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ITERATIVE SYSTEMS OF EQUATIONS

Virgil Emil CHzdnescu

In some branches of theoretical computer science we meet sys-

“tems of equations whose solutions are obtained by a fixed-point

technique. We quote three of them. a) FEvery context-free grammar
has its system. The least solution gives the languages generated
by nonterminals, b):Every flowchart program has its rational sys-
tem., The least solution gives the unfoiément. Tﬁe interpretétion‘
of the unfqlément gives the program behaviour. ¢) Every .recursive
progrem has its contex%~free system, The least solution gives the
unfoldment. The interpretation of the unfoldment gives the program
behaviour.

In the sequel we present, in the category theoretical lan-
guage, the common methodology to solve such systems. It is founded
on a small nuﬁber of axioms and it presents in a unified manner
the main results about suéh systems. For example, we define an
w ~continuous algebra%c theory such that every finite system isg a

morphism whose iterate gives the least solution of the system.

1. Solving equations in an F-algebra

7
i

Let (C) be an w-continuous category, i.e. the category(C) has

the following properties: :
a) for every A,B jmliggl; the set(@(A,B) is an w=complete
poset having a least element JmA B?
g2 - _
b) the composition of morphisms is w-continuous and left
strict (lwA,Bg = Jm&,e for every ggmg(B,C))o

Let ) —=(C) be a locally w-continuous functor, that is

for every A,B in ]@ﬂ the restriction of F to(@(A,B) is &an w-~con-



tinuwous function.
An P-algebra is an ordered pair (A,) where Aé. \ and

of :P(A) —> A is @ morphism 1n.€p An F-algebra morphism from (4,%)

to (B,P) is & morphism g:A —3 B such that F(g)ﬁ:s ol g.
: 2 oy
Let s:X —> F(X) be a morphism of (C. We shall say that s is

a system of eguations.

We shall solve the system s in every F-algebra. We say that
the morphism f:X —> A is a solution of s in the F-algebra {(A,<)
it

£ = g6P(f)sC,

l.1. Proposition. The equation s:X —> F(X) has in every

F-algebra (A,) a smallest solution s, .

Proof. Let 3 QG(X e (X 4) be the function defined by
;&(f) = gF(f)K for every féIW(X,A) Let us notice that fﬁ(gxxgﬁ}
is é golution of s in (A,X) if and only if f is a fixed-point of

. i =
P is locally w-continuous and the composition orsCl is

=
(6]

jw:“
w ~continuous, we deduce thatv ;ils an w -continuous function. It

follows from the Kleene fixed-point theorem that

wkf@d,;$ néw}

is the least solution of s.@ ; = >
If f:X — A is a solution of s in the F-algebra (A,«) and
g:{ A, o) —> (B, F) is an F-algebra morphism then fg is & sclution of

g in (B,p). Indeed, (fg) = gF(fg)@zSF(f}F(g)p = sP(f)< g = fg.

8

1.2. Proposition. If gs(A,x) =— (B,ﬁ) is an P-algebra moy-

phism then 8, = S
= e ; 11 e \
Proof. We prove by induction that JﬂkaX,B} = 5$(_nyﬁ;g,
As the composition of morphisms is left strict we deduce

JWX B = ij £ & If the equality holds for new then
¢ s g



s

n+ L

3{3 (ly p)o= Sf‘(ll@(__LX ;81 p = sBld (_;L,X p)IFe) o=

n+1

o SF(J@{}"‘L}:,A))O{g B jdv (“_L_X,A)g e

. e 1€ X =
Therefore SC?'{ g = (\m&;;(_jmx?&.)fnéw} jg =

AV%BLLyé)s ndw} %i'nLLKB)fnewlmsﬁe@

Let us suppose that there exists an initial F-algebra (I,i).
The above proposition allows us to compute the smallest solutiocn
Skl S'iﬂ every F-algebra (A¢i) from the smalleét solution of s.in

(1,i). Indeed, if g :(I,i) > (A,ol) is the unigue Fwalgvbra moy-—

%
{ 1T . & .
phism then Sy 8; 84

Let Uag/mmékgsbe a functor such tﬁat there exists & natural
transformation g:UF —> U, We may "solve" the system gt¥ > F(X)
in every.ﬂe!@?\.

Let De ﬁ@ﬁe A morphism f:X ﬁ~é>U(D) is said to be a solution
of 8 in D if £ is & solution of 8 in the PF-algebra (U(U),ﬂD). it
follows from proposition 1.1 that there exists a smallest Sﬂauw
tion, Sy ol 8 34 D. ; l

Let us notice that if ggéﬁiﬂd) then U(g) is a morphism of
F-algebras (U(D)?ﬁn) and (U(G),ﬁg}, therefore s, = s U( &) and
fU(g) is a solution of s in C for'every soln%ion fof a0 B,
Moreover if 1 in an initial object of{éjand °<C the unigue mor-

phism of \31 from I to Cefp| then Sg = SRUCHR

2. Solving equations in a category

We study another ca e that is c‘oser to the practice, where
the category C‘lS not always an w -continuous one.

Lpt Y be a category and let Ag |C). Let us denote by

&Y

hA:@}“”% Set the functor defined by

a) h&(B)'ziéiﬁ,B) for every E%é!@%



e

o
G
N/

b) h,(f)(g) = gf for every fe(G(B,C) and gel(A,B).

Let U:D) —> ) be a functor. Qur hypotheses are:

£

(2.1) for every Kéﬁ@j am&.égﬁ@\ the set L( U(ﬁ)) is an
w ~complete poset and has a least element mLﬁ '

(2.2) for every Kéi@i and féf@(&gB) the funection hX(U(f)) ig
w -continuous and strict, ;

(2.3) for every X€[0)| there exist VX¢€ }@j\ and a natural
transformation : :

Py Uhy —> hoy

such that for every seﬂ@(X,ﬁ(VK)) and for every A€ K@i the func-
tion

9, ¢ (0(x,U(8)) —>[G(x,0(4))

&
defined for each f‘”%( JOLA) ) by ?A(f) == sUﬁgx’A(f))
w ~continuous. :
The morphism s:X —» U(VX) fromfé}is'said to be a system.
Let ﬁ@{%ﬂ. A morphism ig;é X,0(A)) is said to be a %2&%5&9&
of 8 in A if s U(p, ,(f)) = f. Let us notice that fe C(x,U(a)) is
a solution of s in A if and only if f is a fixed-point of ¢,.
The hypotheses (2.1) and (2.3) show that we may apply the Kleene
fixed-point theorem to prove the féllcwing pfbpcsition.

2.1, Provosition. The eguation sg{@(X,U(VXﬁ?hﬁs in every

Ae|D| a least soclution

n
s, N{94( L) | new}. o

2.2, Proposition. Le%t g&ﬂ@{&,B). If f is a solution of s in

A, then fU(g) is a sgolution of s in B.
Proof. As %, is a natural transformation we deduce
s U(P, o(fUlg))) = s U, (f)g) =
A,,B ﬂ.’A

= 8 U(Y, ,(£))U0(g).

J\\.,Kt



- 5w

he £ is a solution of s im A it follows that fU(g) is a solution

of ¢ in B. @

2:3. Proposition., If gg'H(A,B) then s, = SAU(g)@

Proof. We prove by induction on ng ¢y that
1 n
¢al L )0(e) = 50 4 5)

As hX(U(g)) is strict _j . = hX(U(g))(JnA) = WLAU(g)o If the above
eguality is true for ne¢w then
N+l

¢p (LU = s 00y 4(,(1,)))0(e) =
i n
3 Uy 4@h(L))E) = 8 U@y 54501 )0(e)) =

n+1

n :
8 U({FX,B<3{>B("}“B)}}3 ?B (__L_B) o

i

-}

As hX(U(g)) is w-continuous we deduce
: .
8,U(g) = n(0(a)) (e, ( L) |new)) =
?\jé?ﬁ(_i_%)g(é fln»,w \\ééth(J-—B 11(’:,0.)} = Sp e &

N
AR

Let 1 be an Lm1ﬁ=a1 object of D. For every Ae:ﬁﬁ] let us de-~
note by ciﬁ:l ——3 A the unigue morphism of/\\frcm I to A.
A lary i T : { ; 1Y =
2.4. Corollary. If\gjhas en initial object I then s;=s U(L,)

for every A€ [(D).

a5

2.5. Proposition. Let I be an initial object of (D)and let
us¥ — U(I)., The system s = uUGiVX);X —s U(VX) has in every
Aw:}u{ a unique solution uU@&A)

Proof. Let A¢ {@f} If fé@()i U(4)) then

9,(£) = 5 Ulgy o(£)) = u Uelyxfy 4(H) = u U,)
therefore f is a solution of s in A if and only if f = u U&iA),@
We feel that the present context is too general to study
systems of equations with parameters., We will do it in the follo-

wing sections.
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3. The least solution is an iterate

&

We are going to study in the sequel a more particular case, .

We shall prove that we may obtain an uywemntinmou. algebraic theory

such that the leagy golution of a flr1t@ system of equations is the

iterate of the sy ,Lum,

Let ga§3~m¢ Se@s be a'fumctar. We assume that U has a left
adjoint, that is
; | S T
{3.1) for PVﬂrv.Xe{,Jﬂkg\there exist VXé{L@l and
¢ ¢ €5et(X,0(VX)) such that for evprvl&qum and every

f&.Setu(“ U(A)) there exist a unique f%euD(VX A) such that
€y J(f"%}

Let us first notice that f‘SSetS(X,U(A)) and ggi@(&,ﬁ) imply
e = (fU(g))%. Indeed, the conclusion follows from the uniqueness

pert of (3.1) because

e 0lfYe) = £ i)l = 20le)
If we write q% ﬁ(f) - fi‘ﬁ for every fé&SetS(X,U(A)) we deduce
: g £

b Y oo {! PN 2 48 B 1 3 e o P
dhat. g sllbh. o hyyx 1s & natur al transformation for every

X X Lo I &»‘“"b‘}

Ssef
=

R :
For every a €3 we denote

ng = {x{aylgi"ug]ﬁgg.oo,xa’ial}

This set is S-sorted by sort \xd l) = ai for every ieliay]

Let T(a,b) = Set S(Xa, U(VXb)) for every a,b in 5%,
We define the composition by
| fog = fu(gh)
for every £€T(a,b) and geT(b,c). If feT(a,b), geT(b,c) and’
heT(c,d) then

fol gah)=fU (U 0¥ ) ) ) =£U( 0¥ ) =rU( ") U(h¥)=(fog) o 1

therefore the composition is associative., We prove that lam EX& is

the identity morphism of a €5%. If g¢T(a,b) then 1_og=f, U(g")=g.



1f fe?(b,a) then fel fU(& ) 7 UL = f, Therefore T is an

VXa)
S-sorted category.

S 3 e RN s o :
For a €858 and 1%:&&{}3@% gié.ﬁetg(Xai,Xa) be the function
- * ¥

Y = o

defined by j (k

1"1
Vel e o a 2=

Let a €3". For 1@Lpﬂ§weckﬂ1ne glei(aiﬁﬂ by Xi = §; £y,

if fié;T(ai?b) for every:ié[ﬁﬂ} then there exists a unique ‘

f€ T(a,b) such that A ‘e f = £, for every ie(fa|] . Therefore T is

an S-sorted algebraic theory.

anwr% If U is the forgetful functor from the category of

z}algebraﬁ to the category of S-sorted sets then T is the free

algebraic theory goyevat@ﬁ by >7 2. @

Our second hypothesis is:
(3.2) for every ﬁ&{D§g each component of the S-sorted set
U(A) is a strict w-complete poset.

Let Y€ }Set,| and Ae;{&l . The set SetS(X,U(ﬁ)) may be orde.

5 o/

4

red pointwise : f£g if and only if f(x) « glx) for every x in %
1T follows from (3.2) thet Sﬁ%S(X,U(ﬁ)) is a strict w~complete po-
set, therefore (2.1) holds and T(a,b) = Sets(ﬁa,U(VXh)) is a strict
w —=complete poset.

The tupliﬁg inBton inareasing, Let a,5 in 8% and for every

ie[lall let f;% g in T(a;,b). We deduce that for every i = Lat]

i?

\
/

Cf

2 S =f.(x JZg L = Stk :
l’fzp"°’fn‘(xasl’ £i1%g gll““z‘“a ,1) <& 18y > (xg sl

herefore {cfjgfz?ﬂ#ﬁgf >54£‘1§g2s¢00igrlr>0

Qur third hym othesis is:

£5,3): for eve*? i@iﬂzulwg each component of the S.sorted
function U(f):U(A) ~—>» U(B) ias w-continuous and strict.

We prove that (2.2) holds. Let f&D(A,B). If {-fn}ne},w is an

increasing sequence from SeﬁS(K,U(A)) then for every x in X



WHEEN) (N /2 0n) = um(\/ £ L) = AU (2)) <

NEw L& e w

=\/=n AU (L ) (%), IS _j_% i5 the least element of Seto(X,U(4))
New

then for each x in X
B (BCE (| s) = B ] (2 = )

We deduce that the ccmpoﬂitiOﬂ in T is left w-~continuous and

left strict. If feT(b,c) then Aot ] UL =

sk e : ; = ; -
= £y ( £ f c) a s an in-

th{b( )) (L. b) mma o« 1T Tc T(bgb) and {iﬂﬁﬁéw is an in

creasing seguence in T{(a,b) then (*V/i Jof = (\w/f Yo(£%) =

r New ‘ Nnéew
B (WP ON/1) = N et ) - \f& Bt = X /F et
< New new ° Tiew

Our last hyphotesis is:

(3.4) for every XE{S@%SK and ﬁé[ﬁﬂ the function from
Sets(xgﬁ(ﬁ)) 0 S@tS(U(VX),U(A)) which maps fe:S@tS(X,U(ﬁ)) in
U(fﬁ)v is w~continuous.

Tt follows from it that (2.3) holds. Let Yclueggxp A€Y§§ and
s éSe%m(ng(VA))a If {11 o 18 an increasing seguence from

Sets(h,u(ﬁ)) then for every x in X
$ (\N/E)(x) = BN £ (8(x)) = (NUu(eh)) (s(x)) =

new Néw NeEw .
= NJUER) (s(x)) = \N/g,(£.0(x) = (N/g, (£ ))(x). - :
- New Wew. New "~ _ :

We deduce that the composition in T is right w-continuous.

If fe®(a,b) and is an increasing sequence in T(b,c) then

ifn?new
for every x € Xa

(EsN/E V() = BN 2, M ex)) = (Ve (£(0) =

New new

= NJU(Eh) (£(x)) = \/U£eL ) (x) = (N Jfpog_ }(:x) Therefore T is an

New new new

w -continuous S—sorted algebraic tne&rye
Remark. If U is the forgetful functef from the category of

w-continuous > -algebras to the category of S-sorted sets then ¥



is the free y=-continuous algebraic theory generated by E: s Which
is as uswal denoted by GT§: <@

We have left out above the ordered case. If we omit " w-com-
plete" in (3.2) and we replace " w-continuous® by increasing - in
(3:.3) and in (3.4) then we may prove that T is an ordered S-gorted
algebraic theory. If U is the forgetful functor from the category
of ordered » ~algebras o the category of S-sorted sets then T is
the free ordered algebraic theory generated by‘E: : ‘

XA is the initial object of Set we dedilce from (3.1)
that VXA

bts

g an initial ohwect of Dﬁ
Let us remark that we may apply all the propositions of the
previous seéticn to solve systems of equations.
We shall study only finite systems of equations. The system

81X ——3 U(VX) is said to be finite if the set X is finite. Let

{xl,xg,ﬁ.g?xn} and let a; be the sort of x,. As the S-sorted
set X is isomorphic to Xa, we may define, without loss of tha‘gQF
nerality, a finite system as a function S:Xa —p U{V¥a) that is‘a

morphism s € T(a,a). It follows from proposition 2.1 that

3451
By ””\/%,9%{?\ b .miin }

s notice that JwVX?? «ia,ﬁ iy ’VXR(JWVXR).x gn] .
il n n # n+1 ;s
L §VXRﬁJmVKA) - ?VXA{S »Lﬁ,%) = sU((s Jmag ) = 8 »La,x £

Therefore Sy m‘\j{sﬁ”LayR}nexu} = gt by the definition of the

]
=
n

iterate is an W-continuous theory. Corollary 2.4 shows that using
2N

st we may compute the least solution of s in every.&elg} .

<

; : . : - : ¥ .
3.1, Example. The rational systems. Let T:Sﬁ'wmﬁ SXS™ be a

ot

he forgetful functor from the

.17 T e : : 1.
signature. Let Uz wAlg —> Set, be
<t
e

L

b )

category of w-~continuocus zzmalgebras t0 the category of S-sorted

sets,



o2
i

Tet us notice that the funetor U fulfills the conditions

(3.1), (3.2), (3.3) 20d (3.4). Indeed, it is very well known that

i

S,

U has a left adjoint V:Set, —%whAlg which maps every S-sorted set
i

X into VX, the w -continuous 3 -algebra freely generated by X. If
/”.‘ 5 p
\ﬁ)“ (ﬁ,@;gég ) is an w-continuous gﬂwai gebra then esch component

of the S-sorted set A is a strict w-complete poset. If

£2(A, 0,54, ] ,) — (Bygﬁyggin) iS a morphism of w-~continucus

: ﬁzmalgebraﬁ then each component of f3(A, ~9JWQ) wwﬁ‘(B 4,“LB) A6

W ~continuous and strict. Leﬁfﬁ}m (A,kaé, mhﬁ) be an w —continuous

S -algebra., If f:X ‘mw-ﬁ is a function let us denote by ¥:VX —s A&
h s B e 4 b Z Rt TR o ;

the unigue morphism of w -continuous Y Lalgebras such that
= _

(%) = flx) for every = in X, Tet f,:X — A be an increasing

seguence of functions (f_(x)

:‘ z\

1(A ,%{Xm k,%fnewg) It ie easy to
prove that the function n:VX —3 A defined by h{y)= \j{fﬁ(y}[ mm}
for every y in VX is an w-continuous » .algebra morphism, there-
: : Lk e 5 SR x
fore h = (\f{i%ﬂnew} )™ . Hence condition (3.4) is also fulfilled.

It is known that VX contains as a subalgebra the free
> —algebra generated by X..

A system is an S~sorted function s:¥ —3 VX. The system s is
said to be rational if s assigns to every x in X, an element from
the free > -algebra generated by X.

vet (&)= (4,0,,4, | ,) be an w-continous S'-algebra. It fol-

\\,jw ;A?&j‘y ?Mm, €AD & ,_é @ o R ‘

lows from proposition 2.1 tnat s has a least soiutlcn 2o ! ﬂ=

9= g{g (L );new}

where | n(x = mLﬁ for every x in X and the fupction

A) et (x A) —— Setg(X,A) is defined for every f:¥ — A Dby
’1) - sf%. As V¢ is the initial object uJAlgg it follows from

x

corollary 2.4 that s,=

V@h . Where hthQ -%K§»1s the unigue

W -continuous p -algebra morphism from V¢ ﬁO'éﬁﬁ



3.2, ﬁxamplg. The cg§§§§§«£§§e 8y
Let r, _E: —— Swg¥ be

Eetfﬁkb@ the c&ﬁ@")ww whose Objects are the 1nt@f*”@? 2tion

of‘éid,in an ay b¢tzdwd W-continuons “Egabr aic theory, I Ta57

and T sy are Objects of! D then ] “flyl’) is the get of alj

uﬁmccn%inuouﬁ alg@uz&ge thecry Berphismg Fel e o Such  thay

IP = 70(5, S BT o g, (T) for every oo >
The funetop

is defineg by

< AR ey ke a
a) U(IQJ@ 3 Tt) -{T(Ug )j %,d)g“%“x

b) SLEED (T ) v e a) is the TeStriction of p 4,
l\.l’
T(s,a),

Lt can pe Proved that U &31Q11eﬁ £3, Ll s 2 0 3)

Js and

(3.4}. Let ug Diention that if X is an QX““«*orte $et then VE and

=

¥y &re the r@wtricti@nm of the Standara inﬁ@rmre%afl
of : I
in 6” i to'zj and ¥, reapectivelyi@

Bl g

on of 7y

e bt s, e

4, Finite _Bystems of —£guationg Wl?h narameterg

We use the Same bynothegg and Notations ag in the brevioug

4.1, 9@f1n1t¢gﬁ. A morphignp BEN(n.aby 34 said to be & finite

A d

System of sﬂpﬁtioug S _With ﬁQ?SMFuG““ . @
ir ge;uéts(ka, ) and fe Setgxab,x) wo dencote by

<&, L5 ¢ Setq(Kab,X) the function defineg by <& Ty (x oL i) =
1 $

o . | a8 o N T i o :

=i f LE€lial]  then g(xa’i} else f(x

"bsi“f&é}‘
To solve the systen BeT(a,ab) Ve fix fe ﬁéi and

fe‘SétQ(Xb,U(A}), The funetjon

. G r ! a9y g
?A’f ¢ bﬁts(kasu<ﬂ)) =¥ Set



- 1

o

ot

is defined for every gegSetS(Xa,U(ﬂ)) by

)
ok
o G

bg) = & o P
¢, pl&) = 8 Ulkg, £s7).
L)

A fixed-point of €, . is said to be a golution of s in & for f.
Talg L pestisa s A ) ;

If fn is an increasing sequence from ﬁetS{Xa,H(A)) it follows

-

from (3.4) that
U({: W » \‘%‘?) = 'FI ( - %*':" e . 1%%"
& £57) = U((\/«& £ >)7) = U(<g, £,>™)

new Neip new

therefore @ﬁ f ig an w-continuous function., The Kleene fixed-

2
it/

point theorem tells us that
: n
sy (f) = \\{!?A,f(imﬁ)
new

i8 the least solution of s in A for f.

4.2. Proposition. Let heD(A,B) and f&Setg(Xb,U(A)). If g

is a solution of s in A for f then gU(h) ig & solution of 8 in B
for-filh).

Proot, If ge;SetS(Xa;U(A)) and ?A’f(g) = g then

95, £u(n)(80(0) = s U(<gl(h), £U(n)3") =

o

U

T

X Al w i =
= 8 U((«g,£> U(h))") = & Ul<g,f57h) = §, p(gU(h) = g0(h).o
:  J

4,3, Proposgition. If}aeéﬂﬁ,B) then

sg(f)U(h) = SB(fU<h)).
Proof. We show by induction on n that
Fa,p (a0 = 95 ey(n){lp)

For n=0, | ,U(h) = | by (3.3). If the above equality holds then

n+1
Sy, ¢ (Ly)0(N)

i

n b £
5 Uk gy o(1,),1> HU) =

il

n v -
5 U((<9, +1,),£3U0(n)F) =

n, 3 n+ 1
8 U(¢ §3 ey(n){Lp), FUR>T) = 95 4y (ly)-

i



.,...'}_3...

Using again (3.3) we deduce for every iqﬁja{} that

(s, (DT (x, 3) = B (g, (1,)(x, ) =

NGw 1=

¥

;Ei)(ga el p)0n))(x, 4) = ;Ei;?B,fU(h)(WLB)(Xa,i) =

Hi

S, (fﬂ(h))(xa’i) ;
therefore s (f)U(h) sB(lU(h)) &

4.4, Remark. Let s¢ egaeﬁS(KayU(VXb)) and  j:Xb —» Xab be

the functian defined by j(x ~aor ie(}aﬂ « The sys-

béi) - X-b e l+
tem 8 = SQU((3£Xab>%) has in every Ae.t & and for every
fe SQ%S(Xb,U(A)) a unigue solution @“U(f%);

Proof. Let AE 1'9! 15 ¢ g&Setq(Xa,U(ﬁ)) then

2 =T 3
S 8- enttie, et ) -

i

.-

81U (jeg,y <& TN = 81 U((je g0 =

: ik
8'U(f™)

tH

therefore g is a solution of ¢ in A for f if and only if gws*U{fﬁ)g

e - g +
4.5, Proposition, If s&‘?(a ab) t?en s¥ = SVXb(EXb)‘
(n

Proof, By definition s \\g 8
new

= SG<J“)J%> for new

We show by induction on neWw that

= nl

where S(O\ ' nd
vher PR and
....L..a,b

S(n+l)

Vb, £, . (L yxp) »
For n:Q we remark that | s = | yyy DY definitions. For the in-
ductive step we need the following computatioﬁ where we omit the
indices of o

n+l

: . o
Sl (ML\}’V}}) i ? (? (._.‘“mvyb) ) = S U(< ? (J”VX‘L)) $ &X-b =
= g8 Ul s(n) 1 >%) g0 s<n),lbﬁ = é{m+l),

(n)
(inXb) = \y/is =af .o

¥b new

Therefore

n
SVXb(th)'x‘\J/?VXb,E



wa A

4.6. Proposition. If s ¢T(a,ab), Ae |Dl and feSet (Xb,U(4))
then
s, (£) = stu(£%)

738

Proof, As f%éﬁg“VKb,A) it follows from proposition 4,3 that

B (6 TN w5 (6, TP o ain)

The conclusion is obtained using the previous proposition. @

At this point a comment ié welcome., Proposition 4.6 gives
another method to solve the system s in A for f. We compute the
formal solution st aﬁd then we interpret it, i.e. we cdmpute
S*U(fﬁ), We say the solution st is formal because we need not know
A and f to compute it. In other words, we may compute st without

£

interpreting the system s and the parameters.

We may try two other ways to sal%e the system s. The first
one is~t0 interpret the system 8 in A€ ﬁ@ﬁ » o solve it and then
to interpret the parameters. The second way is to interprei the pa-

: =

IR T N i e s DI gl T N o BN ST N e % 5 Ty AV o wF = . o
rameters in the system before solving it. Both ways give the least

golution.

Let é‘&}ﬁﬂ, We asgsume that the coproduct A + VXb exists in
{@)&nd we denote by i,:4 — A+VED and 1:VXb — A+VXDb its structu-
ral morphisms, If fﬁ:SetS(Xb,U(A)) let us denaﬁe by
: <lﬁ,fﬁ>e;@kﬂ+VXb,A) the unigue morphism such that i, ¢ 1A9fﬁ> =1,

and i <1Agf%> = fﬁ a

4.7. Proposition. If seT(a,ab), A€|(D)] and feSety(Xb,U(A))

then

5 g T i :ﬁ
5,(f) = 8, (€5 U(1) )0, £7 > L.

- Proof. It follows from proposition 4.3 that



hELE

5.

%. )

i

ﬁ

sjﬁgﬁ.v’}:b(t w ‘hU( 1) )b((

w"

= 8, (£, U(1)U(¢1,, 55 )) = sﬁ(&'}th(fﬁ)) = 5,(%)

Let Akéiiﬂ« We assume th&t the coproduct A+Viz exists in| Dl-
and we denote by iA:A —b feV¥E snd i:VXa ~— A4VXa its structurall
morphisms.

Let fec¢ eam(Xb U(&)) If we interpret the parzmeters in the

system s we obtain the funection

sl e Tf 4 S #*
s SLN{“XQAl)’fﬂlﬁh 1

The function s':Xa — U(A+VXa) may be thought as another
Kiﬁﬁ of system and we may try to solve it by the fixed-point tech-

nigue applied to a function

02 SeﬁS(XayU(A)) wmﬂ-SetS(Xa,U(A)).

Fa

Let gg;Setg(Xa,U(A)). et élﬁfg%‘nmﬁ(A+VXa A) be the unigue mor-

phism such that i, < 1g,g = lf.,1 and 1< 1A?g”>_m g% . By definition

m(s) = MI(<:},_,,£% ). The voint is that the function M is ecual

W

to ?A,f‘ Indeed

H

s Ukoe. Uli), £ul Lr)> 3 lv,,g% > ) =

s
A8 3

m (&)
M_S(i);fU{iA)> Ul< <1y yg h

U(<E (—141,,,,{" > ), fU(di,c1, aéfﬁ )> é“*’)

il

)
o

= 5 U zxau<gf*‘*>,fu<15>> e
=5 Uleg, > M) = ¢, o(e)
% A$i‘ >

Therefore Sy (f) = \vfmn gﬂ), Tet us mention that even if the func-
¥
new ; :

tione 5 P and are equal the difficulties in computing
l"sy 5

n
\
?A,f(g) and ﬂ{(g) for a given g e¢det (“u,U(&)) are different.



We come back to proposition 4.6. It suggests the definition

n

of a funector from T to au?mww(&). Pirst we prefer to explain the
lagt notation. Let M {Egi g be an S-sorted set such that each
M? is eﬁd@wed with a strict w-complete order. We prefer this time
to denote by zanwH(a,b) the set of all w-continuous functions
from Se%S(ngw) ) m@u Xa,M). .“ usual S@tS(Xa,M) is ordered point
wise. It is very well known that usPcww is an w-~continuous alge-
braic theory. As our notation is not the uﬁﬁal one we recall some
details. If f€<uP@Wm(agb) and g@aa%owﬁ(bgc) as usual fog = gf.

Let us recall tha J%a,b is the constant function mapping the

set SetS{ngm) to the least element of Setﬂ(Xa,M). If {f is

l’lw}n"‘w

an increasing sequence from aa?ow aa b) then (\¢Ii )(n) \le (h)
for every he;SetS(Xhﬁm), For every ié]}aﬂ and he SetS(Ka,M) we have

£%(h) (x ) = h(x, ). If fewPow,(a,c) and geywPow, (b,c) then
i. ai $ :L 3 a # I!i i?é

o

for every h ¢ Set.(¥c,M) and every i@[ﬁﬁﬂ]

ey (nilx . ) = ﬁfiigga; then flhilx ) elae g{h)(xb

b, d 8yi ~ g i@

i » M P 'p 7. £
F(A):T = W PO ( 1)

Iy  RA)(£)(n) = fu(n™)

LY

for every f& T(a,b) and h«aSetS(Kb,U(ﬁ)).

4.8, Proposition. F(A) is a morphism of w ~continuous S-sorte

algebraic theories
Proof. If f&€7(a,b) and geT(b,c) then for every
héaSetS(Xc,U(A))
(F(L) (£)oF(4)(g))(h) = F(A)(L)(F(A)(&)(h)) =
L et - Pt = f uat) -
= (£02)U(n™) = F(4)(£og)(h) therefore P(A)(£)°F(4)()=F(A)(feg).



e 07

1£ ié(ia{} then for every.hGQSetS(Xa,U(ﬁ))

P(A) () (B)(x, ) = () (<2(x ag,1))

o a
therefore F{ﬂ}(xi) = Xy e

For every h € Setg Xb,U(A)) and for every

i€ [{al],F(a)( na,b)(h)(xa

sk - :
i) = U(h )(wLﬁgb(Xa,i)) is the least ele-

ment of sort a, from U(4) therefore P(A) (de b) wLa,n .

L {fr}ﬁgug is sn increasing sequence from T(a,b) then for
every hé& Set S(Y LU(AR)) and 1{2&5‘%@\

%‘5}\ % .
N e
B 2

F(A)( \%{/im){h)(x%i) = U(h
- . ey
= Vo (g,0x, ) = \/ER(E) ) (x, )
therefore. F(.;’%,}(\g’/fn) = \;{}’:‘z‘(é,)(fn)

Another form of proposition 4.6 is:

4,9. Corollary. If s¢ T(2,ab) and A€ |{D)| then

8y = r(aY(st) .
4,10. Example. We continue example 3.1 where U:@A1§E w@ Sety
is the erf“ﬁ“ul functor.
TLet ¥ be an S-sorted set having each component a strict
w ~complete poset. It is well known that the concept of w-conti-
nucﬁs Ezwalg bra having M as carrier is equivalent to the concept

of interpretation of . in {M?OVM.
ki

2

4@1@52«9 ?*”(}GO%’:‘.‘VSI{G:’!&. Td= \\,\ = <.§9LGO’Q§C”P§: s e Lﬁ’ 13 an &3‘%(‘0(\ -

tinuous ¥ ~algebra and SEDIN - WPow is the equlvalent 1nuerpre«

tation then F(A):CT — @ Pow, iea the unigue extens LOﬁ of T %088
A > :

w -continuous algebraic theory morphism.

/ng 13665
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iy
s

Proof, W

P

FeE2. -

Let Geo! and let r(0) = (s,a). We recall that if

¥ P s i y = %
e have to prove uhaﬁ-F(éﬂ(izéﬁﬁ) = I(G) for every

&

fe Set.(Xa,A) then by definition

I(W)(f)(x$¢1) - z?ﬁ(f(xa?1>$f(xa,2),b‘.,f(xd'

.

We recall that if IE : ». —CT is the standard interpretation
- _

then
. - e
12(4)(x3 1) = G{x o, 10 Xg oy e Xy 9‘n}) %
If f eSet,(Xa,A) then

4y - s - criieh -
x{é)(lg(d)){f)(xggli = (IE(~)b(f JilEg o) =

), =

i

$ a’? ;a‘

(Gp(h Lgﬁ ?Qbeé‘éﬁ}l—a :&‘)) = G“A(f(}{a’l)g-“,f('x

i

1<@><f>(x8?1,>

therefore F(A)(iw(ﬁ)} = I(F) .e

Let | A (Agjfg~gjmﬁ, be an w -continuous ) ~algebra and let

de U(VXa) . It is very well known that 4 induces an operaticn G

8 (4)
on & of type (g,8). The derived operation &, is defined for every
: L
i s B r o ":;% ; AT
heset (Ta,A) by d-(h) = h"(d). 1f FeCF (s,0) aud be St (Xa. 8)
& AN £ N () L T 3 o
then F(Q) (L) () (x 1) = hi(f(x )} = Bl% l)ﬁin), ierefore igno-
£ w2 g v § = g \\.‘::,‘
ring the standard bijection between beusq {s,A) and ﬁq we may write

We interrupt for a while example 4.10 to give another resuit.

4.11. Proposition. Let R be an w-continuous S-sorted alge-

braic theory and let c€s™. Let Rc denote the S-sorted set

i!ﬁ(s,c}} seS® It we define

; 3 o
g(i)(h)(laﬁj) = Xif<h(xb91),z,.,n(x_ =

ib|
for every feR(a,b), h&Set(Xb,Re) and IL[ al] then

.:, P W Fow.
il



t

sk e

is an b)wconulnnoum algebraic theory morphism.

Proof. If feRla,b), géﬁﬁh%ﬁ),izmueﬁw@wiF£¥ and 1&£u4]
then
(e(f)og(g) ) (M) {x, ;) = el(f)(ele)(n))(x, .} =
Yy i Chg S

it

a . '
Xiu:gz,(f?:)(h)(:r% 1)seeerc(@) (M) (x 13 =

by {bi

3
s

Hea b
o Xii 4 XlE{;‘ & 6 © ,:’:

i

b%é%ﬂ11(3{&;1)’°“’h(}{&,§@¥§>
= fé’<h<-<{d 1)*‘}#&?1’1(}{&;4'%(}“%)}?&0 ﬁ J.g)(h)(«“s s

therefore c(f)oclag) = clen).

If heSet (Xa,Re) and i€fiai] then

w.a\ o e Q_,»ai.?a' il ; GYAT : i
E(:{i/{h>{z~$’ig1) = f‘xl 3»,:52. éli(:ha1-};)9ga§gll<};a‘? ia‘):}* Bl }1(}&3?1)

a
therefore c(x,)
If i€faf] 5né21a5eiﬁ {b,Rc) then

vy : WY { o .\,a E il e - ‘ 2
S}“\»i”ﬁ',b)(l@ \ﬂuaﬁi) e .&i"i"{%gb &L h.\ X‘b,},)’ ¢ 8 ogh(:&b’ %bi ) 3’ o

a
= K. 1 = i

Lesetl o e, C

i
o =Y " Rl
therefore g(mLRﬂh) = anph .
£ = : 5
Let tfn%QUH; be an increasing sequence of morphisms from

R{(a,b). If h éSe'&za{}’fb?Rc) and i¢[iaf] then

o T ) E"'f\ y ek
et KJ/ Jh)(x i) = w/ } ii&xﬁ,l’9’°°’h<xb,gb§)) -

_‘;1 n gl
&, .
= = Toehlw L > = cif Hlhitx .
5 ey s M SE TGS )
o e 4 . @ 5
therefore gﬁ\%ffn) \Xj Q(fn) .

4.10. Example (continued) Prép&sition 4.10.1 auggesﬁé us
to reﬁlace »u?owﬁ by on arbitrary w-continuous algebraic theory R.
Let I:37—s R an interpretation of 37 4in R and let
I%:CT -3 R be its unique extension to an w-continuous algebraic
Z

2 : o s ; die 2 : S
theory morphism. If se¢ T(a,ab) then Ié(sf) is said to be the solu-

tion of & in R,



L ¥

Let §e > with r(¢) = (s,a) and ¢ €8*, We define on Re an

operation @
op
P O & & : 3 ¥
qu.ﬁ:}gf?gztep:fi‘ai) xjv(?}‘{-f}ﬁfzyastgf >
where fiQZE{aisC) for every ie[iaj] . It is emsy to show that
Re = (Rc,{ ;

is an w-continuous §f -algaebra,
- A T

RS § :
: okt : -4 %3
4.10.2. Proposition. F(Re) = 1§g for every ce £ and every

interpretation I of 37 in the w-continuous algebraic theory H.
Proof. Both sides of the above equality are w-continuous
lgebraic theory morphisms defined on fT . As Cf is freely gene-
rated by > it suffices to show F‘{EIO\(I (cr)‘; (I e J (1 (a-)) for
where 1: D cs;:?:, is the stendard interpretation.
If Ge >, r(7) =(s,8) and hmgSetS(Xa§R@) then

1. v
# -
) = BT (x5 1)

B,1
# I{»
= h <C(A l?°*°?K §q()) = 5C\ﬂ( l)wtwo;h<y 9aal)) =
e S £ 7 s v\
= %, 1(0) < h(}*a,l)’””h(‘xa, a1 = (@) () (xg )
therefore
: <«:>> (1¥e) (I_(7))
Re)(I (o)) = 1 T (o) = (IVe)(T (7 . @
F(Re) ( g( }) = ol T) i

4.10.3. Corollary, I1f seCT (a,ab), I is= an interpretation

P eI, ¢

of Ei in the w-continuous algebraic theory R and c &£S* then

8 . =o(I%(st)) . @

4,10.4. Corollary. Let seT(a,ab) and let I be an interpre-
tation of D1 in the w-continuous algebraic theory R. If

i‘eﬂeﬁs(Xb,Hb) is defined by f(xb i) - x? for every ieifbﬁ then
b

Boder oy ;
kiI (m?) =8 I(f)(x )

Bb

8,3



&

€

for every ic[ial) .

Proof. It follows from the previous corollary that

o BN SE 0 Yy ;ﬁ: »;’?’ E oL o
s ¢ (f)(x ?i) = b(1'(a )}(ﬁ)(xa’i} =
ib ,
8. 4 + Bl % R %
X1 (s )ﬁ.&{Abﬁlj,ac.pf(xb?%bij> = X, 1 (eh). o

v

The previous corollary gives a method %o compute I%(Qﬁ).@

4,12, Example. Context-free subsets of a monoid

[

A complete semilattice is a poset in which every subset has

a least upper bound {(lub). A complete semilattice monoid (cslm) is

&2

=€

o

both

e

an algebraic structure which ﬂﬂmple%e gemilattice and
monoid whose product ig distributive with respegt to lubs,
Let ¥ be a monoid, Let us denote by ?(%)/the gset of a8l1ll1l sub~
gets of M. The product in P(M) is defined by AB= {mﬁm“{m%;i,mgﬁﬁé d
I1f we order the monoid P(M) by inclusion then P(ll) becomes & csimgv
Given two complete gemilattice monoids M and M', & monoid
morphism h:¥ ~— M*' is called a cslm morphism if h(\jA)

Eginxm)f m ¢ ;} for every subset A of M.

Given a monoid M and a set X we denote by M{¥|the coproduct

Given two sets X and Y, a moncid ¥ and a function f:¥— P(MIY

we denote by f7:P(M[{¥]) = P(M{¥]) the unigque cslm mor ﬂ} ism such
& 4 -
that £(A) = A for every AcM and £7({x}) = f(x) for every xeX.

Tiet M be & monoid and let X be a gset. A system is a func-

e

tion 8:X - P(M[X]). A solution of & in a funcﬁion 31X s P(W)

‘ﬁ’“ a -
guch that sf™ = f. It is well known %h R averv sys%em hag &

18mst solution. If the set X is finite and s(x) i@ finite for every

x X then every component of the least solution of s is called
8. cont -free subset of M.

To anply the general theory to the above system we define

: P i = : = =i
the category D and the functor U:3)~m4 Set. The objects afKRere



all the sets. Given the sets X and Y we say that fc:D(ﬁgY) j £

fode

s @ ce8lm morphism from P(M[D ]} o P(M{Y]) such that f({A) = A
Sy =) : e A -
for every subset A of M, The composition of feBlX,Y) by
; N 2
20 e e B : S ;
f*e@ifgz) 1n1y/13 Just their composition as functions. The functor
Mot

U:@)ww% Set is defined by U(X) = P(M[X]) for every set X and

U(f) = £ for every fé&é(XgY). It is not very difficult to prove

that hypotheses 3.1, 3.2, 3;3 and 3.4 are fulfilled for the above
U, If $:X ~ P(M[X]) is a system then its least solution is just

the solution of & in the empty object of D.
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