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Introduction.The aim of this paper igs to present facts of potential
theory(in Hmcones'huguageggee[7}) assoclated te a semigroup of con~
tinuous invariént (under the action of G) kernels on the homogeneous
space XmG/H s where G is a locally compaét group with countable hase
and H is a compact subgroup of G. We start from the works [5],[1ﬂ
and [12]. Generally speaking, the progrém is the same as in [51.
Following this way, we make the connection with the.sé called
"*arithmatics‘of convolution semigroups" ekposed in [1ﬂ (see §2).
More clearly: when transported on the group G, the convolution semi=-

groups on Gﬁ%‘(f@r various compact subgroups H of G), which generate



our theory ave (following {12})@x&at1y the convelution semigroups on
G which are only continuous (not {e}-continuocus). Thus, by the semi-
group point of view we are still on the group G. "Nice®"™ properties
for tha agssociated cone of excessive functions are obtained only if
we think it on thé associated hemogeneous space (see éh, éB)o

We alse show (see §6) that the dual potentiél structre
(which can always be constructed in the Hnéones framework) is

generated, on X=G/H, in the same way as the initial one.

§1. Preiiminaries and Notations,
LU

The basic facfs concerning integration theory and topology
oﬁ grgﬁps‘are taken from [%}, [10] and [11]. .
Let G be a locally compact topological group with countable
base {with the group operation writien multiplicatively and with the

neutral element denoted by e), K a compact subgroup of G and Y the

homogeneous space G/K of left cosets aK, a€G, The group itself will

often be considered as the homogeneocus space corresponding to K={e}o
We éenﬁte by X the homogeneous space G[H., where H ié a compact sub#
group of G. Y%G/K will be one of the homogeneous spaces X (K=I) or

G (K={e}). X is endowed with the quotient topology. We denote by Cy
the topology on Y. Let {IF be the natural projection a = aK of G onto
G/K o The element ﬁ(zﬁ €Y will be denoted by a ; for allja.éG °

ﬁ is a continuous, proper, open maping . We denote by ay the action
of an element a€ G on the elément vyeyY aymgg s, with ymﬁ sebei G

Let fé(Y) ooy CG(Y) s K(Y) denote respectively the Borel

measurable , continuous , continuous vanishing at infinity , continuous
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with compact support realevalued functdons on Y o The G =algebra of
Borel measurable sets on Y is denoted by (SY o For %C@Y} g,&l(‘é"
and ?{-b denote respectively the positive,bounded elements of Jtﬂ@
We denote by %@;’Y) the set of all Borel measurable positive numee
‘rical functions on Y and by M(Y) (resp. Mb(Y) ) the set of all
positive (resp. bounded positive) Radon measures on Y,

Let W be a fixed right invariant Haar measure on G and

A the modular function of G s hence :

{1@1) dw(ba)u«lwdw{a) a , beG .
B(b)

If g is a numerical function on G » 2a€G we denote by €0 48 9 E

#

g the functions on G defined by : ga(b)zg('ba), ag;(’b)-—zg(ab) s gib)=
= * L

g™ s & (B)=£(b™1)A (b) , for every béeG .,

We denote by w the normed Haar measure of the compact

H
subgroup 0 of G and we have : wﬁéhib((}) ,wH(G)z‘! o LE Jf is a set
of numerical functions on @ s we define :

Y ;
HZ‘@ a{ge;‘@ / &g , for all héH} :

g

H;’{ *{ge&'f{ LE=€ , for all heﬂ} A
and :

b &

H% ”H% AH% :

§ is .
For g eH}f s Wwe define the numerical function & on X by
G2 E::(H,)zg(a) sy for a€eaGg .,

It ¢ e R(G) i hownded on all , for every a€G , gf denotes
the function on G defined by

gﬁ(a)mfg(ah)duh{h). ; for every a¢G .
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1.1 Remark, a) It & is one of the vector lattices B (¢) , c(@) ,
CO{G) , K{G) , the abeve correspondence g&quﬁ defines a positive
‘ '
linear gperater from H to Pg{
[ 3

Extending the asbhove operaiion on QTU} we ohéain an additive
B 5

K AAg

e

positive HHWU”GHPOUD operator from ?7&) 10 Hj’{b) o 5y fact
this is a continuous kernel osn G (see §2) e L g €& ;?G),ig lower
]

semicontinuous , then g ' has the some property ;
c) If ¢ é’g (G) Le(G) U ?Z(J then

gé( B & uc) Ui ><-«7g =g,
héuce we can also denote by g (aﬁe {1.2)) the function on X defined
by ¢

:“E(a) = E(E) s for every a G ° ;
a) 1f ge B (6) (resp. g € Fl6) , gec(@) , zeCy(6) , gek(s) )
then g é’:ﬁgb(X) (resp. £ €T (X) , E €C(X) , g;ecg(}: e ).

1.2 Lemma, The map

£ £' = foll :
is a positive linear bijection between jgm(X) (resp. C(X) , CO(X) ;

K(X) ) and ;73 (G) (resp.

& ]
GG 4 wioge invers
1© (G) HF (G) ’-Hl (Q) ) , whose inverse

. _ = & :
is given by (1.2) . Analcgougly'ﬁ.y{x) is in bijection with H 37(6) o
v
For YEM(G) , » will be the measure on G defined by
v Vi
Vilo) = Yi(g) » for every g ¢K(G) .

v
We have : W = é-u)e Then

\4
o~

(1.3) 2 =g
where g.w denotes the Hadon measure with density g with respect fo w,
For V; §Q3@1HG} Qa define (if it exists) the measure
V1 # lz on G by
\q % )é(g) m/{{é(ab)d 31(a)d})a(b) 5 for

and we observe that

£ K(G)

7
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v
N v v
(1.4) Vi #* vi) = \)? 4 “))1 2

If YEMG) and gé_ﬁ(x‘) , WE daf.:i_ztm the function V#* g on G by
Vi gla)= gg{hmﬁaéﬁ Yib) - for all a€G .
1f vmé 5 ;,a{; ;r(x , we denote by Byubo the functien :
511\@“ {a) sﬁgq(k a)gﬁ(h)ﬁ‘(b}dw{b} s for all a&G.
If g, Pe,;gzél (w) (i.e g gy » &, ave w =localy inteara‘ble) B

£, 0 ve deduce by {(1.1) and (1.4)

(1.5) gows Gw = (g, & 8,00
& #. oa
(1°6) (g1 3 ga) = gz 2 g,i e

On Mb(Y) we can consider the induced vague topology (éntbrw
mined by the duality with K(Y) } and the weak topology (determined by
the duality with C ¢Y) ). s The set Mh(G)'is a tepolegical semigraup
(with respect to convelution) with the weak topology (see £1?;Thaorem

2810

If £ is a numerical function om Y an@ ach, we define the

function af. ‘on ¥ by
aﬁ'(y)mf(ay) .for evém‘r yveYo
Let
1(Y) Juen(v)/u(, 1) /Mf) for all keK,fek (v)}
N (G)mil’é}d((})/)’(gll)r-:))(g) ,for all h.eH,gé.K(G)}

and

IM(G)m n(& }f) u**’(a)

emmae If VEM(G) ,the following statements are equivalente
) U Y ~08De VW = W sYs) = Q'
a) ,‘{-i‘)} Y (resp. V e H'_v i V)
e ooy N :
b) Véu?@i.{h} (1"8$§§3ovéﬁ§.i (G) g)jéﬂﬁii(;))o
For YEM(G) , the meagure Yy M(X) is defined by 3

(1a7) F(£)=Y(£ol) Jfor all feK(X).
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It MeM(X) , let us define /A«{HM (G) by
: \ - _ £
{1.8) /{/!{g). = M(g) , for all g€K(G) .
d.4 Lemma, ([55 ehg‘i?'lléaj Yo There is an additive positive homogeneous

&’M(X))

homeomerfiem in the vague topology between M(X) (resp, Mh(}‘;) -

and H%fi& (@) (resp. Ig&;{(}}s ﬁ?ﬁ{{})) « The correspondence is given by (1.7)
and (1.8) .
Proof, This is a consequence of Fubinis theorem and of the fact that
wy(G)=1 . o ‘

Applying (1.1) for a function ge ;K#(G.)"g g40 , it follows :
ﬁhat |

A(n)=1 , for every heH .

and now again by (1.1) we have : LUQHM(G) o

It /1/19/1125?hfi(>£) s we define the measure /u,i%/uge},z(x) by :
(1.9) Jha*H = My
when the convolution /L«(,;'%‘“/L(;a exists o

By Lemma 1.3 we deduce that (if the convelution exists) :

; o
(1.10) v‘gem(e} 5 vgeﬁm (G) => v,g Vgéﬁﬁyi-(ﬁ) .

]
Trom (1.9) , (1.10) and the bijection between M(X) and i (¢} (see

Lemme 1¢4) we deduce that , if /A,i,/,(gé M(X) , then :

(1.11) /u;,ui = (/Aﬁ-,uz? o

Analogously , if ~V19 \'??énkih(f}) s then

owmne ==Y
(1012) V,.i%vz = (V'Q‘R’.‘ ))r)) [+]
Ir /Jeh{(X) s We define the measure /ﬁe M{X) by :
i '
fm
: v
and we notice that , if ))én}d(G) s then \)éﬂfﬁ(G) , hence :

v V‘
_ i S e o
(1.13) M =t for /uel_r\-l(u) .
g
£ € M(X), from (1.4) and (1.13) there results :
o e

(1014) | ,u;:},«a :/‘}2&/54 :

LA
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We recall now:some resultis about absolute continulty and

quasieinvariant measures.i m@dauxﬂ}ﬁifi) is called gupsi-invariant if

for ;tf;

/,,a

M{a)=0 = 3@{&A}MG sfor every aeG,

}([«3 choVII 5 Chrollaire 1]%@ My ofy eM(X) oThens u & ph,

' '
ig absol o wous with respe : i only if :
{ﬁ%la absolutely continucus wiih respect ﬁo/u } if and only if/wiggp%
b)([@ ch@Vlfggw,nag”]} A meaaur@/%éM(Y) is quasieinvariant 1f and only
if }4xm equivalent with uu(i,@@/%cgwﬁwnibvéyﬂ where W= W when Y=G,

C)((896h9V11,§ sProposition 6})¢u\t ’égﬁi} Then:
o 1
€8]
fébiggﬁ){ £ éLlﬂgﬂ}o

T o bty sy 4 FET 1 < ‘;mfﬁ" g
If p=£.0 with fé‘? ( 3 then M=tlw,

1.6 Nemark, OO and \A>ar@ guasi-invariant measures on Y.

f2. Convolution Semizroups on X and Translation to the Group Space,

Most of the resulis and txc terminology jn this section
are adapted from [@?]Q

4 Pamily gg% é?@ } M{G/K) with the properties

(2.1) /A €,
(2.2) /xtﬁﬂéﬁ#£+s - ofor every t,s70

is callied canvmlwtiém semigroup on Y=G/XK,In the sequel,the consie

dered convolution semigroups will be non trivial (/%%0 fur.alll 170)

/lt(Y} being the bounded (different from zerc)selution of the functional
> equation u(t+s)=u(t)u(s),it must have the forms

(2,3} M (X e

A convolution semigroup S»Qﬂ ) on ¥ is called (see

170

4 5 6] Yoy E ¥ o " £ . 3 3
[?19“a3¢ )pgﬁmimuquﬂl(re&poﬂwmanixnuuug)if the map @Mﬁﬁa% is continuous

from (0,02) into M (¥){xesp, if the 1: =1im sxiots in M
y ‘ b( X1 5Po e limit/uﬁ ﬁig & exicts in Lb(Y))o
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On Mb(Y) we consider the weak topology .

on G , the limit measure Af, {from the definition abeve) is an

idempotent of Mh(G} hence , by Theorem 1.2.7 in [?1] s it 18 of the

form /uemavw,for some compact subgroup K of G (see also L12,1092]
Jéh !

and [139Thﬁarem jofj) » In this case such a O=-continuous convolution

semigroup is called X-conlinunous .

b) From (2.3) and Thecrem 1.1.9 in (11] , for example , in the defi-~
nitios of continuous and K-continucus convolution semigroup on G
we can also cousider the vague topology o

¢) I£'8=(Y is a convolution semigroup on G , by (2.3) the family

t)£70

is a cenvolution semigroup of probability measures on

o

e &c@
Si=(e” "V )ivo

G o S and S1 gatisfy simultaneously the additional continuity propers
ties , hence we can apply the results of [11] ¢

2.2 Theorem, ([ﬁi,Thearem 1.5¢8}) Let Sm(\)t) be a convolution

t70
gemigroup on G o The following statementis are equivalent '
a) S is O-cotinuous .
b) S is continuous .

In either case Vgslim y, satisfies

tho " . ,
} = #* = ¥ akl v o
(2.4) ' V, V~Vt Vﬁ ))O s for all t50
A convelution semigroup (}At)t70 on Y is called igimcongiz

nuous if :

(2.5) /Atn_wygg in the vague topology ,
- 120 ©

2.3 Remark, a) By Lemma 1.45(131) and(132) .we deduce that the family

( ) (respe (Y,), ) is a convolution semigroup on X (resp. on G
£t t>0 t t»0 :
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vith V., &  M(G) for all t20) if and only if ( M res j
with vV, & MG} o Tox al i85 i s el LYy (/ ‘é})t?f} ( P (V’c"i;‘?(}}
is a convolution semigroup on G {resp. on X) .

v

v
b} Using (1.1} (resp.(1.4)) and observing that ngmﬁg (respe W=

ek

the family (M C M) (respe (V) € MG)) 1s an {&}~conti-

b
titrgr I
nuous (resp. Hwcontinuocus) cenvolution semigroup on X {(resp. on G)

on

[ ; 4 { } .
3 Aaviet v 1 “fy & Ty ig & er=contin: Tes
if and only if (/Mﬁ?t70 {respe. (\)g}t>0) is anfe Lonbinuous.(te&pa

H-continuous) convelution semigroup on X (resp., on G) .
The following result is the variant of Theorem 2.2 which

eppears in the earlier paper. [12],

be an {e}maomiinuaus cone=

2.4 Theoreme ([12 , $10]) a) Let (p,), o

P

. T
volution semigroup on the homogeneous space X=G/H . Then (/J ).u4 is
5 : /it 5720
an H=continuous convolution semigroup on €,
b) Conversly , if (‘Vt)t70 is a continuwous conveolution semigroup on
G , then there existsa compact subgroup H of G such that 1’téiﬁﬂa>

2 ean : - = .. :
for all t70 and ( yﬁ}*70 ig an {e}wwontinuﬂug convolution semigroup
4 .

on X= G/49 ,

Proof. Observe that if y(f:u&i with H a compact subgroup of G,then
L e
(2¢4) means that Vtéz.{?&i((}) for all t»0 , Because g_mwn and W= J !
: e e

the statements are a direct consequence of Theorem 2.2 together with
Lemma 1.4 and Remark 2.3 .0
For every Y E€M(G) we define ; following [1?, 192e3] 5
the invariance subgroup of Y by :
1v)={aet / Y grv - URE b

LT )}é;Mb(G} , then I(V) is a compact subgroup of G (see E?f,Thcorem

102efiof) o I£ S = (Y &)t70 is a convolution semigroup on G , we denote

by I(S) the compact subgroup of G



)
o
i

(5) s YY)

g

L

2.5 Covellary. Let MMilﬁ ) be an Hecontinuous convolulion semig .|
group on G o Then H=I(8)!,
Proof, Because Y, €, M(G) for all t»0 , we have HCI(S) . But this

implies (Lemma 1.3) that :

w # (0 = w w

(2.6) I(8)" I{‘E} 1(s) °

For every tyo I{S}CZI(\)t) , and therefore , by Lemma l. 3,

(2.7) VW =V
(8)

By hypethesis lim ﬁémtup , hence , from (2.7) and the continuity of

R0 :

the convolution , it results that :

(2.8) W U2 (S}»«u :

From (2.6) and(2.8) it follows MJ (LE( g) » 8o we finish the proof. O
The next corcllary describes the continuity of the convo-

lution semigroup Sin terms of the invariance subgroup I(S) of S (s ee[@

Corollary 8»1?] for the abelian group case) o

be a convelution semigroup on G . Then :

orollarv, Let 8= 5
2,6 Corollary, Let S=( Vt)%?ﬁ

a) S is continuous {=p lin =W 5
) s
b) S is {e} — continuous &=>I(S )m{e} gnd S is a continuous semigroupe

Proof, This is a consequence of mheorcm 2.4 and Corollary 2.5 0O

We ceomplete this section with the correspondence between
convolution semigroups mnd semigroups of continuous invariant kernels.

We recall that a continuous kernel on Y is & linear and

positive map T:K(Y)«wﬁVC{Y) » For every y €Y , extending to ?}Y}
the Radon measure TyéLM(Y) defined by : Ty(f)mT(f)(?) s fTor'all TerCy,
we obiain a kKernel

s $(¥) —> F (V)

on the measurable space (Y, ﬁ%) {see [7?§191]),
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.

A continucug kernel T on Y is called jinvariant if:
T(&f)m&ﬁ“(f) y 2 for.all £EK(Y) , a€cG .,
Let N(Y) (resps Ni(Y)) d@neﬁe the gzet of all continuous

(resp. continuous invariant) kernels on Y and :

(@)= {’}BéN{G} / Tlg) =T(g )=T(g) , for all g€K(G), heﬁ}g

gy (=M@ AN, (6)
2.8 Remark. For a kerhel TE N(G) , the following statements are
egquivalent . : ;
a) Te N@G) .

b

b) T{g”)m?{g} =T(g) , for every g eK(G) .

If TEN(G) , we define the continuous kernel ?éN{Xf by :
{(2.9) : EKf‘w¥?E:§ s for every fEK(X) ,

If T€eN(X) , we denote &y T! the continuous kernel on G
defined by
(2.10) TH(g)=T(g)® ,for every g eK(G) |,
and we observe that TQEAHN(G) s

2.9 Lemuna, (2.9)and (2.10) establish a bijection between N(X) (resp.

s N
R p———

HNj_(G)) §

Ni(x}} and IN(G} (resps »
For énM(G/K) s we define (seel12 , 83 3 the convolu-
K T

{

tion operator Tu of u by
4 /e

(2.11) T/,( f(?i)zzl;yf(ay)d/ll(y) 'y for every a€G , f€K(G/K) .
C .

2,10 Remark, a)‘([B,Lemma 091])9 If YeM(G) , then (2.10) defines

a continuous kernel Ty E N(G)

2011 Lemma., a) If Y EM(G) , then :

Ve MG) (=2 1y € N (E)
b) If /J, 7{6;;5.1(}{) s then (2.10) defines a continuous kernel T/ué N({X)
and ¢

e

(2.12) T/u o= ’l}av y



{ 2 © —; ’;f ‘} B ’F/y4 ;:'/rt 23 T‘M (7] f{;{/{ &

\ ré o» el ,bg I3 7 ~ T
o) '\i' 165:4p o - IE /géayff% (X} , then : /{4 {C Q.& Y G, .\.,f 5

T ({":E Wy C, (a and T/ﬁ 18 a bounded linear operater ©n Cb(X) -
ITal == A(X) .
Zepoielnv e ohBoaie Tt “"r‘-fs’.ﬁié’:“'if"étnicm a) is a conseguenca of the defi-
nitions .
h) Let /Méimu} S PR WS Ghall how time
= Ty (2) < T ()

V4

Indead it a€G from asgert
& $

(2.,15) and Lemma 1.2 results

using (2.9) o Because /N(é. »
(2,13} is equivalent with (2,12} . (2.14) has a direct proof,
Assertion ¢) is a consequence ¢f 1.5.4 in [‘E'E] , using (2.12) and

Lenms 1.2 o0

1

2,12 Mite (ftw b ¢ j [Hg Propos 15:%0111'3,24!), Let T € N{xX} (resp.

T'E N(‘G}) o The following stotemenis are equivalent :

a) éH (}J (resp, T éHNi(G)) .

b) There exist f,{é;IM(X) ( resp. /g,a‘é HM(G)) such that ’,‘v‘:-::f‘}u {resp.
Tl ) . '

In addition. [M (resp. /o“) i@ unique with this propertiy .

}_{3‘39% From Lewmma 2.11 a) and b) it suffices to considey the case
TENIY) o If ’.I‘éNi(X) , we define the measure /(,(é}d(}{) hy

(2616} M=l

; L S
One can easily verify that f{ & M(X) and Tm’% o0
4



A family (8,), 6§;N€Y) is called semigroun of continuous
L

Ly
kernel on Y if :
(2.17) St(‘i)é1

(2.18) S, 0 Ssmst+g y for every s,t>0 .
If Sm(fxt)tvo is a convelution semigroup on Y , we define

- the associated semigroup of continuous kernels on Y by ¢

Sy =Ty v Rarallityo .

From (2.1) and (2.2) we‘deduée (2.17) and (2.18) for this family .

2.13 Remark, a) Let S=( V*)t70 be a convolution semigroup on G , By
Theorem 2.2 , Lemma 2,11 a) and Remark 2.8 we obtain that::S is
H-continuous if and only if

(2.19) : Stg(a)f;E?H\U gla)=g" (a) , for a€G , g€ K(G)
H

b§ Let Ss(/ut7t70 be a convelution semigroup on X . Then o frome(i2.5),
: it folliows : .8 is {Eimcentinueus if and only if
(2.,20) §,f(x) oo i(x) , for x€X and £ €K(X) .

In this case , by Lemma 2.11 ¢) , the family (St) induces an inva-

t20

riant Feller semigroup on X .

2.14 Lemma, ([12,§.§])0 The curespdndence /Mt%ﬂvst between the
{E}wcontinuoug (resp. H-continuous) convolution semigroups on X (resp;
on G) and the semigroups of continuous invariant kernéls on X (respe.
on G} which satisfy (2.20) (resp. (2.19)) is onemto»gné . (See also
[11, Lemma 4.1;1] )

Proof, The assertions follow from Lemma 2,12 and Remark 2.9 3 o
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g?fe«- f‘bf—*«nia‘%sﬁ" Continuous Potential Kernels on X .

Ci

P

© Let €/U't')’5:7*0 be a continuous convolution semigroup on

: oy : Ei
Y=G/K . For every A %0 we define the measure k€ M u/h) by
s }i
(o=

e o f
k (f}mf e (£)dt ,  for fekK(Y) .
o . //ft,_ s

2}

We have : _
kg éY}({%— . hence k.o( & I\/ib(‘;‘{} 3 &
(3s1) ; kg =kg =(f=-R)ko *kg , for o, B30,
The family (k oi}u >0 is called the resclvent of measures
associated with the convolution semigroup (//( ) ¢ For a fixed
FEKT(Y) , let :
k{f)=sup k “éf)w (f)at
&70 »} //'i’
y womio S & ansg o1 ree
The semigroup (/Mt 50 is called tfransient 13“ h(f)<+w for evexy
féK%’(Y) s and the meagure k is called the potential kernel associated
. with -(/M"?{,)t?() o We remark that for every = >0 :
kek oy = Re(lekk o )
(3.2) 0 S N
A measure Ké;m((‘z/ii) is called potential kernel if there
ex;ﬁists a transient convolution semigroup (/Mt)tﬂ) such that k should -
be its potential kernel . We write :
k”}[ /M%dt
Let k= //,{ at .be a potvm ial kernel on Y.We define the family
. 1
ﬁm(ﬁe{ )“‘?90 by ROsz L Ro :Tkﬁ, for all o(?-{) and we call ﬁthe

resolvent of kernels assoeciated with the potential kernel k , Remark T
that:
1
12@((1),,{;-[ , for-all¥>o

R& MRﬁ _( ﬁ ng&_)u&‘{’ﬂ.ﬂ $ for « 9f3’2 0



wd 5

p}’(aigﬁ 3“-"1?,301‘{@{ ¢ fOI’ O( 9 ﬂ; O
}{O(f)mgmp R (1) 2 for every f¢ ;V(Y) .
o« 20

l.et ug denote :

Y R)

H

{.@é ;V{Y} /! *Ry 8 s , for every d}?()} 5 |
¥R {sé Ty iy, s g} :

A oD -
Z( Ry { 8 € f(?'( ';z) 74 [ smoo] is ﬁfnneg’;ligible} .

We recall that A€ ?%, is anﬁenzligil.}le iR (‘!A)xO for all %0 ,

i

"
4]

3.1 Remark., Let Sm{/@(#)*‘?ﬂ be an *{e}»can‘{;imwus convolution semie.
hell L : £/
: E . v : :
group on X {(therefore S"::(/Mt’)??ois an Hecontinuous convolution
semigroup on G , by Theorem 2.4) .

&) If (k&)o{?(}

is the resolvent of measures ass@ciaﬂed with S , then
(k& )%I?O is the associated resolvent of.the semigroup S' on G
b) S is transient if and only if 8% is transient and :
(3.3) | k:-.fg;' at <%>;2.~,xfw’ S
g et

c) If Qwiﬁﬁ)dzd is the resl_vent of kernels associated with k , then

\]
by Lemma 2.9 , (2.13) and (3.3) , the family :Q::(R'M is the

resolvent of kernels associated with k' .
d) Let &7 0 be fixed . Then ky (resp. ki ) is a potential kernel on
' g s
i - j
e8P e 1) with ¢ k= e s8p. K =] - .
X (resp. on G) with ky é e /Mtdt (resp k! /0 e /utdt )
The assoc‘,iated resolvent of kernels is denoted by :l- ﬂxm(ﬂd‘%)ﬁ&o
> S = 1t En o
{resp. R& (Ra(*ﬁ’f?%i’)) ; | :
e) From (2.20) (i.e. S is {g}maontinuaus} it follows:
Ry £(x) mf(x) yfor every fEK(X) , x¢X
and from (2.19) (i.e, S' is Hmcantinuous) it results that
éu‘. v g X 30
LIty g(a) mg”ia)’ sfor every gélx(@) e RN

_ oo
In the sequel , the potential kernel k.mj /4;‘(31, (resp.
0



tha

- P : o ~s 9 :
k?mg’ . dt ) on X (resp. on G} is associated with the {e@; ~gontinuous
/

(respe. H-continaol 8) conveluiion semigroup (/1‘&’)7&.70 {respe {/M ¢ )t?"))

We recall at a conllnuocus kernel TE€ N(Y) iz absolulely
contin {(with: respect to the measure Q'ZGM{Y)) if : T(1,)=0 ,for

0 > = .

every fxéf.z with N{A)=0 (i.e. T <& for every vyeY) . The measure -
A ¥ ¢ ¥ ’

’7{ can be chogen to Sm finite

32 Lemma, Let Tj}u € N, (Y} and ﬂzém(}" be qtm::"' =invariant . Then

the following stalements are eguivalent

a) T is abselutely ceontinuous with resgpect to ’7( o

L
Proof,The implication 'a): '71%*; "is obvious by (25160

y » 8uch that N (A)=0 and a€G > Then 3
'Yl{aw?“}mﬂ » hence /,{é amiﬁ}m} by hypothesis b) and thus T_(A)=
a
”/u) (A)= ,/“x (1 ‘) g
: e
mﬁgmL\,wm m.;..-’ch»zj(y} , T40 and £ € F(Y) 4 Then :
T(£)=C , W= a.e,{almost everywhere) =2 W(f)=0 ,

e e

Proof, Let ME, ‘si{(x‘—/}',} s with T=Tu . Then W (T(£))=0 implies

W (T(£)?)=0 , From (2.13) , we ha‘ve JUCE)S ”{f }= /w(f'} (cbviously

if Y=G , then 4"-,; s T'=T /’" vf) So 0= W{T/M'{ £ e U0
ﬁﬁﬁ(ah‘kd/a ﬂ}}ﬁw(a?_./ﬂ(weﬁ}) Since /M%G we deduce ihat w(ft)=0,
hence tw(f)=0 . O

Qm;zi’..w

X (resp. on G} and A€ E reSDe Aé:BG

in, Let ku—j /u dt (resps k! //b‘fi(lv) be a potential kerncl on
4]

a) Ii‘ ol 0 then 3

L ¢ 13
: £ S vy Yo Yoo — = o850, B ¢ -
RoéﬁzA).J:; (resype %MA; OU=> RMHAE 0 (resp ER\QA) 0)
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: .
b} If R‘G (resp. KZG) is absolutely continuous with respect to qzeM(_X)
¥ ? 3
(respe N EM{G)) we have s

ot % 5 Le .' - = 2SP o
RG{ ,J)=0 (resp. R gg ; =0) . » fraeee (1“’8&21&7( iae.)..,ﬂ%o{‘tA, 0 (respe.

v
R (

G\’?ﬁ!itg} 4

Proof, Assertion a) is a consequence of the resolvent equation .

p
For b) it suffices to notice tlmﬁ soRy R (‘B }=0 and R, (1 )é‘ff(j%;) o I

3@5 Theoren, e’[} s Proposition ’u];@ Let k= f/[/tdt (respe.

b= j /‘Mt dt ) be a pﬁtem‘,ial kérmxl on X (resp. on G) such that RO

{respe Ré is absclutely crmtﬂmnuf; with respect to 7&111‘1}(&) {respe

'rl EM (G}_} « Then :

a) k& W (resp, kidcw ) ,

b) Ry (resp, H;} is absolutely continuous with respect to U (resp.

). Clearly , if A&B (reﬁpe A_ég) , then :

(3e4) R, (1,)=0 (resp. R i )u0)< 2> €0 (A)=0 (resp. w(a)=0) .

Proof. It suffices to prove the first assertion of b) (i.e. the

implication "&=" of (3.%) ) . Indeed , the assertion a) holds by

Lemma 3.2 and the other implication of (3.4) results from Lemma 3.3 .
By Lemma 3.4 a) we can replage»the potential kernel k

with k, , for s»:ﬁmed?(b ¢ The measures M .and kg being finite , we

may without loss of generality ; assume ﬁhat.there exists the COnVOw.

lution ﬁ%k {resp. 71'»”-“%4;."’) denoted by 7{0 {resp. ??go) « By (2.14)

1t follows + T, =T =T T ., hence
A}?O /}I.g.k % k

(3.5) ’7 (A)= '7({{ (1 ?‘) » for every A€ B .
Let a€G and A € % with ’}z (A)=0 . From (3.5) we feduce /}z(R {1 )) =0

emd by Lemma 3.4 b) it iollcstvs that s

(3.6) R,(1,¥=0

/l?_@é& 13664
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From (3.5} , the invariance of &{.! and {346) , it results that :

(1 Yl=
v‘ ‘:‘}}} 0

f?z(}{am}::s f;g (uﬂ( )}« ﬂ?f E’?.

We have just come to prove that }E%..ﬂ is absolutely cintinuous with
‘respact to @”z o and that 7 o is guasi-invariant . We now have by
Lemma 1.5 b} R’(} ig abmoluitely coniinuvous with yespect to .0

From now on k= f /;( dt will be a potential kermel on X
with

kS

o
%
Soms®

&4, 1-Cones of Functions on X »

For the Hwcones terminology and resulis see

ho1 Lemma. a) If L€ ?fw’%) , then 1 "3 {12} and 5:~€\

CEATOTIO IR s

&
t.mmyz&m& e
AP0

B} (R L ),

b 2

tN
¢} The correspondence between «f( @) qm}} ? (G) induces a bijection

3

g % ¢ s 3 /. 5 : £
vetwoen F(R) (resp. ¢ (R) , E(BY) ana SR (resr. (),

‘ £ . (. \ N
(R sre § ) (rosp. s ER)) .
Proof.a) Because E&élgi((}) , for every ? 0 , by Remark 2.8 we have 3

(he2) em;(zf IECS A TS

: b : &
and again by Remark 2.8 zaUt (*fa ;x(m’.xi&(t 1< kg 80 %’fﬁé j{{f{) « By
- .

(4.2) we also deduce 1 oo 5

#

Assertion b) iz true because

1% é ;‘ ((T) and t l;p@“(y;i’ ¢ if iéﬁ)ﬁ (ﬁ) 8
O
¢) By (2.15) we have

¢
AR, (8] =atRy{s")

hence

pers s

5




m'zgm

i
(4e3) o(Pu(s)ds L==>oR, (s') £ sf
and

t
(b k) otR‘,,s As (=X, (s') [a'

The bijection between 3?(}&) (resp. ¥ (3)} and H‘(f( N (respe
56 (R)} results now by (4.3) (resp. (4.4) , the assertion b) ) and
Remark 1.1 . The proef is complete ohgerving that
R ([M- oe])mf) ==y Si'([sﬁvawj)mﬂ s for se;t/(X)} and >0 .0
The fnll@ing theorem is a consequence of the hypothesis
{.®2 ) ¢.(:The kernel'ﬂo results proper )

h£o2 ’;‘I“Emm‘ezssm{[’?@ Theorem 4.4, 6]} g{ﬁ, and %‘?(Q) are standard

Hecones .,
b3 Remark. By Remark 1.1 b) and because
14 (——~ ,'2%52’ y. . for Sy s 3,,65{@) .
. the correspondence establi&ﬁed above beiwamniﬁfﬁ&%&éi?ﬁ} is an He-cone
properties preserver .
holt Lemma, a} If U€ Zﬁ (resp, Uéa ) then :
R (1 )}G on U (resp, RO“UH> > 0 on UH),
b}{[ s, Lemma 1, 1"%]) It aeffih} (res meééf}ox)),@,.& lower semicontinuous ,then
sef) (resp.LefB)).
Proof.The assertions(in the case of the space X} follew by standard
arguments of Feller resolvent,using (2.20).If UE Eagthem f&é{?uﬁ)a
=l (?UH mﬂﬁ{ﬁﬁ{ﬁﬁ)}oﬂ shences
RE(1,,,)> O on i V(TTi(um) ) =um,
; .
, Ifiéf}p(ﬂ),by Lenma 4.1 a) results t 6}1:)0(? } and from Lemma 4,1 ¢)

we have iﬁéff(ﬂ) «The function £ being lower semicontinuous on X, it

— ) —f { t
follows tha‘@:if’éf}o(ﬁ)o?{}y (4e1) it now resuliss {fa‘hqéjﬁ(ﬁ)uﬂ
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Tho assertion b) of the lemma above implies that ¢
E?éﬁ%} and zzd,ﬁ contain Lthe pogltive constant

The assertions of the following lemma ave adapted from { ]
We can do that because their proefs do not require the {e§mn0$&£nni€y
of nJ@ convoluntion semigroup on G » Then , by (L4e1) and Remark 4.3 we

can transport themon X .

o :
be5 Le a) If s @Ef{‘){fp} {rosp. s* € CHn s then 3

s {resp, s') is a weak unit in ‘f’{’ﬁ%) {respe .E’(“ﬁ))("? 870 on X
(rﬁsps 8'*>0 on G).@ l
b) If s ei@t’ﬁ {resps s éfj 'Q}} then s {respes 8') is lower
semicontinuous on X (resps on G)
o} if we denote hy (Y)Y the elements of Q?Y: wich are aaua&ﬂu and
have compact support , them s 1€ J?{K} {resp. 1'€ VQ{E})=27RO{1}€ Cé&%?f{ﬁb
(resp. 1";}{ }ﬁChi@}ﬂg(ﬁs?{}} s whex ?ﬁ{ﬁ} denotes the universally
continuous elements of the Hecone F(F) .
/?F (resp. st £ g?ﬁZ?} ,there exist (1 }ﬂ&wﬁ,Vny ) (resp.

H:€1 ) A a (resp. ﬁg(ﬁ”n) A s') , when n-se0

e) Bvery seﬁ%?{?%‘ {respe s’&%{(?{}ﬁ) is continuous and bounded on X
(resp, ont G)
£) If a€ G then 3
(he6) s€ g{f’(f}%} {resp, s8'€ (é’i%‘}}m?ag é g(‘ﬁz} .(?f‘ﬁ.?;}')e assé %’,“:Q‘))
(4.7) sé%’{'ﬁ)o (:x”‘aissp, s'é(’(fﬁn}a s==) df; é%’( 4)’3{)0 (resps aé'ééﬁ@%)o
L6 Theorem, ifgﬁ?h@aram 9 b1t ) ) Ry is a standard Hecone of

functions on X o

h) %? ) has all the properties of standard H~-cones except the

points separation one o
Proof, The assertion a) follows by the same arguments as in [5] »

G

using Theorem 4.2 , (4.5) and Lemma 4.5 , Notice that the points
3 9

&

4



b ¥

4y

"“6»«1“

separation property on X for %‘?ﬁL? is a direct gonsequence of the
{g}wmm&imzixw of the convelution semigroup .
To prove b) , observe that the correspondence hetween 25(-’9) and
y
{;{'ﬁ% presexrves all the properties of standard He-cone of funciions,

except the points separation one {hme Remark 4.3} . =

he7 Remark. a) From Remark 2.3 b) , it follows that k- /‘(td"

o()
14
(reap. kt= }4 'dt) is a potential kernel on X (respg on G) Let
0

7 : ’
% {respe ﬁ } denote the resolvent of kernels associated with
\4 .
K (resp. k' ) . By Remark 1.6 and Lemma 1.5 b) from k&€ W (resp.
v P N4
k'¢ W ) , it results that k& @ {respe. k'¢<g w ) , Hence c by
Theorem k.6 , we conclude that
'
f(?{} is a standard He-cone of functions on X .
; ) ‘ :
b} For %’("R) we can only prove a slighter separation property
on G . More precige};y » for a,b €G we have:

(4.8) b {;”Ei {==y there exists s' é%(%} with s'{a)#s'(b)

Proof. of b) . The condition b"'a é H means that atbh and we apply

the points separation property of 8?(@1) on X together with (4.1) .0
The following corollary is a direct consequence of (4,8)

: e :
4,8 Corollary. Let J{ denote one of the sets f(ﬁ) ’ f(R )O 9

\}
R{}(v‘?‘ G))
a) Then 3

II is a normal subgroup of G<=-*>JK _Iiﬁ&)tm‘“)g‘f J(G)

=0
b Hm{e} » we have 3

G is abeijané*)‘d,m s, for every sed and a€G .

(&

3
Proofe It suffices to make the proof only in the case }{ = f(ﬂ)

because in the other cases }{ ‘is increasingly dense in E ('ﬂ)
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By (4.8) and Remark 4,1 b) it follows that :
H is normal (m?(ﬁwg for every a €G s h éH)<=> (s(ha)ms(a) for

every a€G , heH , aé?€)<—-—> J{’Q :{'(G)( 7 XC /Jr/((} o]

§ 5. The Natural and the Fine Topologies .

Because hypothesis ( * ) is satisfied sy it results , by

v -
- Theorem 4.6 and Remark 4,7 a) , that g(ﬂ) and - ‘f(’R) are standard
IIwcdnes of functions on X . We can define on X (see [7, §h.3]) the

v
natural topolocy with respect to f(ﬂ) (resp, to ?(,@)) as being

the coarsest topology on X which makes continuous all the universally
continuous elements of %?(62) (resp. ‘f}ﬁ%)) and it will be denoted
v
by &, (resp. G )
The coarsest topolegy on X which makes contiﬁuous all

-V
the elements of ‘f(‘R) (resp. g(ﬂ)) is called the fine topology

on X with respect to ?(ﬁ) {resp, ?(‘é)) and will be denoted by
Gy (resp. 5 s
1f & is a topology on Y , we denote by 7}( 6 ) the neighiourhoods
system of the point yeY and by 3 the topology on G :
G NG
v v %
Obviously & ¢ G, o g@ and by Lemma 4.5 e) it follows that
v
Cn ’ Cn(; Z;X :
5.1 Lemma, (P@, Lewmma 261])., Let a€G .
' : )
a) If Ve Z.f (resp. V€ Zf) then aV € 61_. (respe aVégf)
\ : '
S ; 4 ‘
b) If V¢ Zn (respe Véén) then aV eé’n (respe aVégn) e
The assertions . hold if we replace Z;f : Gn (resp, G‘f . Z‘n) by
v v V‘ V, 3 :
ZS» » G, (resp. 51, i En) ‘
Proof. If we consider the map G;:X-?X defined by
G’,}{'x)rﬂx g ~torall weX

we: gbtain aSnSOV% y hence by (4.,6) G results af-»hameomorfism
& i a
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on X . This proves a) . Analogously , from (4.7) , assertion b)
holds .@
2.2 Lemma, ([159 Lemma 292]) o If Vi GX, (resp, V€ E'X) » V4 there
exists xeV (resp., a €V) such that V¢ ?};{( Zn) (resps V év;a( a'n)) o
5.3 Theorems ([&, Thorem 2e3]), We have :
: v
A

Let us first expose the folloWing preliminary result
of group topology . : ;
5.4 Lemma, ([10 » Theorem 14.9]). Let G be a topologica.l group ,

L é]}e( GG) and let F be any compact subset of G . Then there exist

A eUQ( ZG) such that aVa""Q U for all aé€F

5.5 Corollary. Let G be a topological group , H a compact subgroup

of G and U € 2];( ZG) o Then , there exists V & V(;( ZG s Ve,
Vev Vo tvmcua |

ey

Proof, By Lemma 5.4 there exists V € IZ(ZSG) such that hVh~
for all heH , Hence , if h,h' €0 , then .3

hVh'=(kVh™ )bb' ¢ (bW cuH . @

 Proof of Theorem 5.3 . Let Zé-.» Z;{

ng{veza / v=vn} ;

Because gnc é’x s it suffices to prove that :

and notide‘that.:

b ]
G =0
or equivalently :
& e '
(5.1) Ve, , aev =veU(s) .

_ Let V é@é and a €V . First we shall show that there is W G‘U{;( EG)

such that

1

(542) aWwwev , w=w"' o, wsWH ,
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Indeed, by the continuity of the multi‘}_‘ﬂ’ication in (a,e) €G*G , there
exjists U € '17@;( E’;G) guch that '

(5.3) : alUeV

From Corollary 5.5 , there exists W1 E V{;( KG) with

(5:4) HW,H € UH and WU

By (5.3) and (5.4) it results that : aWl BW.H € aW UH € aUUH € VH=V ,

therefore 3

(5e%) aWHWH €V

Again by Corollary 5.5 , applied for W,‘i € 1/;( GG) s there exists

(23

W, € U;( ) such that

=1
[ F [ =
HHZH (5 W1H ’ W2 c W1 5 W2 ‘_EZ 5
From (5.5) we now deduce : alW W H¢CV and if we denote W=HW_H we

SRR ) 2
obtain (5.2) .

We have : aW € 17;;( GG) hence by Lemma 5,2 there exists beaW such that

aW ¢ I)};( 6;) e By Lemma 5,1 b) it results that 5
(5.6) - av~'(amy e Vgl .

Then beaW implies b a ew e dnd by (5.2) we have 3
(5.7) aca(bla)Weamw cv .

By (5.6) and (5.7) it results that V € 1);( Z;;;) s 80 that (5.1) holds . @

§ 6, Resolvénts in Duality on X .
Hypothesis ( * ) implies that there exists ;f.‘éL;OC(Uj)
. and f, € 1;41("‘»5) Cives Iy s W -integrable) , for every >0 , lsuch
that ¢ ki‘w o), =T @ yfor all &> 0, By Lemma 1.5 ¢) it results that:
k' = £l
B =il - for all «>0
and £r€L} (W) , freLl(w) ,

6.1 Lemma, Let g ¢ rjr((}) such that :

(6.1) gxEY o flag o far all o0
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Then
v’ * ¥
(6:2) g Ry o Bt Ry
Proof. One can easily verify that :
¥
(603) T ¢ (g) = g*f’ °
flw

We now deduce from (1.3) , (1.6) and (6.3) :

v
Rt (g) = e (&) i=ig*L! o, sufopsall sz 0n;
ol . 5
Lo ®
Rilg )\ =ngheg

and by (6.1) it follows R&(g*)* s I‘l:zg s 80 that
eti?ozg*/f g% (==Y o(f?’;‘g Ve

The proof is complete notieing that :

g*<o€> Wea.e, {(==> g {=© (W=a,e, .0
6,2 Lemma. ([3, Theorem 3.10] ). a) We can assume that
(664) : fég(é)(respe ¢ (f’(';é’)),

. i ‘ :

(6.5) fdég(é;)(respe £le %’(?2;)) s for all «>0,
b) £ and £, (resp. f%and f1),l>0,are lower semicontinuous functions
on X (respoon G). |
Proofe By (4e1),Lemma 4,1 b) and Lemma 1.5 ¢) it suffices to prove

* #*
the assertions for f£!' and e 422> 0.A8 in [3],\% can replace £ and fy

such that :
& \ » \
(6.6) £7cE(R) ana £ €(R) , for all &>0
+# T % ;
and £* , £! are lower semicontinucus. By (3.1) and (3.2)we deduce ,

o

using also (1.5): @’*‘@fgmfé*@fj : f'*%i;fnfvf**f' for all o, >0.Hence we
can apply (6.2) and from (6.,6) the assertions holdoL.J. ‘
Let us define the functions:
G(a,b)=2* (a7 B)A(a),
Gyla,b)=rs (au1¥3)ﬂfa)g
for all a,béG, ot>0,

603 Lemma, a) If geK(G), aeG and o0 we haves
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(6.7) Ré g(a) = f&(b)l’}d(a,b).d w(b)
(6.8) f{g& gla) = fg,(b)(}a{(b,a)dw(b)'

where G, {2,°)=G(*,*) «
G
& i ol . .
b} The resolvents =(R& &»Oand ﬂm(ﬁd )&7/0 are in duality vgith
respect to w , i.e. for g;vgzeK(G') we have
v
P 7 € [s. = e .. &
e e gy@awia = (¥ gl @aw@ .
¢) If we denote by (‘f (resp. G"‘a) , a€G the functions on G bwG, (a,b)
(respe br+Gfb,a)) , then for all o320 :
Vv,
1
o2 e Ry
t
G”’*ae g( ﬂd) : s Where @Zom Qo
Proof. a) Let us verify (6.7) and (6.8). Using (1»1.) we have 3
R&g(a)ﬁfg(ah)i;(‘(b)dw(b)m]ﬁ(c)f“(am1c)dw(a"1c)= e e
o ; v o
::fg;(c)A(a)f“(a 1c)dw(c)w/g(c)(}d(a,c)dw(c) and Rig(a}=
% oo
fetan) mawm- fetang, 657 8 Baww)-
=fg(c:)fd(c"1a)A(c)A(a"1)dW(a“1c)m/g(C)f;((cﬂa)A(c)dW(c)w
=fg(c)Gd(0,a)&w(0) e -
The assertion b) is a direct consequence of (6.,7) and (6.8) o

¢) We have G:(b)afd»(aﬂb)é (a)=A(a) ;’if(b) o By (6.4) ,{645) and
1

v
: ¥
(4e6) we deduce that : G:f &€ g(@d) s for all &0 . Analogously ,
\
. A(a) ‘,,,—Ji(fci)ﬁ hence by (6.6) and (4.6) Gy € ol @) s for all &30
a i b
Because Gj,a,‘aéu? (G) ,o20 , for all aéG , we can

define the function :

G, ¢ XxX-—-——-a-R+ by
G, (3,B) = G,(a,b) , for all a,b€G .

6.4 Theorem, a) If g €K(X) , then :

(6.9) R )= [5G (x)aB ()

o U
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v p—
(610) hes (9= fa(3)6 (v, )a B ()
for all x€ X o
v
b) The resolvents j?and :R are in duality with respect to w ,
¢) For all ®20 and x €X we have :
v
=
Gy € %?( g{,{) »
o o
where 6@‘(-):&'&(:{,.) and de(‘)id(- s %) e

Proof, a) Obviously we have ¢

(6.11) G (85 )= 62(*)
and
(6.12) G luBhty (i, o J

Let g €K(X) and x=a . From (6.,11) it follows that :

/g(y}ﬁa(xpmw(y)=/gw>E§(mw<w=fge(b)ﬁf{b)dw(msﬁ;cgﬁ )(a)=

“n(e) (3) .

This proves (6.9) . Analogously , we deduce (6.10) from (6.12) .

Assertion b) is a consequence of the assertion b) of Lemma 6o

Assertion c¢) results from Lemma 6.3 ¢) , (6;11) v 16012) and (4.1) o
From {?,Theorﬁm 1¢2~2} we deduce the following :

1% v
6,5 Corollary. %?(6{} (resps %?(fg)) is the dual of the standard

i ; 3
H~cone of functions on X %f(G%) (resp. of the standard H~-cone %f(fR)) o

Final remark. Let H be a compact subgroup of a Lie group G and let

D be a second order (strictly)elliptic differential operator oh X=G/H ,
invariant by left translations y With elements of G , Then , by [ﬁ2,§8]
therg exists exactly one {gimcentinuous convolution semigroup on X

with the "infinitesimal operator" D .

We want to point out that (in the transient case) the potens



G L

tiéi kernel k associated with such a cenvolution semigroup satisfies
the absolutz continuity condition (i.e. k<< W) Indeéd s following
[1] and [QJ ¢ the semigfoup iteelf is absolutely coptinuous with
respect to the volume element (see{?,ch X”§1}) associated to the

coefficients of D . Hence we can apply Theorem 3.5 o
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