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Abstract. Using the homogenization method, we obtain the consitutive
equation for a mixture formed by a viscoelastic skeleton and a

viscaﬁs incompressible fluid. The macroscopic constitutive equation
give us the effective stress tensor as the differénce between the

mean value of the stress teﬁsor in the skeleton and the pare pressure
multiplied by the porosity. The motion of the fluid 4s described by

a Darcy’s law with memory depending on the pressure gradient
and the inertia force. It is deduced also the form of the

conscervation of mass and momentum.

1., INTRODUCTION

I e Ganeralities.

In the general framework of the homogenization méthod [1, 2]
we'consider the problem of the motion of a mixture formed by a
viscoelastic skeleton and a viscous incompressible fluid. The
geometric distribution of the solid and fluid pazxts is periodic,
with small periods. The dimensions of the periods are then associated
with the small parameter E .

It is well known that a great variety of problems can Qvise

if the orders &f magnitude of the coefficients are very different



or if the topological properties of thé mixture are different \{21 2
Tn the cass of the vibration of a mixture of an elastic body and a
viscous barotropic fluid, it appears that the macrosscopic stress
tansor‘iﬁ given also by a viscoelastic law with memory {2, At ok
depending only on the strain tensor.

In our vcase we econsider that the solid part is connected, as
well as the fluid one, and that the viscosity of the fluid is small
(a slightly viscous fluid). In fact it is well known 12, 4] that
Darcy’s law hold only in the case of large viscosity and small
valocit&, or small viscosity and possible large velocity. More

: : : e 2
precisely, if the smaller magnitude is of order £~ than the

larger is of order 50. As a conseguance of the féct that the
displacement vector in the solid part 15 of oOrdet ﬁo, we take
the velocity in the fluid part of the same order and the viscocity
of khe flttcf order gzo v

1.2, Mixturs of a viscoelastic solid with a viscous fluid.

In the solid part of the mixture, the equations are :
A : S
T T

(lsl) gs a 2 l—] ; f}‘
ot fb X :
J
)
s 8 8 : =
(1.2) G 13® ®ijkh ekh(g) & bijkh Ckh( ; )
(w) = 3 A b
e, b)) ==
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where £ is the exterior body force, and the coefficients aijkh’

5

1jkh’ satisfy the usual properties of symmetry and positivity.

b
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and similar relations for bijkh‘
In the fluid part, the equations are:
' 2 2% s
el e
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(1vh div =0 v = ~.w7ém.:c,_

Moreover, at the interface between the solid and the fluid,

must have the continuity of displacement and stress:

L8] (E] =0, [irijnjj =()

We must adjoin initial and boundary conditions:

. ; (B
(1.9) u=0 én 0 SL
‘ 7 u :
(2:10) -0 = m7r§“~x 0 for t- =0
(’!

where Sl is the domain occupied by the mixture, and is formed by
Y

1]
ng and -SL-.E@

n

The - variatienal fermulation of the problem (1.1) (1.5) (1.8)

we

Gz b0 ) vass: find U, function of t with wvalues in Hé(jl Y such

that:
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1.3. Two-scale asyvmptotic process

We consider a parallelipipedic period ¥ of the space of



variables yi(iml,Z,E) formed by a fluid part YF and a solid one

; ¥ . s ; :
Y_, separated by a smooth boundary [ . We lock for Y-periodic

£
e . . S . X = hed
coefficlents in the variable y = ——— : g (%)~ f(zq,
g b S{ ‘{i Ry X ;
i (X : = and o Xy=b. o, (=),
“leIQA} i3kh{é' Gats ljﬂh( ) >ljkﬂ(£’

In order to study the asymptotic process £ -5 0, we assume
that the appropiate asymptotic expansion in the solid part is
eanalogons to that of viscoelastic mixture, and in the fluid part
analogows to that of flow through porous rmedia. But the first teem
of the displacement vector expansion in the solid do not depend
on.y in the solid rogicn, Centrary it doesiin the fluld*region. "kt
is than natural to introduce the relative displacement of the fluid

. e i o
with ‘respect to the solid : u (x, ¥, t)y =u (X, .Y, £ i ala )
and consequently we scarch for a two-scale asymptotic expansion
suitable in A ¢ f as well as in -fz

a6 AL
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where y= & and all functions are ¥Y-periedi¢c in y. The vector u
!"?

: 1 :
takes values dn HES (V) s Zzere on Yq and on

For the pressure we have also:

(LA PEx, )= POCxt) + ERVGL Yit) 4
Now, with standard notation in homogenization theory, for

fixed. £, the problem (1.11) (1.12) may befeonsidered for Esand pf

2. MACROSCOPIC EQUATIONS

2.1. Balance of mass

If we.replace (1,16) into (1.12) we have
v
(2L) s divai v =0
! ‘0 L 1
f) . « o X
(2:72) leX (7 =y ley v 0 in- L S
Note that (2.2) only hold in the fluid part. But using the
faect thakt
S QL v Yld&,= g'xl nds =0
Y T d N

we take the mean value of (2.2) over Y and we have:
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which is the balance of mass.
After that, taking test functions depending on £ in the
form

5 ; 5 bl N
(2.4) wix) = }3{0 (%) & y;éﬁ(x,y)ug. ,5%41@! E céwy W= O

e ; : =
at order ¢ , from the equation analogons to (1.11), using (1.,16)

o

and (1.17) we obtain:

5
(2e )) & ’2} (u %u } v
‘< i (w, + w )dx +
) Al -
.?1 V-t ;
e ’5u0 Dl qu ?§w%
( S uX k L X -
: iikn em F o S e
} 0 % i bl 0y,
g
s \ <
- % pO(diV wJ +tdiv w  F . diy wl) dixes
3 ; X e > s o
Sy S :
0 SRS e u]j D W /c) Wl
8 ¢ k k b5 ik X
35 bi'kh 5 t ( . e = =
s D x Ty, = Cix. Dy, =
, h i1 J J
£% c A1z " ]\’
» " B Y
& e dis o Eolwe o+ w. )dx
S i}\' /(} T /()y g /() yfj : 1
J Sl
Jlg;

2.2 Relative Velocity

The relative motion of the fluid may be obtained if we take in -

(2.5) 310 =w' =0, v =0 & (55'-&-), b ¢ Q’ 6L, divy@ﬂ 0,

[ . .
é? Y-periodic and zero on YS. To this @nd, it is also useful to

modify the coresponding pressure term in (2.5) -inte

X (gradx po + gard pl)lg‘r dx. Then (2.5) gives:

\.(L r\2 0 5% :
i gl ol
Ve i — & B ax«+ (9rad, p” + grad_ p)@ 6 axs
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and for % -~ 0 we have the local problem for the relative velocitv:
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If wa define the.space V. =/ u; u € B (¥.), u =150
. ! y {m e PN N s

divyu = 0., ¥Y-veriocic % . and Hy’ the completion of Vy for the

norm asscciated with the scalar product
1) = Wy W dy
(u, Wy g 1o
.
Y
a4

_ o
we obtain the evolution problem : find v , function of t with

valuss in Vy, such that :

e
$ SR b el ) s
“ t : - ; 7 ‘Jf
1% . - 0 L
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v '(O) =10 \/4

; il o
I1f we introduce the vectors @; i = 1,2,3); elenments of H

defined by

L H

and the selfadjo&nt operator Al of H? associated by the representation

(2.8) ﬂ & ay = ( g, B
\’l" -

= H

theorem with the form (v, W), , (2.7) becomes:

y
(v v @ 0
? £ X_* A Y (£ Q}po e gvi)d\)i
ot 5 Ny e F, = e = S
(2.9 -,..d t it i 7 ki g 0 t =
. s

Thessolukion ot (209), by standard semigroup theory, is:

<
. £ : 0
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e e
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Taking the mean value of (2.10) we have the macroscopic relative

velocity :
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Remark 2,1, (2.10) give v(t) as a functional of exterior

body forces, gradient presure and inertia term. The mean value
{ 11} contai 5 wall-dafined f +i £i005 e }y whick
2.11) contain a well-defined function oI T 5 g}{g which
decrease exponentially as ?5g =» &, and G i 9ip The proof

g 3 g 28
is similar as in the case of acoustics in porous media [?I -

2.3, Stress tensor

In order to study the local state in the solid, we take

& (x) b (x,7) ¢ B c @ (ol Yy

s

: 0 X
in (2.5) wo =w =

{
&
-
<
2
i
¥

e

& Y-periodic. In the same way, the asymptotic process

£ 0, give us:
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. Note that po(x,t) is defined in SL (does not depend o~ y).

€ : : : =
In fact we continue p in the solid part, with the periodicit
condition, and we use that S‘divy J dy = 0. If we introduce

N &
the space Vy of functions from Hl(YS) with zero mean value

and the scalar product

: 5 | Y
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Reglaxlk 2.2. "The yvight hand 'side ‘of the equation (2.3) is

well defined as function of HO and po.

The maCIOQLOplC stress tensor is defined as the mean

value of
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If we introduce the coefficients and the functions:
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Remark 2.3.The constitutive equation (2.30) contains an

: 0 : = e
claslic term 4 °, a viscoelastic term with instantaneous

I 2 >
memory. o -, @ pressure term A ~, and two terms with long

{

W
menery d, g , functions of strain and pressure. Because A?

is a positive defined operator, g % ) decagn exponentially
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for ‘%.»<w Colae tor g | 3 )). The strain stress law (2030

is very different than (1.2).

2.4, Balance of momentum,

Now it is easy to obtain the balance of momentum, For this

we take 1in (2,

w

5y w = w = 0, Then, for € -2 0. we have:
4

STk 0 v 7 0 .
AR k) ~ g 0 w,
(2.32) \ S wodx + Gij e
: e : e X
SL lieie, i ¢ 5
=] gpo divwwodx = fiwg dx X/ Yio e IIS( STy
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-dx - S n po div yp dx =

= St e
f\ el
0 s /aq)ij 0
- o { e B y oW, dx o= - —2 W, dx
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Lyl KL
' B(E o 0 /
o ~ 0
e o
(.32} b np
el
S ug ¢ 0 V{ e
Gt { ¢ : o X,
Remark 2.4. Q~;j is the effective (or total) stress tensor

[5;6]'. In the same *time (2. 32) prove that in the effective

stress tensor appears the pore pressure multiplied by the porosity.

3 CONCLISION,

The macroscopic (or homogenized) motion of Ehe mixture may
be described by the displacement vector in the solid @p(x,t),
the pore pressure in the fluid po(xpt) and the mean value of the
relative velocity gv . Theye quantites satisfy the equations (2.3)
conservation of mass, (2.11), Darcy's law and (2.33), conservation
of momentum, the effective stress tensor being defined by (2.32)

andg:- G20,

3 : :
The' coefficients ] gjkh and ol f5kn and the functlon.gijkh
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are the same as in the case of homogenization in vigcmelasﬁicitj
)2 ]ﬂ in-the particular césa of an elastic skeleton our
results reduce to those obtained in {“2\} » but the conservatic

of mass is different. In fact it was proved that a Darcy's law:

ef «the . from (2,11) 1s.not enly . a consequence of the cempras:
compressibility of the fluid, Also in the case of incompressible

fluid it appears as wvalid,
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