
Claim 4, We may suppose in Claim 3 that in .addition. there
exists a smooth projective morphism g:¥—>N such that X is &~lso-

morphic to ¥><,5; in particular we shall have that for any uelN

the set
N, = ivGN; Y Y, J

is. at nozt countable.

—J
-

: : e ‘ iz
The argunent in this step is similar to the one in  }13
C P .

.576. Take T:N~—>T < S a section of S~ N, put X, =Xx .T,
Paa , p

:11' S

f><TN, X =Xy > S Then for any te¢S, the fibres of.X.-~—»S5.and

X

Xl. nxr
il
-y

(! S-above t are isomorphic; this means that the S-schene

o ) P s s AT oaen T 1 N



Sl IsOmg, (N> 57, Xfoc 5]
w2

S

2 .

‘maps onto S. By Baire’s theorem there 1s at least a finite type

piece U, of U dominating 8. Now we are done by replacing S by
- : s 1 o : : /1
gome xoaaixv clozed lrreducible subscheme of Vs which is etale
over S.
Claim 5, FPor any t in a Zariskl open set of N (notations

being as in 'Claim 4) the Kodaira~Spencer map associated to
g 5 e L
g:¥Y—=2N at t is Injective (this will of course close the proof -

of Theorem 2 {).

1.

Indced if the morphism‘p:T ~€>R’ﬂ (T ) is injective

/¢ Y/N
at the generic point of N we are done., If not, we may choose,
after shrinking N in the Zariski topology, a line bundle L con-

tained in Rer(p),By Frobenius there is & germ of analvitic curve

C whose analytic tangent'bundlé T equals to the restriction-of
¥ Tito oL By f?} he family Y><NC‘~>C must be. anuly*ically
) i . .

ldcally trivial ,ccontracting €laim 4 whichAstates that Nu.is at

most countable for ueN,.

3. Brooficof Theorem d

The fact that any algebraically closed field of definition

K f o~ S A A e (\’7) 2 e .
1 *or V contsins is qui

r“o

te easy and general (it does not

v

require. smoothness or projectivity of V). Indeed it will be suf-

ficient to prove.that any Ky~derivation ¢ on K must vanish on

I(A“”. Baksdf VeVv:®
: it Kl

K (Vl being some Klwvariety) we see that {
@xténdé +to a derivation S:K(V)~f>K(V)_defined by

g()@y)w}wxﬁy for allek (Vl)’“:K

A(V)

Now g is integral on V, hence will vanish on K and we are do-

ne. So in the remainder of this section we concentrate ourselves



’ B : SRS pry o AL : i
on proving. that kAW 15 4 £ield of definttion-for V., This is of
course equivalent to proving that'KA is a field of definition for

V whenever A is a subset.of AlV).
£ 2.1 r/l”. ‘
~We assume first that K is uncountable. Consequently K
will contain a subfield k which:dis isomorphic to'd:, One can easi-~

1

s
O

truct a gsmooth projective morphism of k~-varieties f:X——8.
such that the function field k(S).cf S is contained in'Ram§V&Xxf%ﬂ(
Apply Theorem 2 to f and put K'=k(S’), K"=k(S"}. Since R* ds 8

finite extension of k(S), there is. an CWueﬂdlng K’ ~m>h exte nlinq

the inclusion k{S)—K. Put V"=X". Spec(K").. We have a field exten=
Sﬂ i

sion K"-» KK and V is K-isomorphic to V"@k"K so we shall be
SO\ : : :
done if we prove that X7 -contains K", Now there is standard exact

seguence [?] 0, 20.5.7:

() : 0 31 ﬁ}\/kvﬂ =2 0

’.. V/ I< i ¢ I 209 e

where ¥ :V—-Spec(K) is the canonical structure morphism, A simi~:

~

lar sequence exists for V"—s Spec(K"). These sequences plus the

injectivity of the Kodaira~Spencer maps associated to-f" at the

.

~points of S" yeld a diagram with exact rows and colomns:

.

Oy, T : ) 1
HO(V,T v/K)

f_K/k = —> H7(V,T

.
O SR TKn/,{:(g) K o (V i 1\,(,‘;@ K)

% 1t l,u

(where for any scheme W over a field L we denote by T ‘the

W/L-

;o / s = L P
a3 F IOy e I~ S \ & $e0 s : 2 . £
sheaf Luu\ (12 /Swmc(l)’{%» of L=derivations froem “yinto dz, 1£

Al j o TRE T
furtnermnxo we have W=Spec (A) then we put ZA/T CW’TW/E)}"A dia-

gram chase shows that ¥ and ¢ have the same imaqe in TK/”“ Since



: in particulayr that

ey (@1 ;
Since /A '1s. a subset of HJ(V,Tqu) we get
. 1S 5 .

‘

K'e K%_

Theorem. 1 is proved in tﬁo case KT uncountable,-

Supposea noé R~ is countable. Then theré is an embadding

K-@ 4. : the rinqAKCQ'AQ will be & domain and denote by L its
K

field of quotients. :
" Now it is easy to see {use the exact sequence (x} ‘with

g
Yy g%lﬁ we have g(K}a K so

k=) - that for an one can define a deri-.

‘

f
vation & on L by the formula

gk}@y)m(&})@y for ‘all JekK and.ye(ﬂ

. * g L] }
Moreover one can define a derivation § on L(VQ}L) by the formula
§ N

n
S(u@v)ﬁ(guk@v+u®{§{v) for all uéex(v),vel

Patll :
Elearly ¢ ds integral ©n V&%L and let A' be the set of all such

Al
b : i e .
§" as § runs through A . Now 1 containe 4®C. hence

o3

tod

62}

-

y : 7 : A“ .
uncountable so by the first part of our vroof L 418 -a field of

é

tiorn for VG@YLQ We have four fields
N\

e

a ol
2IXinit

e
~
i

7A%
R wren B SR
heiel
A}
LA s |

n i :
oA : e B :
and note that K and L~ are d1incarly-disjoint over K= ' {(this
: . . e gt . : 4
exactly as in |67 p.87 using the Wronskian aragu-
. b . .

may be proved
shell be dove li-we prove the fol lovihe genexal «Face:

ment) . Seive

Lerma 1. Let V bé a smooth projective K-varilety and let

1 subfields of K -such that

and. K, beralaebralcally closec
. :



o

» K R - <
“o RNy : :
e P s 0 |
Ay Vv ’

KA ClEei s Bl

N

and such that K,and 'K, are linea *ly disjeint over Ko‘

?7 are fileds of defindtion for V. mntn K

of definitien, for V.

Proof. Choose an ample JePic(V). Suppose -V is K-isomorphic

to Vigp\_K, i=1,2, Then there ex ﬁ*(giépic(vi) such thatcfigbK KES
i

clearly J; are still ample. One:can..find  projestive morphisms

(".

55, L. =~varieties such tli K. ASi Koy Vo i8 K =lsomore
£fy:X,—5, of K -verieties such tha SR = i+ vy is K, ~isomor

phic to X;><s Spec(X,;) and such +hatcf is the pull back of
[»)

’ i / :
ks L : . & 5 .
some<ﬁb691c(X.) withivli  anple: reletive: toy fleePuabk. D=8 %5, Y. =
1 i i ; g ; il 1
=Xy X g T By linear disjointness of-K.L and K? over KQ the morphisr
. o I8 Y i X o A .
, 1 : :
Ki@&'KQ—APK isinjective,;: hencesSpecli)e—2T dsudaminant, -Since
4\() 4 A : z
YIXTK is K-isomorphic to YZXmK, it follows: that Spec(K)—>T facto:

through some finite type component Un of- the object U representine

the functor T'—> Isom (YixTT', 27 Tﬁ’}ﬁ But q4ncg thc isomor ~

i

o

. : : 1 ;
phisn 1' Kc:&zﬁ;\ preserves the polarisations induced byc/'a’.lﬂl and
g 4 ] .

I . : ; 5 S
(Mz we conclude that the image of Spec(h)mwan is contained in
UﬁwU’r\Un where U’ is the closed subset of U whose geometiic point

?

are precisely .those points for which the corresponding isomorphis:
preserves polarisations (see the proof of Claim 1 in Section 2).
Now the image of U;-—>T contains an open subset TO of T

. 3 : =
in‘othér words. for. any (S]’Sz)éTo the fibres of YlwavT'and'Yq~»T

. ! ; ; ) ; : £ o
above (51,52)-areAisomorphic as polarized varieties.'But-th@se
fibres identify with fz;(sl) and f:“{““f zespectivelv with pO’a“i

% : ;o J! i i 0 a Y ;

sations given by u],dw. Now ilgi(sl,sz)eio and put kyugsaesz;

© £a

(s I,,Z)LT g then hl:LA Si->8é has all its closed fibres iso-

2
5 2 : :
"morphic as polarized varieties (with peolarisation given byc/L)ﬂ
: -



; - ”l' (6] . . o] Tt ;
_Let: 2 ; be 8 ?, ey (52) '-agd let H be the object representing
the functor B—mvﬁgom (Y xﬁ,B, Xaxas;B). Then let H'! be the closed

SR e &
subset of I whose geOmQrfxu points®corraespond to those isomorphisnms

'which preserve polarisations (we take on Y“-»S§ the polarisation

2

induced from-that of F). As noted in Claim 1, Section 2, 0 i .oFf

finite type over S% (and not only: locally of finite Lywe), Since

the map:iBf—>8. 1is surjective,.we'can find a component of H* domi-
‘.
5 5 > L 5 o : o
-nating S5 and hence an etale map £,-—85, such that x7::x2x >

e L)z 2

~S

" ~e
—_— Sz-is Szvisomorphic to

g
L

S B
s A
(0]

Since K is alqebxu cal]y clo~

: i
sed we may embed KO(S?) in K and we get

VaX, x K=X, Xy K=F®, K (over K)
L [ SR
5?- 2 o

depSingular varieties

Ppen varieties

B S P

géneral strategy of treating singular varieties and open
varieties is to treat first palrs conslsting of a smooth projecti-
ve variecty plus an effccti§e divisor (sometimes suppcsed with nor-
mal orowinvv)e As a general principle too, qlobal objecis have
to be replqced by objects with a logerithmic behaviour algng the
divisorx.

Th

s

s is precisely what we shall do now; namely we shall

Ce s :
give a variant of our thﬁory from Rq1~-3 for pairs (V,D) where V

is a smooth projective R=variety (K being as usual algebraically

closed ‘off‘chardcteristic zero)and D is an effective«Cartier di-

visor on V. A subfield K; of K will be called a field of defini-
tion for VvV D)ivif there ‘exists a anvariety Vl' a divisor Dl on

vr ) e o i 3 * . & b 4
Vl.and a hmisomorph13ﬁ Vdvl@ﬁjh such that q- Dy=D where q:V—bVl"

15 tHe -projection, Clearly if Kl g a field of definifi@n‘for (V,D)
it 13 also’'a field of definition for the open variety V \D Now
for (V,D) as above we say that a derivation § on K(V)+*is logarithmi

—on(V,D) if it is integral on V and if for any peV and any . local

equation fﬁd@ , Of D at p we have
fL



- 1L -

“35' /) : : s : ke
ic@’ S
,,}".') . . ' L S
(this is the same as to say that g takes the ideal sheaf 0@(~D)
into itself!). Denote by A(V,D} the set of logarithmic derivatioans
o -V, D) 1onote. that AL DA 00 and . that A(VyDl}xA(V,Dz) provided

D1 and D? have the same support; this follows from the fact.that

primes associated to differential ideals in a differential ring

s

3%

are differential Eiﬂ,
Now denote bY‘Tb/K (log D) the subsheaf of the tangent
sheaf TV/K af ¥V consistipg Qf those derivations which take 0&(~
into itself (see also l}])f
The following Theorem reduces to Theorem 1 if‘ D=0,

Theorem 3. Let "V be a mOULn projective K-variety -and D

T e O S SR b

an effective divisor on V. Suppose the injective map

HO (v, T

4 (@)
'\ ., Y 1
, ALV/K(IC)C} D) )=H ‘(V'EV/K)

AV, D) is the smallest algebraically

it-also.-surjective, Then K
closed field of definition for . (V.D).
Note that the surjectivity of the map above occurs in

each of the following cases:

a) D=0 i
O - "
.b H I‘(\/ S ; :—O
bl e \//K) : and H (;) ) o (where Np, is the norma |

o) DmZDip Di are smooL SHDVuflLLiLS o f iV czossing normally
sheaf of Di)n Indeed in this case the cokernel of the map frcm
Theorewn 3 injects intoEDH (D ,h ) cf {J
: : i

Proof of Theorem 3. The onWy non- trwvidl fact to prove

; s A oA = A :
it that onn T 4e a field of definition for (V,D)..Since

g BV BV, D)

we get by Theorem 1 that K, is a field of defini-

tion for V i.,e. V is K-isomorphic to VQyK K for some Vs« For any



ch(V,D} we have S(K)c K so we may consider the deriva ion

gCJﬂ{V) def P“ﬂ by
. sl (\ o B oa 7 W 0
ISeavi=lgoy  for all AeR (V. ),yek
Th e ((‘ \n'\"".yro (X7 1 : L1 .4 (Sq (e d A df @3
hen ¢~ il ngAA,K), By hypothesis (3-~a) ( v (=Dl V(wD)d_alnce
: i ~ (- s :
(@%(wﬁ)k:@%(wb) we get o £ (C y,ﬁe(~n)b Now we may conclude

by the following general:

Le 2, Let K be a field, A a set of derivations on K,

K03§Aex, (s B6r all SeAY and let Blibe & K anebra. Put

Am50®§ ¥ and define for any $e A a derivation g :A—>1 by the

rulé: g%(lgﬁv)m}ﬂgy for ol )eA ; yeK, Suppose I ls an ideal in

A such LLQL S (3)1 for all §¢A. Then 1= =T O K for some ideal I
o : A .

in ?\,.O .

o K
0

(@k)} be d basils of AO as a KO“V&CKOK space and take an element

Proof. Put I =I~A_ and J=I &, K. .Ju*mo e I\J#4., Let
le) & ! .

i ] . 3
am}ehgakeI\J (ﬁyQK)-for which the number
‘iwm * Y

N
-:1)-,15 ik; ak;é(')}

is minimal. We may of course assume there is an index ko’such that

a, =1, Now for all géfﬁ, s L » L
: .

‘ek@gakm g)w(Ze}{@ak).e T

;- ez :
}@Q eJ Singe a¢J there is

so by minimallty of.a we have that - -

D»G

at least an index kl and there is a derivation Sezﬂ such that

g\ JO By minimality of a we gzt - that



Shs &
ws f 4 e

i :
((Q})’ ) < ()& oY ci- ){ J L e 1 ”\"m,: GO
\.1 & .‘”'"';v &

5 Su

from which we get aeJd, contradiction. The lemma ig ‘prove ed

Using Theorem 3 we shall prove the following:

Let V be a normal prow tive P\«»variety Of cdi -
KA“V)

mension: two, Then is th=z smallest slgebraically closed fiel

£ , S | . SRR Vg .
ofaefinition. for V.,

Proof. Let £:W—>V be Zariski’s canonical resolution; so

f is obtaincd as a composition Wi N =2V = where V,

b

is obtained from Vi_"J by first normalizing Viwl and then blowing
; ; : ; nox
up the (reduced) ideal of the singular locus 2, . of (Mg )

By a theorem of Seidenberg [i.ﬂ A’V l)z:A( {VL l)nor)o By . another

-~

theorem of Seidenberg EUJ + P.233 for any yé}jﬂt and for any
-t -

g‘e[}.((v_s ml}nox) we have g(my)::.my (here-mymmaximal ideal cof (ﬂ)

An elementary local computation shows then that A(V: ;_‘_)no‘«_\ /\(\] )a
: 1 : i

¢

So after all we deduce that A(Vie A (W). Put D=f (Z,L set=-theore~
tically; then D is the support of ' a reduced divisor which we stil
call D. Since W\D 2.V\D, we immedia_tely get that AlW)eAW) so we o

A(V)=AW). We claim that A=A D :
Indeed if §eAw; then Se[\(V) so by Seinkerg’s theoren

g(rny)c:my for all yg:gl.Consequently g (/I’ — m l We conclude

my .wu

using the fact that. Ehe Iudl(,d] of a ulfx_cxential ideal in a dis
ferential ring is still a differential ideal [10], p.232. Now the
equality A "*A(‘»J?D) implies in particular that the map Ho(w,

Ty/x (109 D)) —> 5C (w, ¢ Tyy/x) is an isomorphism. Applying Theorem 3

: ; V : £l b Bt e o :
we qet that K=K Al ) is a fielu of definition fier (W,D) soithexre

is a smooth ‘projective Ro=variety W, such that W:'WOQ?K K 'and there
o

is a divisor Dy on W, with D=g Doy (@:W-—>W,) . Then we claim that

there is a birational miorphism 1’3(‘):%30«-—-7-\/0 onto a normal surface

)

©

V, which is an isomorphism above V\ fO(DO) and such that fO(D,)
: : ¢
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Indeed there exist rgogcot Ve morp

Y-8, gwfqh where g and h are. projective,

Ko

o
DD

braic K8 cheme with Kq (S)e K and £ Spec

tained by  taking the mcrphism =

duced from fﬂ where.seS is a sufficiently

.

New 1t is ean v to see that V is K-~isomorph
are done.

The following seems qui e plausible:

Condecture 1., If V is a normal proj

B e

[“\"\’) is the

mall L,.:t

for Vi

s

New we close by discussing t

varieties. Let U be a non-sinqular K-variety.

tion of U we mean.a triple (V,D,¥) with V

tive, D a divisor on V and ¥ a K-isomorph

- FPor any such compactification, A(V,

o set of derivations on K(U). Define

A(U,l@g}rUA(V,D)

the union being taken after all possible compactifactions

: AU
ofs UL It ilgieasy «toisee that KA(L,log) is
braiéally eclosed field of

Ry -
POSSERRENEN,

to be truo:

Gonjecture 20 Lf U 15 a Aon-

definttion for U.

singular K-variety,

hisms f,:X—Y .g:X-—.85,h:
pe) i .

S ig an affine alge-
(K):Kx,k)oc(ﬂ)wﬁ 1x
desired £ :w,u»>v
O G
NOY ¢

( V) in=-
general Kowpoint gf ot
il to V. @ and
ic to Vg KOK and we

ective K-variety then

algebraically closed field of definition

»
{

12 case of open non-singulax

By .8 compactitica—
non-gingular and projec-.

Lsm Uiee Vb

D) identifies via % with

(VD %)

contained in any alge-

We hope the following

KL\(U,log)

is the smallest algebraically closed field of definition for U.
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We can prove COnythre 2 lnsverious:specisl cases, For

instanco: : 2

Theorem o, holds in any of

R T

)
-~
et
=
L
0
@
o
o
o
7
o
N2

rawa v i

the following ca-
curve

surface of -general type.:-
To prove Theorem 5 we need some preparationa

We say that Jl‘ er)<(V7pD2rF») for two COmpaCtlLiCBtLU“”

£ U ilf the rational map ?1Y; V?mmﬁvl is everyw here defined.
It+is easy to.see that dn thie . situation AJVGFD?M:A(VI,Dl) as

subsets in EMUY. Se if

allest element (Vl,Dlp% ) we

lOC)

AU,

Note  that a smallest element as
i Ty
(compare with |[5]). (v

Now for a smooth projective K-variety V,

. Ao
a K-automorphism and let o K (V

L]

morphism of XK (V). Take

“consider

pw%)“lgw*;gﬁzﬁg hen it ds*se
: g
a) KA== KA.
¢ P e
b) (A(V,D)) =BV, (D))
etEs A rb
.In particular K WD) isa field
Y4 ;
only 3£ KA‘V'G(D)) is a fleld of

Now letfs

“Suppose U is an

Jdn- this case there is

the set of -compactific

above doeas

) —=> K (V)
D an effective di

a-set O of derivations onclBV).

start the proof

essentially a

cations of U has a

have

not meces sarlly exist

let o :V-—>V be
the corresponding K=auto-
visor on V, Furthermore

>

: 0
Denote by /A the set

asy to: check that:

'if and

of definition for (V,D)

definition for “(V,c(D) ).

of Theorem 5. iy

affine curve.

unicue compactificaticn



(V,D,%) withah reduced 80 MU, log) = ACV By T R e EEE Iy

' NN N et : '
Put g=genus e STy H (VFTV/K)WO and we conclude by
pheorem 3. SuUpPpose gel. . : Sz .

MV

D) 3 e . : g 4 :
Tut K =K sl loy Theoren 1. there %S a K- iscomorphisn

VmVOGh K an elliptie curve over k.. Let p el W T g
IN

with V :

- : Lo o} o&'0 0! o
4 ¢

point (SR and peV(K) ¢he unidgue w-point of V lying=over: Page BY

truppwtﬂdity of AuLY(V) on V and by thie preparation above, ve way’

(HVSENV D) 1@% f Al ke the &orivatioh defined

the proof of Theorem 3 (ro C¥ ey =a @gy for AEK (Vi ) yc i

S0 n

(@8 H (v)pT\j /K ).
O (®

as in

) &y X we get §-§ £¥2£0 with féKFQE
& o

e teoisva pﬁrameLCL o’ the ©

(8]
14 e o 7 e ;
Si.hcc /I< H (\O(ir}-v /’y\

=a generator Now

s : e
mal ideal m w theﬂ~9t¢w Oon ihe ‘other hand S (m e
P if " P
o o
bec s e m1~@ @X.hence tG(m )Cmt In particular o+ @;f 0t o L)
2 ¢ g\ g’\‘ il
em. @ K which. implies f=0, hence ¢ Now we may concluue by Lem-
Ao .
ma 2.
suppose now g=0. If;%DéB,(Q se.a Fleld definition for
(?;ED} and we arc done «: ouppose¢20>4 and take pl,pz,psgD Since
N

transitive we may - assume that €2 ach p.(W—l,Z,E)

ALV, DY

AutK(ﬁé) ys Eriply

o) i3 o !
14ies over & Kowpoint 12 of‘? (KOwK Foy any

- ‘ o Sl
€T as abovei then we have’ - S* a 96+a161+3262 with abal,d2Ck ‘and

B0 G 2orae ]
Sl K, ﬁKJKO)

i
—

0.t
b = ¢

2
ta t

i

{ e (P ¢ Db ) s
.WhGﬂC.Px =Pro]) Ao[igfti]' L~t1/to. Once agaxn (0 g )(m pr=tu

o Py
and if_mpixﬁgw)i) for }ieKO we get
ao+a3)i+a7)%uo for 1=1,2,3
This impiie acﬂa]#aq and we conclude again by Lemna 2.

Ce Ay ,D) defin

B e

e



like

(el ST
e ) ey i 5
Vet "would to note that in a similar vein but using sonme
additional® tricks one can treat cmmp]omznt of divisors in projec~

tive spaces and abelian varleties of .dimension > 2 (cfg[?])@
Let!s consider the case.when U is as in 2) and embed U

2 Covay s pn sy gy ot o b d emen. craa S ey N T g noo e &y e o e ey e

3 0 SMoOoGTn & CJJtsC CLNVEe Sl lace v oy _(..Ml ol L:“i..!\;l sucecesive J_Y Eihe

exceptional curves of the first kind in VNU  we may suppose
VNU*“does not contain such curves..

Since U is affine, D=V\U is a divisor and one can  easily

see that if i:U-—>V is the inclusion then (V,D,i) is thebﬁmallest

compactification of U, By our preparation and since H° (v, ) =0

V/K

we may conclude by. 3 Clearly, the same argument works

for a large class of not necessarily of general type.

S (*(j?*w!m”! local rings
In this section we discuss the logal-analog.ef our theory.
A 2
As .‘Ln%.he let K be an alggbraically closed field of char ac-

teristic zero. A K-singularity will mean any local noetherian

complete K~algebra whose residue field 1s a trivial extension o

.

, op E i : 3
K; .so A is K-iscmoxphic to R{LX1§G°E,XH5]/J_fcr some nyl and scme

ideal J. A subfield K, of K'will called a field def on

L.z.

nit

Lk«

be of
exists a K-isomorphism as
wtlon e )
slog e

AlAY -be the set of

above with J generated -
by elements of
Now let all derivatidns;gzh~_¢A for

which §(X)eX and define

KNA) é}e? S%o

AR

Clesarly K is an algebraically.

to be true:

the following

s
1S

Ry

a normal is solated K-

forals §eaxn)% '

closed subfield of K. We hope

-5 1nc

ularity,



Ay

< iz the smallest algebralcally closed field of definition for

]55,«

Now it iz easy to see argument analog to that

A(A)

given in the beginning of Sectleon 3) that is always contained
in any algebraically closed field .of definition for A; so the hard

Aln
part of Conjecture 3 says thif Koo is @ field of definition for

A. Note alsoc that,.exactly as in él; 1f Conjecture 3 holde fer-n

and if k'is an algebra ically closzad subfield of K and {t,}xis a

(/‘i &<
transcendence basis of K/k then k is a field of - definition for A
&£ -and only if 2/9%4;K-»K lift to derivations é;:A-wsAc

We "axe able to prove Conjecture 3 .in two specialicases:

Theorem 6. Conjecture /3-hplds in each of the follewing
!"'vscqe

1) A is a homogeneous singularity

2) A is a gquasi-homogeneouz surface singularity .
Recall that a K-si naul ty is called homogeneous ‘(quasi~ 1:.

' . S . 'ﬂ’-" 5 .
homogeneous respectively) if. there is-a LWlSOMOV hism A_A] Kipeos
,,.a,xniX/J with J generated by homogeneous polynomials (respeckti-~

vely by polynomials which are quasi-homogencous with respect.to

some weights WireoorWy assocliated to Xl,&.-aXn)g

bl

Theorem 6 will be proved by rgduction to the global case.

Suppose fit st A is qu 7mhomoqonoou° qurf ce .sdngularity,
Aw&L_leG.@,Ani]/( l,.e.,im) Fj being gquasihomogeneous  with
respect to the weights wl,...,wn. PO B=K{ 00X ]/(rl,..n,e.A

}e;,F = (D . wWiere By 1s the piece of degree k with res Pect to,
o k=0 A i :
-the weights. Now there are ndtu“ut KmiinOdr maps kaAwva, which

o T Do L | 7 3
take the =lass of a series

—t
‘1——§
i
T
L)
o
<
N
5
L
}-J‘
=
(@
O
r?o
=
o
Q
I_—l
(o]
“
2
o}
a5

the bolynomial £, , where fp is the sum of all monomials of f ha-
2 % i ~ .

© ving degree k (with respect to Wiree« W, ). For any derivation
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s

feAlp) one can construct in.a canonical way a derivation . sB-—>nw
;?:’ . s . 0
with d(ﬂg)c:B? and such that §qmmd § coincide on K: indeed for

any beéB write MHZX,, b%éﬁy and put
R R S 9

o
e Ny, 1
(v} I.) = i o0
( J L/:! }C( k)
g
' 4
It ig trivial to check that ¢ has the desired propertigs. Put

=1

Vo d
jiT]) vhere welght(T)=1 and extend S to & derivation stili

=
H]
L
o
o}
L F

S L

3D

f

denoted by § on L J ””OP that §7=0, ﬁvﬁ W is-a projective surface

e nor o
and we consider its normalisation. V=W . Clearly § induces a

derdvation (still uewated by S) which belongs to A(W). By

Seidenberg’s theorem j}ijzthis derivation induces & derivation

Lavd s

i 7 ] T, A 4 : A. A > o ol
delMV) . But now K 2l ) K (2) sa by Theorem 4,. Kch,( ) is a field
of definition for V hence .V is K-isomorphic to V @ K where M isg

(@]

O

(s

some projective nermal Ko =~ 'snrface. 5o there exilsts a h J-point
006VO such that the only K-point of V lying above.it is.the isecla-
LeuA”znqular point p corresponding to the irrelevant ideal of B
; L ~ Yy ogtag 4 = ooy ] £ - e 4 . r rm' .
Let Uo ba“an open affine neighbourhcod of Po in Voﬁ UOMSPQC(AOLAKJ
...anN}/(Gl;.e.,G«)»ﬁ_pom(xlw)l,ﬁ..,wa)N), )jcKOQThen ve haye

K-isomorphi . , e

/N § ]
A 0 re 4 : g A
j&..,(f\fi'g)-—.((x [r lpooer/‘r\}]]/(blpﬂEOHG/i)) i ) <o

(x Al,.., x )n)

gl{[[}ilgooafqujj /(C(Glfooe’U/G

M)

whcre(V.ALX,,g.,, ]*bhﬂ\l,..a,XNﬂ ~1ke¢.xj into Xj+)j and we are

; T S : i
done b@bduqf GCqu [“3’°°"“NJ L Tt '

The proof of Theorem 6 in the homogeneous case ie similar
and we-omit it; istead of ,using Theorem 4 one has to blow up the
vertex of the projective cone W associated to the graded ring of »

and to apply Theorem 1 to this blown up cone.
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