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PARTIAL FLOWCHARTS

Virgil Emil C&zinescu

The goal of this paper is to introduce the concept of orde-

red T-module with iterate and to prove that the partial flowcharts

'farm a free commutative ordered T-module with iterate.

1. Intrecduction

Qur study is based on'the model of flowcharts over the alge-
braic theory PStrS, These flowcharts are called partial. The reason
for studying partial flowcharits is the same as the reason for stu-
dying_partial trees.

The intuitive ideas which yield the order relation on partial
flowcharts are similar to whose which yield the‘order relation on
partial trees.

Let A and B be partial flowcharts having the same inputs and
exits. We say that A is less than B if there exists an injective
function f from the set of internal vertices of A to the set of in-
ternal vertices of B such that: .

a) for every internal vertex n of A, the vertices n and f(n)
are labeled by the same statement,

bl) if the input i of A is defined and equal to the exit j,
then the input i of B is defined and equ&l.telthe exit j,

b2) if the input i of A is defined and is equal to the in-
put j of the statement which labels the internal vertex n, then the
input i of B is defined aﬁﬂ is equal to the input j of the state-
ment which labels the internal vertex f(n),

cl) if in A the k-th arrow going from the internal vertex n
is défined and goes to the exit j, then in B the k-th arrow going

from +the internal vertex f(n) is defined and goes to the exit j,
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¢2) if in A the k~th arrow going from the internal vertex n
is defined and goes to the input j of the statement which labels
the internal vertex v, then in B the k-th arrow going from the in-

ternal vertex f(n) is defined and goes to the input j of the sia-

tement which labels the internsl vertex f(v).

Thege ideas yield definition 3.1 below.

From the seméntic point of view, if an input or a successor
of an internal vertex is not defined, then it may be interpreted
as a loop without exit, '

In this paper we work with the following fixed objects:

a) ﬁn‘S~sofﬁed algebraic theory T which is_also an algebraic
theory with iterate and an ordered dl gebraic theory and fulfills
the follewing conditions

e 1Jo,, that is 170, is the Smgllest morphism of
T(a,b),

2) the iterate is an increasing functions

b) An equidivisible monoid HW endcwed with two monoid moxr~

=
REe Mo 5

(97}

L S
phisms r ¢+ M —> § &an

Liet us remark that every rationally closed algebraic theory

fulfills condition a).

2. Ordered T-modules with iterate

2.1. Definition. A T_module with iterate H ¢+ T —> Q is said
to be ordered if the following eondiﬁiens‘are fulfilled:

a) for every a,b ¢ 5%, the set Q(a,b) is partially ordered
and H(‘_L= %) ig ite first element,

Bl f 4g in T(a,b) implies H(f)é H(g) in Q{(a,b),

c) the composition, the tupling and the iterate are in-
creasing.

It is easy to see that 1,: T —> T is an ordered T-module
ES

with lteTw’ee
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As PStrS is initial both in the category of ordered theories
and in the category of theories with iterate we deduce that every
rationally closed S-sorted aTgebramc theory is an ordered PS tr@mmou
dule with iterate.

If H: T —> Q is an ordered T-module with iterate then:

1) B L p B 1o o) = HO Lag pa)>

2) the sum is increasing.

2e26 Qgﬁgggjggﬁ,'Let Q and Q' be ordered T-modules with ite-
rate. & T-module with iteiaté morphism F:Q‘Mwé Q' is said to be a

morphism of ordered T-modules with iterate if A 2 @ in Q¢{a,b) im-

plies Fk&)éF(p) in-Q'la.b).
The composition of two morphisms of ordered T-modules with
iterate is & morphism of ordered T-modules with iterate.

2.3, Definition. Let H:T — Q be a T-module with iterate.

We say that { is an admissible preorder relation on Q if for every

a,b e 5%, { is a preorder relation on Q(a,b) such that:

1) f& g in T(a,b) implies H(f) (}Ti(g),

2) B(}, ,){ o for each o €Q(a,b),

3)c&‘({% in ¢(a,b) and <x_{[3 in Q(b,c) imply

oLk f, in 0fa,c),

4) &< ﬁ in Q(a,c) and QL F in Q(b,p} im
<ol 4 {Lp, P > '

5)9L<(5 in Q(a,ab) implies o{*{ ﬁ*'in Q(a,b).

Let 4{ be an admissible preorder relation on the T-module
.witH iterate H :T —a Q, We introduce on Q(a,b) the corresponding
equmvalenoe relation

ol = >d<P and @{&.
It is easy to see that = 1is a congruence on Q. Let Q/; be the
quotient T-module with jterate of Q by ® and let P:Q — Q/= be

the naturale T-module with iterate morphism. We introduce in the



Rt

e

B

usual way an or&ef relation on Q/% (a,b):
?@Qé?%ﬂ@mw&{?o
0/ endowed with this order relatioﬁ becomes an ordered T-module
with iterate which is called the guotient of Q by {; and is denoted
by Q/4

2.4, Proposition. Bet‘{ be an admissible preorder relation
0

on ﬁhe_T«madule with iterate If Q¢ is an ordered T-module with

‘iterste and F:Q —=> Q' a T«m@dulé with iteraté_mcrphism Such that
95\{@ in Q(a,b) dimplies P() £ F(fj)

then: there exists & unigue ordered T-module with iterate morphism

ng/{ —> Q' guch that PG = F.

3, The free ordered T-module with iteratbe

3.1, Definition. Let (i,t,m) and (i',6',m!) bhe ip Flm?T(a,b).
We write :
(i bmyd (L0 ,m)
if and only if there exists two pasitive integers n,p, an injec-

[} [
tion f&N(n,p) and My Moy e ety ,ml,mm,a..,mp in M such that

in “:': Ilﬂllil?w @ ehln9
: ] ¥ [
mi= o Myes 8
l 2 '
m,= m for every ok
i £(1) ¥ Lq
(T(Lg\ilghl?gwes?m )'ilb> é

k4 ¢ ¢
t(r{f;mlgmzye@agmp)+lb)ﬁ:r-{f;mlgmgg.‘,,mp)t',

Let us remark_that the congruence »uJ introduced in the pre-
vious paper (Cizinescu and Grama) is included in 4‘9

In the above definition we may replace every element m; or
m by a new product., It is useful to study two cases.

and k@ﬁlm(f}, In this case we write
' § ir §

m 1 2. ® ernk :i]ulia? ¢ @ ‘“l'la 3{ 2'19 @ elnp
eN( n,p-1+j) by

k
a) m. = mkmﬁeu,mg
J_ o

and we define the injection

Lo
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wﬁm

j flu) 1f Pln)< ¢
lhf(u)+j~1 if f(u)s k .
: 3

[ i 3 §
- . e i
AS- x(f;ml,gaagmﬁ)mr(gsmlg,@a,mﬁw1§mifﬁemgmg,mi

milarliy for r* it is easy to see that the conditions of the above

glu)

-

¢
410 ool ) and si-

definition are again fulfilled for the new decomposition of m' as a

product and for the injection g.

k k k : v : . e
b) m = mlmga,«mj .« A8 m, = mf’k)’ this case is equivalent to
Ch s \ 3

! k k B - = : .
mf(k)“ m moauomag In this case we write

Kok ok |
rﬁ f o ﬁllﬂ‘lg @ e @ mkm3‘m12312 LN -3 m“ﬁt ml{n&‘l ® & & mn 9
% § (] K §

k k
mﬁw mlmzo-}amé{}, m-imr-eaom rﬁ"f(l’) “l"lo"mp

and we define the injection geN(n-1+j, p-1l+j) by

( f{u) | if cusilk .' and f(u) £ £(k)
flu)+j-1 if aLR and . f(u)>» £f(k)
glu) =¢ f(k)+u-k if kdu<k+] -
flu=-j+1) if k+tjdu and flu-j+l) < £(k)
f(u-j+1l)+j-1 4if ke¢jtu and flu=j+l) > :(.)

: ] 4 : 1 ¢ - e ] ¢ , )
Asr(f;:{n:L; e ’mp)mlﬁ(g;lﬂl"ﬁ o 6 ,h}‘f( l{)wl”ml’ P S yﬁij’luf(k._)*ly & @ 9}np)

and similarly for rf it is easy to see that the conditions of the
above definition are again fulfilled for the new decompositions of

e injection g. : ' :

tn )

©

=
o
e
v
o
o
fés]
o
d
o
0
éa

m and m® as fo

i

3.2. Proposition. The relation introduced by definition 24

-

is an admissible precordere relation on Flh e

Proof. As the reflexibility is obvious let us prove that
our relation is transitive. Let us suppose (i?t,m){ (2t 0 ml)
with the seme notations as in definition 2.1 and
(i°gt',m')< fan puomiadin FlmgT(a’b)° From the remark following de-
finition 3.1 and from the equidivisibility of M we may accept
without loss of general&ty that we have only one decomposition of

m' as & product. So there exist a positive integer q, an injection
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< 13 §¥ i
geNip,g) and My lyse00sm  in M such that

Y 0ot e
m’= W, Im i
; 1 20 e 6 q

% it

M.= m : for each j¢ [
e et islm

: L o ; o
1°<r(g;mlgm,,e,u,mé)+1,)é in

t’(r(g,ml,m?gse.,m )+3b) A égfml,mggoss,m )t" ¢

We deduce that the injection fge N(m,q) has the following proyérties
£ L] 5 -
my = mf(j)z'm(fg)(i) for each je [n]
L]

5 & (1] 111
1(r(fg;ml,m2,...,ma)+1b) =

i

¢ @ ¢ 114 1] k1]
i(r(f;ml,mg,.,.,mp)+lb)(r(g;ml,m2,...,mq)+1b)é iu
(14 (1] 11
@(r(fg;ml,mz,..@qu)+1b) =
] ] £ ] 1) 1] t
= t(r(fgml,mg,.,,,m )+1b){r(g;mj,m?,.,,,m )+1b)f

L] 1]

& T (f mlﬁmf)?"’im )-L ( 9mlﬁ 2?“°9*ﬂ )t“ =

i

r'(fg;ml,mz,.aaﬁmq)t"

therefore (i,t,m)<.(i",t",m").

1) 18 Toe dn Tlah) thew St(E) d ghle) 4w B) 1y, a0

’“N) we deduce

QG‘%

Indeed, as St(f) = (£,0 ) and St(g) = (g

b’ n

fxl1 )+1 } = f(lﬁ+1_)

i

15 @y <  and

Ob(r(ll,em)+i Y= Op= x° (11, H)O .

20 If lict.mie 2] (a,b) then sSt( | . b’< (i,t,m), We decom-

rp&

pose e,. and m as ey end eym, respectively, Let fe N(1,2) be defined

M M

by £(1) = 1. We deduce that

éLa,b(r(f;em’m)+1b) = —La,r(m)b’éi E

Ob(r(f;emgm)-%lb) o= Or(m)bz Or'(m)t = r'(f;erﬁpm)to

3) Tiet s suppose (1, 6,m) < (10 8 mt) A Pl T(a,b) with the
’U.,

same notations as in definition 3.1 and (j,u,v){ (j',u',v') in

Fl, .(b,c). We may write according to definition 3.1 that
b
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Vo= e o1l

n+k?

m fie
M1 ne2 -

and that there exists an injection g #N(k,q) such that

’ : o

Bew = Poiotn) for each welk]

i v e :

e ’» i & e e 4 g8

d (gwp ]ﬂp@ # 9ﬁp%q, ic)_. 3 and

( ( & 4 1 % 5( L] {1 ) 11
uwr sm y neie gl i L Y'ligsm

&3 p'i‘“‘li gmp-&-q)% C}m &3 p+1g¢¢.gmp+q U.. ®

We deduce
W/
{ ¢

| ¢ .0
MV = M- Mavsel ﬂ‘V'r‘-‘ Ml s el ‘
¥ ixl 2 n.“%'ki{{ 351 L? & p'I"Q 5

f+ge N(n+k,prq) is an injection ,

(] < § g
Mo =B p o for each wg [n+k)

i(lr(m) )(r(fé“?mqg.n,?m )+1 } =

#

§
i(r(f;ml,ao.,mp}+lﬁ)( P )+3(r(ggmpﬁlga.c,mn G)+1C))ﬁ

£ 1L prytit)

¥

(t 1?(1&)*3)961‘{1’{1)‘11? (r({"& K}'l;aoogm )*{fl )

= (t{x(f; ml,a.»,m )%1 )(1 phit) 3(?(F,m 1,,g.ymp¢q)+1c))s

e

A rﬁ

: v
,)+u(r(g;mp+1,..,,m )4l )&

s O o

rfm
¢
5‘.,{1" (f‘m ysoeg!ﬁf 'ﬁ‘{lw(r,g)@*;j ) Or(rq )“}'1 (gfmp}.lyc-oayrﬂnﬂq_q)uﬁ\ e
? i _ ;
= r‘(f+g;mlge,.,mp+q)<:t‘(1r(m,)¢3'},Or(m,)+u*}
therefore (i?tgm)(jﬁuyv)%\(i“,t',m“)(j',u’,v')a

4) Let us suppose (i,t,m)< (i',t*,m') in-FlM’T(a,b)

with the same notations as in definition 3.1 an&_(j,u,v){(j‘su“yv')

in FlM,T(c,b}, We may write according to definition 3.1 thaj

L 8 €

Vv o= m e o o1 I)'i"q

n+l N+ 2

\vlf‘ i

m s ™ m @ @ m
Tpkl T pe2tt

and that there exists an injection g tNaL,q) such that

¢

¥ ] X
J(r(g; ‘%—Lgmp}“ ;...M’ﬂ )':;‘-Jv

K t} ¢

' ¢
u(r(g;m n sang o el dertlen cias y I
( (hg ""“!"-..’..9 p+27 § p+q)+ b)"“ (L>9 p+17 g4 jokde}

Yt
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We deduce

L]

i 4 ¢
mivt = o !
& 1ﬁ2h «.3 P ’-q‘

ny = m.m « “
: I 20 gl

frg e N(n+k,p+q) is an injection,

My = Doy o) (w) for each we [n+k7],

)
+0 "(\.7)4#“'31})?0"‘( \‘4 J‘} (T{ B é’;;rl’zgggg’m )f"} )

&

= < (riv-ﬁmlyeaz,?n%)"s'l ){«._ﬁimg\ég (‘73 ”%”_{n&})’

2 #
L&/ ; N
- %) ﬁ'dn
Qr{mi )"%‘J(\l(bﬂpp%lg p"i"c%

é Ciﬁ(lr(mg)df‘ I’(v" )4*.1. *»Jr(m } J > 4

¥
el +1,7,0 ruy (r (ﬂ%zymlﬁ.,agmp%q)+lb) &

r(m) (v r{m)

4

¢ ¥ .
= "o 5 N .
(t(r(fglnlgtﬂegmp}‘i’ib)(wrimﬁ >+OI'(‘kf‘)'%1b)t

1] ?
= 1 oy
r(ﬁ,\+u(f(m,1p+i,*,o,mp%q)+ib)> <

i 9
- dz'iffm},.a,’m.)t Q) Or( v ) o) Qr(m e (Fglp ey
= 7! (f*w,nl,st.,m )4 $ (; 1*‘%Or{v’)*l ¥ Or(r')*u'>

therefore é(iﬁsm}.s(39“9\7)&%&({‘1’;*&‘@m‘);{:}*_gu*',v‘)> .

5) Let us suppose (i,t,m)< (i’,%',m*) in Fly pla,ab).
i ] :
g ]
Let m = mlmgeogmn, mt = m1m2°f“mp and felim,pn) an injecition
| a £ h je o
Beomolla - or eac & tu
e je =l
: < § 8 ¢ _ :
1(r(i;ml,m29,¢.,mn}+1ab)éaﬁ and
; ¢ e e " : DR { -
t(r(i;ml,mg,a,.;mp)+1ab)§ P (f;ml,mg,,,,,mp)t s

We deduce

£

(i(sZ >+1L)>‘f‘(r L‘..”*m mb)

= (i(Si(m)+1b)(1a+r(f;ml,e..,m )+1b))f =

it

(i(x (fgmigmggg..,m }rl b)(”x(m )+1b))faw

in

: 2 4
(l'(f}r<mg )%-}.{)))‘i‘ and

s

such
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8
t; T % o o o
o i )@1 )<(1()r(z)+l )) r(m)m (r(f mi, °,m )+1 )
e C‘a Ll e ', : R
= t(gr<m)+1b)(lavz(m?ml,*,.gmp)%lb)
o B i
2 C.“L“ 3 1 i ‘\' ‘E 'z!“ "?a 4%
f: (l(‘Jvﬁ(i’{;}TJ‘};}}) (M(. Pﬁilgu nyr‘] )‘51 /’1r<m )‘t‘l ')»i{.
g i ; a
Lt gl 3 20y
£ 1 Col P ml, 10 )+13 ){J%<m5>+lb)f<1 ( mt )t +1. )) ,Lr(m )h
a(“ : ')!e(ca 1 v & >
'(- & .}:’Zw ® 6 @ 1 T " oty i - i
€ X L amp t Jr(me)% y<(1 <J?(K ) b’) T(m‘)b
therefore (i;t?m)*@i(i’g+“,m’)‘,
Let PF i 7 be the gquotient of Fl ly o, by the admissible preor-
g &
der relation 1aur0ﬁuc@& by definition 3.1, let PSt:T -~ ?}N ) be
its structural functor and ?ﬂzm ey PFlW 0 the Standard interpre-
: A1 Le A
tation of M in ?31M T defined as the composition of IM with the
Lb, J
natural T-module with iterate morphism P: qu T — PFly ne
; 1oy

Aede Lemma.
mutative.
Proof. We remarked that

the existence of

1

, —=3 PF1.,
iy T

2N

=

P CP

=

m8uch: that CF
7 @
is commutative

The Ofdered T-module with iterate PF1

~ & <, therefore e~ & =
a unique T-module w

P

e

We deduce

ith iterate morphism

i.e, the following diagram

b

7 L 5 eom ; :
Fly,m i
a"t\\\': f 1?
Py
PFlm Y
g L = : e : e 5 l&J"
Let »(ﬂrFlmgT(dv ) and @z.Flm T(ﬁ gl LEIM,T is commutative we
deduce
: ~C
Cut(S g mJ+C(P)) = (C(P)+C@&))Cst(bd) .
We deduce applying F that
T 2 ox J TN c 5
PSE(ST) (PEC)+P(p)) = (P(P)+P(e))PSH(S])
then.PFlm 0 ig commutative.
Ly

We recall that in a T-module

with iterate H:T —> Q
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a) 1 (f}ﬁg? (H(£) ‘a{f”l+1b))?

for every o«e Q{a,2b) and every isomorphism fe T(c,a).
okl ce : i
b) H{lg Jb) L ¢?>§:ﬂ @égﬁgséi )< q%ﬁ(b +1 ))? I, >}%

3.4, Theorem. The commutative ordered T-module with iterate

Pﬁlw m is freely generated by K.
i
Proof. Liet H:T — Q be a commutative ordered T-module with.

iterate and let 1 be an interpretation of M in Q. As Fl p is the
. Hlg ok
T-module with iterate freely generated by M there exists one and

04

only one T-module with iterate morphism F:Fl, , — Q such that
.;3.9.

Iyf = 15 We recall that for every (i,t, m)m.?_w T(a?b} we have
(i, t,m) = H(i)<{z(m)ﬁ(t})fglb§
To apply pr0p0$itien 2,4 it is enough to show that
(i;tgn){ v, v mb) in VLE ( gb) implies F(i,t,m) é{i’?t‘yme}.

Let us suppose (i,%t,m)< (i',%',m') in Fl, ,playP). Then

there exists an injection fe N(n,p) and the products M=y Moo o ol

¢ §

miemon. .., such that
Se p

: § S

., = Mg for ever 1€ fin)

my £(1) y Ly s

¢ §

S e i 3 “
1§r\fgﬂlgy2,a¢.gmp}vlb)@lﬁ and

] g § ¢ $ ?
1. = o u@!‘{;‘vﬁ 4 &
%(1\{;,3;1;?,‘3;6.&53&; )’1”1-\,0) :;’II \J,gilgff‘zgaua’;.p)t &

As f¢ N{n,p) is an injection there @Xists another injection

ge N(p-n,p) such that ¢f,g>¢cN(p,p) is a bijection. Let us denote
[3

£ ] ‘
m em m ool and.
g(1) g(2) """ "glp-n) "
h = 1‘(4;{"%-}, ; ml?z}12geuﬁgmp) &

We deduce that

r(f; m;gmo,..a,m ) = (1

r(m)+0$(m”))h and
; i ¢ : .
(r(f;nilfmzyﬁncgfﬂp)“{"lb)(}ﬁ +1b) 1r(m)+or{m")+lb .

As the T-module Q is commutative it follows that



e

H(h)I(m') = H(lg%{ef Z5 {ﬁl) r(m 3v¢e@,r(mn)))

&

(l(ﬁ %Y(% ) et (m }) =

#

¢ ] ¥
Tlm . bl ] £ i asy g o e T i
(@(mf(l)>¢‘ ¢‘nf(ﬁ))%i(mg{1}}%a@,.I(mg(pmn})).

H]

- : Sty 8 :
H(lax(éi,gbgr“(ml)y¢.u,r‘(mp)))

i

g Bialy [ @
(I(m)ﬂ(r‘(f;mlpcao,m N E(m"}ﬁ(r*{g;mq,.,~ym 15

]
1,m¢g‘ag,m })(I{m‘ii(t*))? It follows from the
remarks before this theorem that

A = B,y #0, oy JE(R) (T(m )H(£ )T =

r{m

8 # = : :
= (1, () *0p () (H(R)I(m JE(E )H(n 1 T <

r(m)

= H(1 )) (I(m)H(r?{f;mé?.ee,m;)t'(h*1+1b)),

r(m)*or(m”
(m")H ! : sty T
I{m")H{x® (“’ml’”’°*mp>t (h vlb>)> p3

0 -1

} % :
% 4 £ i h K { ‘{Ptﬁ @ e 6 | {m \
Li((\lr(‘m) :r."am“)-)(j(m) "(E<I\ff>‘r1$’ ‘ ﬁmp)+1b)\b +lb);”
’ st
H("Lx‘(m“),r{mm’”)b)}- =
2 ; - % ' 3 3 ‘%::.
= H(1 J’r(m) I{‘éfﬁw ) )4.};(31)}“ dg’{‘lz‘(m) ’Oi'.‘{l‘i’i”)*lb) / "H(‘-LI‘(H}") gr{mmﬂ)bi}’-

g . : o
= (L) H(S(0  pny* 2 myp) € Lp(mm), 2(m) b, *r{m)b>? ) =

= (T{m)H(E))T .
Pherefore

F(i',t%,m') = H(i') < (T(m))HE(E'NT ,1,.> 5

3 § ¢ : -
> (i)« H(r(f;ml,mz“.,,mﬂ))("f.{m*)a(t‘))T§1b> 3

> H(L) < (TmH)T, 1,3 = F(1,%,m).

In the diagrem

polom . Bt
: M,T Sio
1 -
\ \ w P <
N = -
I ¢
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S

we deduce from proposition 2.4 that there exists a unigue morphism

of ordered T-modules with iterate G:PPL,. ﬁ wemr 0 SUCH that PO o

Lil g

£ A e :
bherefore P .0 = 1. .P6 = J 8 = T,

4 T
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yaper: ia to dptroduce flhe concept of Z-conti-
nuous T-module with iterate and to prove that the infinite partial

e form a free commutative Z-continuous fomodule with iterate.

ek

% Y S g 3 S % o ¢k
The reason for studyir s the

o
5V
s

dnfinite flowcharts is the same
r infinite trees,

Nevertheless, the situation in the case of frees is better

Es

than in the case of flowcharts because we have a very nice mathema.

tical object to repregent an infinite tree. We shall work in the case

of infinite flowcharts asg in the ﬂlﬂﬂ€;rll§ papers on infinite trees,

1.6, we shall model an infinite flow

harts as an adequate set of fi-
nite flowcharts.

Prom the algebraic view-point the problem is then to complete

£

£ s 5 ¥ > ) o SR AR B i S AT S ST 2% Vi et Ty i P s o e

an ordered Pemodule with lleraive. o€ LNOW AOW an ordered
S P E O v o S R R 2 y 3 . e AR < L e 5

algebra and this technigue will be sdecuate for our problem although

Ty ‘ or e R e e e
a new difficulty arises. We have to prove that the axioms of T-modu-

les with prﬁmvrv"ﬁ by Ghis witt do 1%

in the next section.

e s ] 4~ o P .r'--: o ey ode o -
2, Completeness and eguations

Tet 7 be & union complete, crossed-dowp and eTos sged~-up subset

7.
)

gystem on posets such that.@”@ﬂﬁ{?] for every poset P.

o

We recall that for & crossed-down subsel system 74 on posets,

3 S SREE PR S 7 A . O S T B, s p S
a funciion ol cseveral variaebles is Z-confinuous if end only if =%

~continuous by components.

=

it
n

e Ty 5 o g A AR =4 v~ g oy 7y 7o
Tet r 2 57— SXST be an S-sorfed signature,
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ig ordered,

el

i

ot

"r.;.

:.‘ v’\‘,')

(e T S T
bs Zods union

Fa T 33 €5 - 5
2 Lﬁ“al g wilg R 2 .5,,4

HN’S

a Al (‘f"-_"" i
gv;«1$uaee\! & 7
fal

N
ot A e 7
o : Rt S L8 %
[ |
& A

¥ ~ : S Eansh (¥4 5
S Operasions are 4 (ﬂ‘rIl‘u'Li'lbL bR

d

A 4 o o i -
23 é&r £ 4 [4‘.& % } e
8

i . is & homomworphism of oxrdere

and for every

RS SO _, . kv
be an ordered >’ -algebra., ¥

v homomorphism of

and only one homomorphi

never W

ordered algebra

from theoren
Tioh X
able of sort

by X.
b Wgoaie ]

L et e

E",“PUUwuth

¥ &
Let A

A

Ho . bha caryd

be an S-sorted

=
ne &a

5.t ere-dfulfilled,.

set

5. Tet I .= (1.0,
A al

er of A we

R (i R o e -y
an ordered 5, —algebra. Let Ge

lete 118

S

1

1

A
L

5
551
%

Lo

crossed-up we deduce

e 9(3,)9 woeiarg Ot
3. FRrs ;Clﬁ

"gE’Q’{Ls}

carriers are Zecomplete and

crogseed -

2

& b“ﬂ‘ YA @1k oy ek
S by componentsS. &8 4 45

Therefore IfA) is a Z-conti-

A T AT . - % b P
efined for every s&€lB and a€lf_ DY
A

: 3 : r s 3
deduce that (L }={}_ ] is the smallest

fhe S—sorted function

= g
1e gyl ecl.

TR e S
d >, ~algebras

oo B8

complete, cdrossed-down and

e R o & e L i O
i O?{f every posed P. Let
;

or ey j-continuous . -algebras B

"L) ki ‘PIT
crdered 2; ~algebras £ : A —3 B there

b =4
sm of Z~combtinuous é' nlgebres

o
b3
@
ot
=
o
5
O
<y

e shall ation I{A] for on

1 suppose that the } fo* leses on Z

. An element of X_ 18 called & vari-
pes)

R

Y be the free » - -algebrs generated

lements from L_ is said to be a
ot

For every S-sorted function from A

A Fﬁ:

UY

I, — A the unigue 2& —~omo-
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e

vy m‘:«: Wit o ')":F“'t‘t"" R ER RN Ty gy ey sl oy 4
CWOYpOlsm walch exvends 1. Lae p, -egqua 5101 @ =

R e e
e B

g K..?

i
foad
i

2 ; : F;;TL;’ ; Lo : - .J' : %0
e.) = £ (e,) for every S-sorted etion
RS st ,
C; .? o

s operations are

g

vy

m_nl+n2+,,.+m%aﬁ

a}

£3 o~ - < 3 ; - Ty g <« oy o o 5 o
Tor - every o & Lag n® Let x be a varisble. Let

the unigue » . —morphism

nx 2§ b U

Ah

nx(y)

from X to the carvier of A. If o€l -a8nd

o Bl L
e el o cee Yy

nxS(e)éil for every x from X.

simple if e, and e, are

i e " o Y ots i}
et us remark that

iterate are simple. Therefore we work with simple

deal with an algebreic
may take the hypothesis
rected). The subseguent

2 ® ‘dr & };I GQ’SYRFL & E.i St \:\Qa.

simple. If f is an S-gorted L

o
P s
o,
')
‘
3

" wdda

f? ({ Wxn\if

number of the ocecurrences of x ir p.
a y. -algebra. Let £ and g be functions

if nx (e)S 0 dmply
e wi

R F sk
in-% then Iﬁ{@)_m gbﬂé}*
s eloment e T A6 52353 k5 be simnle A
ATl eremernt &l I8 s8atd @G0 pe U.L_J-x:}:.};‘::; i
X. Un equetion & = {é?,c?) is said to be
i B <

: the axioms of commubtative T-modules with

guations, If you.

) 3 W, B el ORI LY i S ] o
structure whose axioms are not simple you

Z2¢C Dh,i.e. every Z-set is & [O-get (di-
proofs may be easily modified.

be an ordeded ] -algebra and let eal_ be

Rl s
“1

unction from X to the carrier of Tkn‘

o

¥ = A slzle £iy) For evony x a,,g\}] .

Proof. By strue LM?~4 induction.



If e is a variable then
({ kC g1k —— 4, @(x)g,f(x?\f@f every XQ£X}:SQ'
(Ble - dle) =k (o),
Tet e = ”T( 13cﬁy°sg,e Y with r(ﬁ) (b;ul p@.ah Ve B @ ig

gimple it follows that e. i

: ! " simple for every i&fn], then we ma

(2]

use the inductive hypothesis for every €. ien].

Because £ (e) = (B1 where
= f (e 0 )| f#i >~f'-
= { . Cl’“Zf"‘”Cn C, & e, or_lé;Ln] }

and ({g¥(e)] g:x — 4, a(x)e £(x) for xeX}] = () where

s ok

¢ ={0,(eMep) een),enn, e )] @:X = Ayg(x)e £(x) for xeX)

it is enough to show that the sets B and C are mutually cofinal.
We deduce from the inductive hypothesis that CB.
. - . - # -
g VLet beB, 1.8 b= Gﬁ(cl’¢2’°f"°n) where cieif (ei) for every
ien]. It follows from the inductive hypothesis that for every
i€ [n] there exists g;: X —> A with_gi(x)e f(x) for every x&X

auch that cy (e Y. As e is simple we deduce, using lemma 2.2,
851\ €4 e '

that there exists g 3 X —> 4 with g{x)e f(x) for every x&€X such

E = ; =3 ; :
that ( ) e 1(O¢) for every ielny (if uf(L >0 we take g(x) =
g (o)) “hcr@fore, since 0, is increasing we deduce

g8 A

g
fias

S G Celle oo nille ) = BB e ). aale iaC,

i

2.5. Theorem. If the simple equation e = (el,eg) is valid in

the ordered S -algebra A then e is valid in I [A].
| e o

Proof. Tet £ : ¥ — I[Al. As e holds in A we deduce gw(e]) =

bl
=g (e,) for every g : X —» A. It follows from’ lemma D4 - that
o

b -
fw(el) o fﬁ(ez) therefore e holds in I[A].



3, Z~continuous T-modules with iterate

5

We suppose the S-sorted alﬁo%w&ic theory T and the monoid
sa%isfy the same hypotheses as in our previous paper “Partiai
flowcharts™.

Tet % be a subset system on posets.

2.1, Definition. An ordered T-module with iterate Q is said

to be Z-continuous if
1) 0(a,b) is a Z-complete posed for every a,béiSK,
2 the composition is Z-continuous by components,
3) the tupling and the iterate are Z-continuous.
3.2. Example. Let Z be a crossed-down subset system on posets
such that UJQQL If T is a Z-continuous algebraic theory then
1 lT:T —s T ig a Z~continuous T-module with iterate and
23 the order@d PS tr“«module with iterate T is Z-continuous.®
Tet us remark that in every Z-continuous ?umodule with itera-
te § the sum . _
& v 0la,B) 96, 8) va(ac,‘od)_
is Z-~continuous. ‘
et Q be & Z-continuous T-module with iterate. Tet us denote
by Int(M,0) the set of all the interpretations of M in Q. We order
Int(¥,Q) componentwise, toariTe T G E o eve:;rﬁ@?@ I(m) < If(m)
in Q(r(m);r‘(m)). Thevset Int(¥,Q) is Z-comple 5hd for every -
€7 [Int(1,qQ)] end meH, (E/ék)(ﬂ) ::\f%l(m)fléfa} The set Tnt(. ¢
has a smallest element [ defined by: .L(m) m'TLL%(W) rq;m)) for

every me&l.

3,3, Definition. Let Q end Q' be Z-continuous T-modules with
iterate. An ordered T-module with iterate mOlpﬂL s Pt O mmm§cw
.is said to be a morphism of Z-continuous T-modules with iterate

if for every a,b in 5§ the restriction ol P oto gl ) is 8 7I-con=

tinvous function.
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The composition of two morphisms of Z~-continuous T-modules
with iterate is a morphism of Z-comtinuous T-modules with iterate.

We suppose in the seguel that 72 .is union-complete, crossed-
down and cross@dwupg moreover $&Z[P) for every poset P. |

3.4. Theorem. Let H : T —>» Q be an ordered (comutative)
T-module with itera%é. There exists a Z¥continﬁous (comutative)

T-module with iterate
I(H}: © — 1[Q]

and an ordered T-module with iterate morphism
FIQT = @ —> 1(0]
such that:

A for every Z-continuous T-module with iberate H's T ——a O and
for every ordered @~modulés with itefate‘morphism G s Q —3 Qf fhere
exists one and only one Z-continuous f~modu1e witﬁ iterate morphism
G 3 I[Q] — Q' such that F[Q]dﬁ; GQ ‘

Q riel , I[Qj ¢ L0A]

my K\v
& - //f/ H
N

C A e Bl o = . A : K <) TR
et 2{Q1(a,b) = I{Q(u,b)} for every a,b in 8§, Ll.e. every mor-

phism of I[Q] from & to b is & Z-ideal of g(a,b)., As Z is union com-
plete, I{Q](2,b) ordered by inclusion is & Z-complete poset.

The operations of I[Q] are defined as follows:

it

1) composition: AR = (%1!3Hiﬁﬁ.? 3 TB}E
@

for every A€If9l(a,b) and BeIlQI(b,c) ,
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2) tupling: (A,B> = ({<d P>l €4, feB} ]

for every AeI[Q](a,c) an&ABcalfQ](u,c) ;

3) iterate: AT = ({Ou }']
for every ﬁengﬁ](agab}e
As 7 is crossed-down these operations are Z-continuous.
Let us remark that the Ld@ntxbv morphism of e s’ in 1 ey
(1a].
The functor I[H] : T — I[Q] is defined for every fel(a,b)
by I(E](£) = (H(£)].

As the axioms which define the concept of (commutative) T-mo-

i

dule with iterate are simple equations it follows that Tial 1s 2
7-continuous (commutative) T-module with iterate.

The morphism F[Q] : @ —> I[Q] is defined for every Jdefla,b)
) = T

Tet H's T —> Q' be a Z-continuous T-module with iterate. The

: H g et
morphism G 2 TiQ) —> O i

2

defined for every L e 7[0(a,b)] by
#.(17) = V{ee))den)

and fulfills the conditions of our theorem.e

Let ZPLy o = TipEe, | owd det 7. 2 W —» 770 ., be the stan-
g L Al i1 : L

Vi

dord interpretation of M in 7P, . defined by 7, = L??%F'w] ;
: A 9 A L S8 . g
Let 725t : T —> ZF%$ _ be the structural functor of 2Pl o

i} % 4% ; B ki g A

3.5. Corolliary. Rhe commutative Z-continuous T-module with

iterate ZFEW o L8 freely generated by M.
L’,..

e
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We introduce the concept of sy

n

stem of equations with flowcharts

and we show that the methodology of our previous paper "Iterative

Rai

Systems of Beuations" may be used to solve them. A component of the
o5t solution of a finite system of equations with finite flow-
charts is said to be a rationgal flowchart. We prove that the unfold-

ment of a rational flowchart consists of context-free trees.

1. System of equations with flowcharts

-

TLet M be the monoid of statements and let r ¢+ ¥ —% 3 . and
rts B —> 5F be two monoid morphisms.

¥

Tiet ¥ be a get., et v 2 X —2 5§ and »'X ¢ X —> 5

functions. In practice every xeX is the name of & recursive proce-

“dure without parameters; r¥X(x) and r'X(x) show the number and the

gsorts of the entries of x and the number and the sorts of the exits
of x, respectively. We endow the monoid M{X7], the coproduct of M

&

2

: 4 ; o L ; e %3 25
nd irs with the monoid morphisms <r,ri>» : M[X] —— S and
AR e I[ ] L , therefore we may work with ﬁwM'X]mflowm
charts.

1.1. Definition,. We say that

gog X —3 ‘*’3‘?%{;{}

is a system of eguations with flowcharis if meaw?éprhrrh C( ). riko

for every x&X. The system-s is rational if X is finite and for
every x in X,s(x) is the image of an element from xﬁiiv? e ®
i il

shall show that we mey use the method introduced in the

previous paper for solving a system of equations with flowcharts.



Let us notice first that the triple (X,r¥,r'%) may be thought
\\Q{ i
as an object from Set . ;odhe gortyxed ig ek 2], v (%)),
aoXH
Ao e e e T b = ) oA R, A e AN m oy
Let Mod be the celegory of w-continuous commutative T-modu-—
- les with 1bcrw*eg
Let Int (M,T) be the cates ory Ao objects are interpretations

» M in an arbitrery object of @oﬁu) and whose morphisms from
e ﬂ_mw% £ to I‘; Y = Q! are the morphisms F from Mo@u(Q9Q°) with
7 ”'i;;i'le 1}fozjer‘t;3f P e 1

Let @ be a T-module., Lelt us remark that the set of all morphis
of @ becomes in a natural way an s* x s¥-gorted set: the sort ‘of
o €Q(a,b) is (a,b).

Let U Inﬁw(w T) s Setaf = be the forgetful funcltor. It
assigns to each object I : W mwi Quof Intw(E;T) the “}%5 ~g0rted set
of all the morphisms of Q. We prove that the functor U fulfills con-
ditdons (3.1), (3.2), (3.3) and (3.4) from the previous paper.

el be By i’i"ﬁ"}:.'ji% sorted "§C“L Teh UE + 0 s “le [%],m e the
restriction of the standard interpret thn““L[AT to M. Let us de-
note by %X: X - U(VX) Dbe the Slgb% sorted function defined by
&x(x) = UJHYE](QEXGE) for-every % 10 %

"Tet T 2 W — 0 be an object of,Inﬁg(ﬁ$T)'and let f:X > U(I)
be an “{%%hw“ortad function. We notice that < I1,f> ¢ H[K} ety () 68
an interpretation of N[%] in Q, therefore there exists a unigue

W -continuvous T

such that

<I,f>4ﬁainﬁﬂb

G, B

~module with iterate morphism <I,f> :u}Fﬁerj ==
F80 AV N 1

4

3

= W T . T> |, We deduce thay
Lih]
1) (VX,T) and that €.U(T, s ) Tf

é;éinpw(iif)(?zpt} and gYU(g Wiix1® = ¢I,f>, therefore
ol 3 i
Y. ) »? ot . a) o -
ezt s 86 comiddition (3.1) 0B iulzvﬂlxx
We skip the easy proofs of (3.2) and (3.3). We stil)l have to

prove (3,4).
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Let @ and Q' be obijects of Hod. ;. Lhe set modw(Q,zs) is orde~

‘red by F£G if and only if P(«) £ G(et) for every morphism ol of Q.
T { 3 < r:¢ € n 5 oo % i A\
‘ii 1}n}némz is an increasing sequence of morphisms flam oaw( be
1o 18 4 morphism from ( end if we Q(fﬁﬂc yru)m\ ié ol [1£mu1ﬁ“&n

F is an object from Mod (Q,Q'). Therefors Mod (Q,0') ordered as

above is an w-complete poset and (N/F )() = \/{ MQfxleu)}' for
new

every increasing seguence iFn}m( from MOdw(Q,Q‘) and every mor-
: =) &
o gm el cof 0,

Tet Qeé}%oduA'.Let U.E recall that the set Int(l,Q) is an

@ ~complete posets, For every I€ Int(,Q) let us denote by I' +the
L
unigue morphism from lMod (WPl ,,0) such that w, I = I.

T, @emiu. If H =T —= O 38 an obiect in Mog , +then the
function
A e e
o2 Int(¥,Q) — Mod (wWFE. .,Q)
: Wl }"e ! s b :
ig increasing.
Proof, Leb 32 I' am Inb(W, Q).

Tet P PéI o Q) (F‘°“ﬁ o Q) be the unique T-module
: 1,7 i

i

TR

with iterate morphism such that Ly

i

:1_( {‘EI’}M - 15}

7

e

o ? B T
1, » ifﬁw P > “wp
'x, 3 - Sk g

We recall that F(i,t,m) = H(i)a{(I(m)H(t))f]]T)> for

(i,t,m)&P¢ , .(a,b)., As I(m) ¢ I'(m) it follows that

B, b = F{i,t.n) for every (i,5,m)€ Bl



St

Let G : PF%M e Q(G’;??zw e Q') be the unigue morphism

e A ity A

of ordered commutative T-modules with iterate such that F=PG(F'=PG!').

]
Ui

As every morphism of PF 2 o is the image by P of a morphism form
Fly p it follows that G@i) Gt () for every morphism o« of PFE.. ..
2o 4:;,—

To finish the proof we note that for every MWUJ[’%Pv,T(& b)]

":’#‘ = ¢ <k
(Al = \/i(}(o&)%e«’.é,/a} ¢ Vier@es) = 17((a1).0

1.3. Proposition. Let Q&|Mod ;| . The function

=g

«

: Ir;-b(m,@.) e 3?;;.0%(0.)}?31&_%’?@)
i8 w-~continuous.

Proof. Let Aew Eint(ﬁ,Q)].

As %5jﬁ;increasing {fﬁ[lédx} is an w-get of
m‘oaw(w':f.ezh,f;i,,cs); therefore there exists irﬁ] e 8] end
(V{f#ifé.ﬁ})0$) = \/{I Gi)\lé:ﬁ} for every morphism £ of WL, e

If mel then

(VM reah@ypm) = Vi wym)|ies] = (Vaym).
T Folious vhat (4 A -\j{fﬁ‘izaﬁ} . 0

w1 SR ~ 2
e prove (y‘ja‘“%)a

fn%qaug be an increasing seguence from

O (X, U{1)). We deduce that 2T, N/ f_> = \/<.I,fn‘> =
S M : new new

: ’

follows from proposition 1.3 that <1I, \\/ f > s

e
@

A Y] b

~

4 o Nnew
therefore U( < I, \/ an” e \V4 U(4I,fp>##).

new neus
We need in the sequel some results of the previous paper "Ite-

rative Systems of Equations". Let us recall them.

e

Let s X = WPl oy » e a system of equations with flow-
. i (;v.l X
charts.
Tet T : M — Q be an object of Int (M,T). The .smallest solu-

= \J‘QH(JMI) WhGT@_iWI is

tion S1 of 8 in I may be computed by s
& new

the smallest element of Set (¥,0) and the function
xmm
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M3 5et

G

e g ™

o e BT o)

ig defiy

,_,
’D

Wl(h)

fFK ¢ M ——30t in

morphism from I to XK then
Liet us remark that

If s is a-rational system

smallest solution of 8 in

2. The unfoldment of the PStrg ~ > ~flowe

1 for every hé;&e@ - LX) by

X, Q) —> Set {%,Q)

i-}y1

Y

2

i
>

£

o

: 3
= 841,1‘1 > Sl

another object of Int (K,L) and F is a
SIF = B
Wy, is an initial o}a;je&;t of :aintu)(rsz:,f{f),

of equations then every component of the

d%ﬁ is

~-flowchart

said to be a rational T~

Let us mention that

gebraic theories may be seen as a subcategory of

w — continuous theory moryp

i e ey Ve e v e a3 Ao s s o Ty
be taken as the sliructura

T o Moreover, 1f G ; T = 7' ig an

then G is a ?Stxs~moub¢_
We stud !

flowcharts over %Strq, therefore we

our notations, e.g. we she

agsume that the monoid ¥

fore we shall replace M bV

shall write BV 4.1
2 =

heb e

and the output monoid morphisms.

1T Pumetor o

tudy in this section a particular case.

iq freely generated by the set >,

the catevory of W-continuous S-sorted al-

the cuue gory - of

w—-continuous commutative P t’&—moaul@s with iterate. Indeed if T
ig an w-continuous S-sorted algebraic theory then there is 8 unigue

hism ﬁT‘ ?Strs ——3% T and this functor may

e~ PSSt . —m
c

Potrg-m jule with iterate
‘w~continuous theory morphism

with iterabe morphism drom T to 1%,

We work only with

gy

shall omit the index Pr trﬁ from

211 write F¢y instead of e

there~

standarad notatlons, e.g. we

S - in onx

instead of PLors 1?’ UQF “zsaectively.

&

: g ¥ : e - e
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