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AN OPERATOR THEORETIC APPROACH TO

ANALYTIC FUNCTIONS INTO A GRASSMANN MANIFOLD

Mircea MARTIN

INTRODUCTION

Iet D be an open and chnected subset of @m,and let«Hibe a
complex, separable, finite or‘infinite dimensional Hilbert space.
For any positive integer n, we let Gr (n,H) denote the Grassmann
manifold associated with n‘and He; £hat is, therset o f all
n—-dimensional subspaces of H. In the main body of this paper we
shall be concerned with the class An(D) of all Gr(n,H)-valued
analytic functions defined on D.

Two functions £ and ? in An(b) are said to be congruent, if
there exists a unitary operator on H which moves each subspace
flz) ento ?(z), for sll-points.z dn b.

We follow Griffiths kcf., [6] ) in saying that the functions
f and E have order of contact k, where k is a positive integer,
if they a&gree in an osculation sense up to order k. Two
congruent functions ha&e order ‘of scontaet: ki for.any k.

A more or less expected converse of this remark is contained
in the congruence theorem (cf., 2] , [8] ), which eonks that,
under é non-degeneracy condition, two functions in Aﬁ(D) are
congruent, if and only 1if-they have order ofiicontact -n.

This theorem originates from the already mentioned work of
Griffits [6] . In the stated above form, the congruence theorem
was proved, in the case where m=1l, by Cowen and Douglas EZ] .

The general case was discussed in [87 . Although the methods
‘used in [8} are in essence different from that of [2] /Justoas

in [2] the proof given in {8; has the inherent defect to be an

indirect one. More precisely, the congruence theorem was obtained



as a consequence of a rather deep understanding of the local
equivalence of hermitian holomorphic vector bundles of rank n
over D. The trouble with a such approach is that many qualitative
simple préperties of analytic functions into a Grassmann manifold
are‘inevitably not used explicitely.

The aim of the present paper is to give a new and simpler
proof of the congruence theorem. The proof uses certain operator
theoretic techniques developed.in [l] . In fact; the main results
of the paper, Theorem 2.4 and Theorem 3.7, could be regarded as
essentialy strengthened versions of Theorem A and, fespectively,
Theorem B from [1] .

Significant examples of functions in An(D) arise, in the case
where H is infinite dimensional,in connection with the class
Bn(D) intreduced by Cowen. and Douglas (cf., [21 . [j} Lol
The elements of this class are m- tuples of commuting'operators on
‘H, and to any m— tuple T in Bn(D) corrés@onds in' an ebvieus fashien
a function fT from D into Cr(n,H). Using a result proved by Curto
and Salinas (cf., LS] , Theorem 2.2) one obtains that fT is an
analytic function. Mpreover,two m- tuples from B (D) are
simultaneously unitarily equivalent if and only if their associated
functions are congruent.

This last remark constitutes a good reason for the study of
congruent functions in the class An(D)’

We now give a brief outline of this paper. Section 1 contains
some preliminaries on smooth and analytic'functionsvffom Delnte
Gr (n,H). In Section 2 we associate to any fﬁnction £ i An(D)
and any set X of bounded linear operators on H, a chain of fields
of finite dimensional C*—algebras over D. The local structure of
a such object is presented in Theorem 2.4, The discussion of
congruent functions in An(D) is carried out in Section 3. The main

result of this section, Theorem 3.7, is a consequence of Theorem
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2.4, and the congruence theorem appears as a particular case.
Finally, in Section 4 we digrees in order to relate the results

of Section 3 to the Cowen-Douglas class Bn(D).

1. ANALYTIC FUNCTIONS INTO A GRASSSMANN MANIFOLD

Throughout the paper D will denote an open and connected
subset of € and H will be a complex separable, finite or infinite
dimensional Hilbert space. Given a positive integer n, we shall
denote by Gr (n,H) the set of all nndimensiénal subsnaces of H.

1.1. If K is a subset of H, we let span K denote the closed
subspace of H generated by K.

Assume that £ is & function Ffrom D dnto:Gt¥ (n,H) dand let DO
be an open subset of D. A collection {h<x: A& ¢.édn} of H-valued
functions on DO will be referred to as a frame for f over DO if

(hilel) flz)=-span { h’a(z): 44 o £ n : ZE-DO}-,,

The frame is called smooth, respectively analytic, if all
functions h o , 4 L a X n, are smooth, respectively analytic,

On

0

DEFINITION. A function f£:D~¢Gr(n,H) is said to be smooth,
rospectively analytie, if for any inn D there exist an open
neighborhood D0 of zé and a smooth, respectively an analytic,
frame for £ over DO' The set of all analytic'functions from-Dinte
@r(n,H) will be denoted by An(D).

1.2: Let L(H) be the c-algebra of all bounded linear operator
on H and let E(D, L(H)) be the spacé ofiaill smqoth functions from
D into L(H). With pointwise sum, product and involution, the
space E(D, L(H)) becomes a unital involutive algebra. Identifying
each operator in L(H) with a constant function on D, one obtains

aematiiral inclusion of L) dnto E(D, L(H)). The wnlt:of L1} will

be denoted by 1.



For K a closed subspace of H, we let [Kldenote the isel -
,adjoint projection in L(H) with the range K. Given a Gr(n, H) -
-valued function £ on D we shall denote by [f] the functibn defined
as followss

Bedl p—smiay wfe] (z) = [E(2)) 5 =z €D.

It is plain that £ is smooth if and only if (£] is a self-adjoint
projection in E(D, L.
1.3. In order tostate the naxt result we introduce the notations
(133,11 - @ =d/0 2, -51= A'B/B”z'i: iz g lim,
PROPOSITIéNO Let £: D-sGr(n, H) be a smooth function and let
us put p= [f] . The following conditions are equivalent:

(;) f is analytic

(1i) (1-p)@,p=0; 14§ifm.

PROOF., Assume that f is analytic and let z, be a point'in D.
Let {hoc.; 1 ¢ ot £ n} be an analytic frame for £ oyer'an open
neighborhood Dy of 24> From (1.1.1) one obtains that  there exists
a smooth frame {gd_: 1 &4 n} for f over D0 such that

n
(1.3.2) plz)h= z (h,b.d(z)> 9o (2)i 2 €D, heH,
o=l .

where () denotes the inner product on H.

In fact the functions g . 1o Lotk £ my are .real-analytic,
hence ? is real-analytic too. ‘

From (1.3.2) we have

e |
(aip)(Z)hz&g Chy Bokel s L0 LA 18T

nence
(1i3.8 (8 p)(Iepi=0; 15 igm.
‘Since ( aip)% migip,the cohditigns A4y and (li 33N are
egquivalent. | '
Assume now that f is smooth and p sétisfi@s the condition

(ii). Let Zq bea point in D and let {Yxm: e ol < n} be a smooth

frame for £ over an open neighborhood Dy of z,, Then we have



e 5

3 -3 . ~ il
(1.3.4) aihm ai(p Bl ) (9 ;p)h  +p ’aih ; 1 444

enuey ot P

Since 3ipzp aipg we obtain that 'Biﬁlc&(z) belongs to

flz) for allz in DO‘ If follows that
n

(1s3.5) Bh oo ‘gi@h% = 1 Cidm, 1<t n,

B =1

where i?;@ (ST 0(,,@ & n} is a collection of
complex=valued smooth functions on DO’
Using (1.3.5) we find

e Tiz s .
2 = E 1 [N j 1 e
(le3¢6) ajaifld"‘" E : ( a ?wP ?dg. %K’B )n@ 7

=

&N TP

166, 541, - 1.6 &4 .n;

Let us define the n x n matrix 'g == E(X(E Yo oof. - (o,1)=

forms on D as follows i

OI

o B e
_ gﬁ’?’ i=1 ‘g;"‘f?’ . EEn

The exterior derivative d acting on smooth forms can be decomposed

!

to obtain
I m

e R e ?,dz,, 3 = >

i=1 i=1

Since ’bj > 1= ﬁi 3 sr @ simple computation shows that,
- using a matrix notation, from (1.3.6) we have

Ay Dk RSty

Now, by the well-~known generalizatioﬁ of Grothendiek’s Theorem
proved by Malgrange (cf.,, [ 7] ), it follows that, eventually
decreasing DO'
complex-valued smooth functions on D

(1.3.10) Jm + MAE

(o3l Yz(z) id an dnvertible matrdx: 7 €Dy

there exists a n x n matrix Tl il( 4‘“-@ ook

0,'such that

Thieg Iimplies that the collection {1<d.: 1 &€ o € }

~

defined by =

(R a5 ]{OQ‘:DO—%H, Koo 2@2:; M ap h& ; lg L &n,



——
is a smooth frame for f over DO' From= (1 3012y, (1,3 55)s=and

(1,3.10) we have succesively
n n

Bihg= 2y (B Map gt Ly My 34%y”

n
— n :
(50 .. S
Z 1()?‘%{3 Y =1 ,\q“f‘g{ﬁ 3
for all 1 ¢ 1+ ¢ m and 1 { o £ n. Thus, ikd\:ls &4 n} ois
an analytic frame, hence f is analyﬁic.
1.4. Our next task is to give some consequences of Proposition

Tua,

m

Let (Z+) be the set of all m~ tuples I=(il,.,., im) of

nonnegative integers. We shall use the following standard notations:

(1.4.1) D.=( ? v L e 26w n Flii B
© @ I"" l e 6 o m 1 4 I"‘ 1 oov-

s
et

*m
m) .
(1.4.2) | 1] = ll+...+im :
For any A in E(D, L(H)) we have

— e i K | 4+.m
] - °
(l 049J) (DIDJA) —DJDIA o) I'Jé (Z ) A

If I=(0,...,0) then we put DXAS-ISIA:-A,
PROPOSITION. Let p= L£1]be the self-adjoint projection in
E (D, Li(H)) associated with a function £ in the class An(D). Then
-we have
A (Dyp)p=0, 'EIp-:-p(EIp): (V1
(1.4.5) p(Dp)=0, Dp=(D{pP)P; EL® L,
(1,4.6) DIEJpﬂ(DIp) (B ) - (5Jp)(DIp); FEl=sol =
PROOF, For the first relation in (1.4.4) we shall proceed
by induection. If ]I] =1, then we obtain |
Blpxﬁl(pzh(ﬁlp)mp(gxm -
By froposition 1.3 we have p(BIp)mSip, thus (5&p)p=0.
For Ll o2 le£ us put I=J+K with J,K in (Z‘+)m and [ J} =1.
Assuie ﬁhat (BKp)p=0. Since (BJp)me, it follows
0=(5J( (SKp)p) )pﬁ'(_ﬁlp)pﬂng) (BJp)p=(BIp)P.

For the second relation in (1.4.4) we proceed by induction



':7.—

too. If {I! =1 then we already know that SIpzp EIP' Ror: | L %2
we put I=J+K as above and assumé that EKpmpS%p. Since (BJp)p:O
we have :

Dyp=D;(pDyp) = (Dyp) (Dyp) + pDp = pb_p,
and the proof of (1.4.4) is complete.

The relations (1.4.5) are obtained from (1.4.4.) using
Gleida3) .

Finmally, if I and J are such £hat Tt =131 =1, then using
5&psp(5&p) and p(DIp)mO we have'succesively

DByp= Dy (PDyp) = (Dyp) (D;p) + p(D;Dyp) =
=(D;p) (Dyp) + D (pDrp) - (Byp) (Dyp) =

=(D;p) (Dyp) ~ (Dyp) (Dip).
1.5, From (1.4.4) and (1.4.5) we obtain that
(1.5.1) (D;p)- (Dgp) =0 = (Dyp) (Dyp):; II1 ,10) 1.
Then, by & repeated use of (1.4.6), cleary we have R

IDJp can be expressed

as a sum of monom'i als of the following two types

LEMMA, For any I and J the derivative D

(1) * (Dllp) (B p). (DIkP)(BJkp)
1

(11) + (Ele) (DIlp)... (Eskp) (DIkp)

where. ), L. and Sl bl +la=T J1+“’+J =J,

1 k k

1.6, For the rest of this section we assume that f is a
function in An(D) and p= [fl . We know that p is real=-analytic.
Let us define

(1.6.1) E(£f)= span {p(z)h; z¢D, he¢H } .

This subspace of H will be referred to as the esential space of f.

For any 2z, in D we also introduce

(1.6.2) E(£:2,) = span{ Dip(z)h; I € (A5 B e Hips

LEMMA. We have E(f;zo)zE(f). v

PROOF. Consider the projections EO= [E(f;zo)] and E=:[E(f)J .



We clearly have EOmEOE and also

- o+
EODIP(ZO)%}Ip(zO)’ ¢ (y

)m

Since B}pwpﬁﬁp one finds
oo = ety - -
bODJp(zO)::QJp{zO) s J&e (%) , and by Lemma L.5.
we obtain
E.D.D.p(z.)= D.D.p(z.);: I,J&(z)"
G gl Tyt R o
Since the function p is real-analytic, we conclude that
.there exists an open subset DO of D such that
hop(z)zp(z); z €Dy -
Now, the real-analytic function
Dog — (1-Ejip(z) € L(H)

vanishes on D hence it vanishes identically on D, that is

OI
Eyp(z)=p(z); & €D.

Thus E.E=E, hence E. =E,

0 0

2. THE MAIN TECHNICAL RESULT

Thﬁoughout this section p will denote the self-adjoint
projection in E(D, L(H)) associated with a function £ in An(D)
'and.}:will be a fixed subset of L(H), containing the identity
operator 4.

2.1, For any nonnegative integer k, let us consider the

following two self-adjoint subsets of E(D,L(H)) !

tsz {(B'Jp)yﬁxmlp) : 0<\l, \Tlk 5 x,ve X } »
T = { ) ¥R (0p) + 04\T1, (31€ktL; (T)+ \TI€2Kk45 XY Xl
Given a point z in D we put

- - k
PE@={ s se 9y TE@=i @ meT™) : $F = Y, ¢ @

c oo ¥
and let ﬂ}(z),l@k(z) and A (z) denote the C =—algebras generated
< ¢ vo
in L(H) by &ak(z), fk(z) and 5” (z), respectively.
By Proposition 1.4 one observes that all these ek ~algebras

are finite dimensional and have the common unit p(z).



Cig e
winal v, fer any ‘epentcubset D0 of B let us introduce the

following involutive subalgebras of E (DO, Ty (RO s

; k ’ |
(g B ) —5A«E<DO,L(H>>= Biz)e B (a), a€n T,

k

B @, nd =‘éA&E(DO,L(H)): Az)e B, zé:Do} :

B =%Aé*( L) : ae A (2), zen, ) .

Of course we have

F<D°,ﬁfk>c Pl By o et e Bug, R

The next two results are direct consequences of Proposition
1.4 and Lemma 1.5. The proofs are simple, therefore we shall omit
Ehem .,

2.2. LEMMA. For any A in i”(DO,ﬁ( k) ands lailu=cigil= 4
we have

(2.2.1) pa) € Ty, BY: Ga)p e Moy, B9,
(2.2.2) pipDan)peies Biny . f st

2,3. LEMMA, Let DO and k be such that p(DIA) belongs to

f‘(DO,,A Xy for any A in rYDO, A Ky@ng i =4.

Then:

62.5.1) F‘(DO; %= F(Do,j«? T

Now we are ready to state the main tehnical result of the
paper.

2.4. THEOREM. There exist an open nonempty subset D, of B
and an integer 1 £ k € n, with the properties:

e AP e A

(0 fne gt @y A% )— EWO,, L) is a morphism of
complex algebras which satisfies

(2.4.1) ¢ (p(Dg D A = @ (p) (D;D; @ (A)) @ (p)
for all A in f“(DO, f}l Yiana W0l !I\ , 1 3l £1, then



(

(2.4 (‘Q(p(DIE“JA)p)= @ (p) (D DJ @ ) @ (o)

for all e BP0 AT ) dnd all T, T tnlm T

07
2.5. This theorem is a strengthened version of Theorem A from
(ll . oAtEhe present moment, using the results of Section 1,
its proof is more or less similar with the proof of Theorem
A given in [11,~ However, for the reader’s convenience, we
prefer to include in what follows a complete proof.
- We begin with a well-known resulf (see for instance 21,
Lemma 3.4 and [9] ¥
2.6. LEMMA. Let A be .a self-adjoint element of: E (D, L (H))
siuch -that A= pAp. Then there exist:
(i) an open none mpty subset Dy of. D
(i1) a collection fp,: 14« 2y of self-adjoint
orthogonal projection in g (DO’ T (H) ) -
(iii) a collection -{ Mo 14 oAt } of real-
valued smooth functions on Dy, with /u’d,(z) 74/&% (Z2)uz €Dy a;éﬁ -

related as follows: 8

(226.:1) p(z)=ocz P o (2)i 2 €D
. =1 :

(2.6.2) A(z)= i__, (z2)p (z); -z € Dis
= M o € D
Moreover, from the preceding relations one obtains
= 30 - M (Z)) ;i z€D
p,, (7) o #u (8 (2)= fy ()P (z)) /54@4 z € D,

o

2.7. Now we refym to the finite dimensional C%—alqebras
_’Qk(z) s jbk(z) and Jf} -~ (z) associated with p and X Given
a finite dimensional C* -algebra fi, we shall denote by alfl) the
cardinal of any maximal set of m#tually orthogonal self-adjoint

minimal projections in A, and let us put

_ K
G e e e
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of codrse we have
Qa1 2 L gk £ £ P2 oy
202 dz dz : dz~ d £ n

therefore we can find an open nonemp_"ty subset DO of B .and an

integer 1 £k £ n such that

@Fad gt e

Moreover, using some well-know®n facts about the structure
of finite dimensional C% ~algebras (see for instance [10}, ‘
Ghap I/ éll) , by a repeated use of Lemma 2.6. and eventual.
decreasing DO' we may suppose in what follows that there exists:

(1) a sequence ', d Lreeer dlg of positive integers;

(ii) a system Ql"” ’Q€ of mutually orthogonél self- adjoir
central projections in [ (D, A e

(1ii) a collection pi;,d MLt , 1€ oL & L
mutually qrthogonal self-adjoint projections in \"»(DO, A k_l) ;

iét,lé o B £ g

i

3 ; il _
(iv) a collection Udd&, i B oif
7 - r \%k-—l

elements of (DO, )i, such  that

VoE Ml - :
(Z.7.4) djt...+tdyp =i 7.2l Dy

d

i
Ol
R

i Ak e iy i 1
2746 = : = ] = A
( Y po,v U A Upcf UDL@ UM« B L

where [5!32{\ means the Kronecher symbol..
Cléarly, by (2.7.5) we obtain that all 0,,1 G ¢ 2 o
are central projections in F(Dov' i el i By (2.7.4) and

(20v7.3) we conelude that: all pjéc iz ) realh LB ‘E A < D/gdi

are minimal projections in A ]?;)l and also in f}(};) Pofor any

+ : :
2. in D.. Now, glven T in (z)™ with ‘o] =1 andil &l E

0
: : k=1 ;
we know from Lemma 2.2 that p(DIQi) is in F(DO, :/5 ) and

: i : . k=1
since Q, is a central prejection in F(Do,g ) we have



p(D;0,)= pDy @0 =7 (D10,) 30 o (D Oy )= @,Q (DIQi)Qi
whence it follows

(2.7.7) p(@0;) =0 = (D0)p
From this-: last relation it is easy to check that

(2.7:80 B p® B )pQ; ; T e b

O5 B )p = p(DyDy

for alli B in F(Do,q%k_l) and £ 111 Lol L L

0
particular one obtains that Ql., I é £ '{i , are central projecticns
: k
in E"(DO, A

Now, since the projections

p;(z)rléiég ot < Qﬁ'{dit
are minimal in ﬂ (};) Tor any z -in DO? by {2:7.6) and the preceding

remark we have that, for any A in 206 j%k) , there exists

O F

a uniquely determined collection of complex-valued smooth

functions o©n DO’

iL/L{%L@ pa g déd‘l}

such that {)/ &,
- i ; ¢
(2.79.9) A= B v /;i,l (2) 4,
g C{\Té =1 0{*% %{3

2.8, Let D, and k be as above and let (@ : P(DO, ﬂw Yo o
S E'(DO, 7, (H)) be a  morphism of complex algebras.
In order to prove Theorem 2.4, it sufficies to show that
(2.8.1) pD; }3 e P A S
(2.8.2) ¢ (p(D, O{ﬁ)p) = ©(p) (D @ Uip)) @ (),
2.8y e, U\lp = @ (p) O qﬁ(u,ﬁ, )) @ (@),
for all (1} =1, Aél"l“g,,lé@éfg
Indeed, (i) of Theorem 2. 4 will be a consequence of
(2.8, (2.7%.9) and Lemma 2.3, and (41) will follow from
B8, 28 and 2,79
our next task is to prove (2.8.1), (25.8.2) @nd (2.8:3)« Let
us consider the subsets of P(DO, f]?)k—l) defined by
s ks {{«Q £ ’d”if

s ot e el



gL

.

Ifes iaa point in DO then eaéh q;ﬁ (z) dis a finite product
of elements belonging to Efjf evalued in z. Therefore, eventually
decreasing DO we may suppose-that any Qég 18- afini te -product of

qéf s belonging to ﬁ'i, Thus we are allowed to grove (2.8.1),

(2.852) and (2.8.3) assuming that (%;9 is an element of ES..

i
Let us first assume that qyé :p;- A(DK’B e pé where A, B, C
are in P(DO’ A kml‘) and bR je= 1.
Given I in (z7)™ with {1l =1, we derive easily that

' = k
(2 8ediap Dy apa ), (D Uz y )p € F‘(DO,,..A )
and using (2.4.1) we also find

1 % L%
(2.8.5) @ (p(D; ‘i:;ﬁ )= @ () (D @ ( U;P.)) @ ®,
(208067 w0 (0D U{j[ )p)= @ (p) (D ¢ ( U&Lﬁ )) @ @) .

The rest of the proof will be based on the following simple

result.

LEMMA. Let A be an involutive algebra and let V, W in j{
be given such that VWV=V. Then for each derivation Sﬂ on f{ we
have

Coap Cvvidr s v aurd

where F=WV and E=VW.

Pfoof of Lemma. Since EV = V we obtain »
vidin) J<E)\r:v(({'w)v+vv<r({v>+ & E®Vv =
=V(EW')\7+E(§V)_+ Fmv=vi(dwyv+ &v.



Now let us pltein (2:8.7) §g D.; V. = Ui W = Uiae
Clearly E = p.. i i : - D :’ e
je y E Py | P o= pP and we find
(zaazoul o (DK, X i i
i f% o3 @ ) (I)Ip% ) Uc{.[% =
(D, .U
f* f~ «*? ;?»

s i i
Since pibyp T € T‘(DG . 4 ), from (2.8.8) and L8R 4) a9t

follows that

(2.8.9) n(DIU "{‘f?’ ye 'P(DO’ A k)

On the other hand, if we put in (2.8. 7) dd =D_ and
; 1€
i :
@(U&@ Yo W= @ (U f3 9 ithen E = apilp ),
@ (p e ) and we obtain
(A e e (p(u o e .c,g(rj“;[,{b s Lp(pj:@ R
Pt g W e
4 el i v
(’P(LQL{S )(DI(P(U 0{@ )) CP(UO‘-Q ) )
Using (2:8.5); (2.8.8) aid (2.4.1), from (2,8.9) it follows

(2.8.10) (oD 2 i i
P pIDV 23 )p) P (p)(Dp @ (Uyg 1) @ (p).
Thus (2.8.1), (2.8.2) and (2.8.3) are proved.

v

it

=

&L

H

o second = - - D ‘
the second case, when Uoc{% = Dok A(DL g )C p%‘b , We

proceed ana logoysly. The proof of Theorem 2.4 is complete.

3. THE CONGRUENCE THEOREM

Let f and f be two functions in the class An(D) . We shall

denote by p and "]5 the self-adjoint projections in B (D))

assc>01ated with £ and f, respectlvely

: o
o DEI‘INITION lef. L6121+ The functions & and f are

said to be congruent, if there exists a unitary operator U in

I, () such chat



= Ly -

elr Uplaaeia MU ¢ 26 1.

3.2. DEEINTTION (cf.,[6]) , [23})3 Let k be a nonnegative integer
The functions f and ? are s3id to have order of confact k, if for
any-point-z in D there exisﬁ :

(i) an. open neighborhood DO of 7o

(i1i) two analytic frames { hyt 1 cd L o ohe {glizl ¢ $nt
for. £, respectively ?,‘ over~DO;

(ifi) o unitary opérat@r 5 in g (g7, Sueh thatl

3.2.3) oD h =Dk gzl t e G DL L0l Lk

1 &% <£n.

It is not dificult to see that we have:

3.3. LEMMA. The functions f and ? have order of cohtact o e

and ‘only 1f for-.any point z in D there exists a wunitary operator

e in - L3 ) such that
= > . Z 6
(3.2,1) U ,Dp(z) Dopilz) 1 ooas T o€ L2 1 0 L g k.

ey

Lt
AS a consequence, if £ and £ are congruent then they have

order of contact .k for any k.
3.4. Before continuing we make another remark. Let U _ be

Z

as above and consider VZ= Isz(z).

Erom (3.3.1) one obtains

& ! S oy
34 1) VZ Vz =.plz), VZVZ = p(z2)

hence VZ is a partial isometry in L(B) . Moreover, frem (3.3.1)
one finds
(3.42) Y Bplz) Dpila) V. =D
R ZJ ik Z
oo el Cinh (u
: o~ :
3.5, THE CONGRUENCE THEOREM. Let - & f be kwo Functions in
A]i(D) such that

2 .
(BeS 1)y B = Bilr) = H
The following conditions are equivalent:

- .
(i) £ and fiare congruent}

(1i) £ and ? have order of contact n}



(9t for,any z in D there exists a partial isometry Vz in
L{ H) so that
S vV, =P
(8.5.20 B M = p (@), Vv - piz)
2 e ¥4 &t
(3558 VZDTP(Z)DIP(Z)V" = D.p(2) DIp(Z); 0o &z ,lJEf’E: Tl
3.6, €learly we have to prove only that (iii) implies (1), This
will follow from the next theorem, which is a generalisation of
Theorem B from [ l] . In order to state it we need some notation.
o ' ;
TLet £ and £ be as above and let X be a subset of L (H) containing

the identity operator 1. Assume that the condition (3.5.1) is

satisfied and consider a map W : X —> L { B ) such that Yy (1) =1

3.6. THEGOREM. The following conditions are equivalent:

(1) @ is the restriction of an inner automorphism in T.(H)
lnduced by @ wiitary oberator U which satisfies

U p(z)rj% =’§(zf, zZ € D.

(1i)y for any 2 1n D there exictsra pértial isometry V, in

L) so that

3en ) V%V = p(Z); VV:= pilz]
% De e -
(3.6.29 VZDJp(z)YXDIp(z)VZ = Jp( z2) A () AEJ(X)DIP(Z);
for allix, ¥ in ¥ and 0% g1t 501 & n.

PROOF. It is clear that (i) implies (ii). The converse is
based on Theorem 2.4. We associate with f and X the open nonen@ty

subset D, of D and the integef 1 £ k & n which appear in Theorem

0
2.4, Ciwen A i I”(DO,.ﬂ & e define
£ 3
(3.6.3) %>(A)(Z) = VZA(Z)VZ : 7 E D0 :

Since P(DO, J%GQ = P(DO,QAEA )i, from (3.6.1) and (3.6.2) "we
obtain that @ :is a well-defined morphism of complex alagebras from
r (DO,‘A o ) into E(Dy, L (a)), and the conditions (2.4.1)51in

Theorem 2.4 are satisfied. Thus, from Theorem 2.4 we conclude by

induction that

7
(364 DJp(z)Y XD p (2 )V = Jp(z) N{ m%’(X)DIp(z),
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_for all z in D_, X and ¥ in}{, I and J in (2™,

Let Z be a fixed point.in Db. Since lé}{ . siemma- 1.6 and the
assumption (3.5.1) give

e 4 N
(3.6.5) H = span {onp(zo)h: REM . o

,hen} =
S . o / +.m
= span { W (X)DB(z)h; xeX, 1 € (2", hen}.

Let U in L( H ) be defined by the equations

(3.6.6) U (XD;p(g)h) = WY (X)Dp(zg)V Oh; X €NR,
ez uhe B
From: (3.6.4) and (3.6.5) we derive that U ds.a unitary

operator on H and also
(Bebed)s i) =l 2 soRE N
& _ * o m
(B5.6v.:8) DIp(ZO) =2 DIp(zO) U v LB (7 e
Singce p. and 3 are real-analyticy using (8.6.¢6) and the remarks

given-at 1.5 we conclude. that

«

(3. 648) pile) = Wate) U o2 6D,

The proof is complete.
4, THE COWEN-DOUGLAS CLASS Isn(D).

Let us denote as above by D an open and connected subset of

m

€ and by H a separable, infinite dimensional, complex Hilbert

space. Given a m- tuple T=(T ,Tm) of commuting bounded linear

pEees

operators on H, and a point z=(zl,°..,zm) in D, we define

K(T;z)= {h & H: (z,-T,}b=...=(z -T }h=0 } .

1
4,1. DEFINITION (cf,,[zj . [3 ]}. The m- tuple T is said to

be in the class Bn( D ), where n is a2 positive integer, if and
enlky 1 f
)y dim K{Baz)=n 0 2.6 B,

(1i) span {} K (Tyz)= H,
e

pre)
(iii) range (zj-Ti):H; Lok dobempsze €ab JMV%@“

366



4.9, Let Tm(Tl,..,,Tm) be in Brlﬁn and denote by £ the
function defined as follows:

fT:D~w¢Gr(n,H), fT(z)zK(T;z),

Arguing as in [3] or using a result of Curto and Salinas
oy [41 , Theorem 2.2) one obtains that fT s analytie, "Moreover,

we have as a direct consequénce of the definitions:

o~F
resuy ) be two m-tziples in

ONARE ~ 1 m 'Y t””“
LEMMA, Let T=(T reee,T ) and T=(T, .

the ¢class BlutD), The following conditions are equivalent:
(i) there exists a unitary operator U on H such that

: o
15 =t ¥ A )
o =l e i 4 S

(1L} the Funetions fT and f% are congruent,

4.3. We now wish to obtain an operator theoretic interpretation

of

of the orderYcontact of the functions fT and f@. Before stating
precisely what we are able to find out, we shall give some

preliminary results.

I be a fixed m-tmlples in B YDy andilet pz[:fT} c

Let J.:'-:(Tlpatc m n

For any zm(zl,...,zm) in D we have
@l 4 m

3 : : ; + 1
et I = (ll,...lm) be dn (7 )

il

(4.3.1) (z,-,)p(2)
L

and fim 1 e Qs E e 1

3

N4

then, differentiating the equation (4,.3.1), one obtains

(4.3.2) (=0 yD plale=4& "l v " pieyy pOg el do, 1=,
I T g ) J 1 J

,coo,lm)s

If i, = 0, then one finds

(di3.2) (zj = Tj)DIp(z) =

o : : : 3 : +.m ]
Given I = (11,...,lm) and J = (jl,...,jm) i €21 ), “lelits put

e

I =g = (1l —‘31,.¢e,1m - jm). If I - J belongs to (Z ) we "write

I Y% J. We shall use also the notation Il = ilf ...im’ 2

@

.Now, for z = (Zl”°"zm) in D, we let TJ(z) denote the operator
in L(H)Y defined by
) T Ji1 Im

(1453 Y naeloi= (zl c Tl) ..,(zm—Tm) -

By a repeated use of (4.3.2) and (4.3.3) we have:



*»

i g

o= ]G

| - +
(4.3.5) 17(2)Dp(z) = 1 e Pl T ET

o
(4.3.6) T (2) o.plz) =0 e I3 ¢ (2DT,

Eh

x :
1xea

Let z be a

0]
e
7=

yoint in B, and let %k1$’: 1o & L n}b

analytic frame for fT over an open neighborhood DO ot 2o koY
nonnegative integer k, let wus introduce

4.3.7) B9 (7,2

#

span { Drh o (2):0 dlnle oo 16 el
We easily derive

,(4,3;8) E(k) (T; z)= span »{ D‘Ip(z)h':(‘)é_ fif Lk, h € H}‘.
From (4.3.5) and (4.3.6) one sees that

(8.3.9) T (e) nh {2y =(T] /@ell) DB (5}

o4 e R

. ol : % ; S . b dem
(4.3.00). T dmiD b z) = 0wl 6 ol Long £ =il @ (z°)

Ty

Thege eguations, together with

(os i1) spen bl s imesy = ® (£pi2) = H
. k 3,0 -

imply that :
LEMMA, (i) The vectors { D.h (z T B2 )<, 1
| S
are independent in H,and

o 4+om ; =
span { Dih oy (2) : I €(2), 16 okl n} e

(k)(

L ies s S

4,4, Now we introduce another: collection of subspaces:

(4451 K(k)('l‘;z) = { h en: TI(z)h:O, jzl = k+1} .

i ( .
Of course K‘O) (B} =Rl 7)) = E(O) (D7)

LEMMA. For any nonnegative integer k we have

(k) Lok

(o, 2y B o (T;2) .

PROOF,., By (4.3.9). and (4.3:10) one finds that

g Sl ey e g b ey
Let h be in K(k) (T;2z). By Lemma 4.3, there exists a unique

collection of complex numbers
g "5" m % Tpon
{CI,O& e e B T e .o{.:: n } such that

h = Z CIeo(,Dho’v(Z)'

T &Y

& an

any:

o

.



oIl

Let J in (2) with ' |J| = k+l, Since TJ(z}h:O, one obtains

-

Z
g - o Rl e D g,
B o o (U ) Dy ot (%)

1% ol
By Lemma 4.3 again, we have
°r o =0y 19 T, 14 k4 n.
Since J is an arbitrary element in (Z+}m with IJ( ="k+l, We
conclude

(o]

P

Doy =00 1Ty e, 1 & ok £ 1,

hence h belongs to E( )(T; Z)
s latd . s *
4.5, Let Tm(Tl,..n,Tm) and Tz(Tl,...,Tm) be two nvc%uples in
& n(D).Our next task is to give an alternate means of the order of
contact., Explicity, we have:
PROPOSITION. The following conditions are equivalent:

(1) fT and f$'hava crder of contact k.

(1i) for any z in D there existsa unitary operator

e , .
UZ:K(k)(T;Z)“ﬁ K(k)(T;z) so that
s e e - (k) o ‘
1 /\‘ Ma - 3 { l..r @« 4 4 A
M.l (Bealirs UG [ (Trz)s; 1€ 4 i&nm
r e Le = = fo AS S Ume a 1 r~ e
PROOF. Let p [fTig and p= | & [ . Assume that £, and fig hav

orddr of contact k and let z be a fixed point in D. Then there
exist: two analytic frames %h oL 1 4 o(fn} and {(;M S G o
for fT' respectively fg, ovVer on Open neighborhood'no Gtz aid d
unitary operator U, in Li{g) so that:

(o= DIKQL (z?; Qe L ki Liel Loomn.,

L — -

{4.5.2) UzDIh e

By Lemma 4.4, and using the equations (4.:3.9), .30, it
follows easily that UZ has the required properties.

In order to prove the converse, let-us assume that z is a fixed
oy . = o L sl () =
point in D, and let U, be a unitary framk (Ti5iz)8 ontoRR (DAl
satisfying the condition (4.5.1). It is enough to show that

o ¥
. ) i - £ <
(4:5 3] DIp(z) UZDIp(z) U, O £11i L k.

We shall proceed by induction . First we remark that

A‘f L 1 (el .}‘{“\J
0 = (zj“"lj)p(?:) & LZ(%j°£j)Uz p(z),



»

(3 43

hence
) %bJ ‘
bzo=T) Waple) Usf bt 5 L on,
el Z Z ,

: 5 A : :
Since dim range va(zﬂé? n = dim range p(2) we conclude that

s

%AJ 3
(4.5.4) Uzp(z} U .= piz)s
Thus (@ 5.3) s proved for il o= 0
Assume now that (4.5.3) holds for all | I[£ E, and-let I =
= (i1’°‘°im} be such that iI[ = g + 1 &%k, Let 1 £ j £ mwith

d e By (403.0) one finds

J f.&;‘-au : at S e Y]
Uz{zjmTj) U b;p(z) = (zj~Tj) DIp(z)rmiDI(j)P 7))
From the induction assumption one obtains
X _~ . :
(zj~Tj) UZ-DIp(Z)UQZ“%DI(j)P(Z)
whence

2 W s
(4.5.5) (25-T,) (U D7B(2)V

By. (4.3.3) the equation (4.5.5) 1s also true if 1 .=0. Therefore,
- j

o Dxp(Z)i =0

05
therevg'COmylex number £ such that
# M’r Poed
(4.5.6) UZDIp\z) Uzm DIp(z) = Cipikz) .
It follews that

o

¥
£ p(z) = p(z)U_ D;p(z) U~ p(z)D;p(2)
T ~t ~? a
But p(z)Uz = U _p(z) and p(z)DIp(z)zGap(z)DIp(z}
(cf., Proposition 1.4), hence /£ =0. The roof is complete.
4.6, We are now ready to state the main result of this sectien.,
LEgonld be recgarded as & generalisation of Thecrem 1.6 fxrom [2]
(see also [1] .- haoxen C).
: s o~ ; o) L 8
s e s T = l‘m (P i e "%, e ‘ o "- =
Let T (Tl,...,im) and T (¢1f5‘“,1m) be two m-tuples in n(D)
We denote by T’ the commutant of "{Tli“'°’1ﬁ1} and assume that X
is ‘a subset of T' containing the identity operator 1 and all
operators Ty, ...,T_.
Let a4 : X —> L(H) be a map such that
e _
(4.6.1) A (1) =1, \U(Tj).ﬂ'j S G Rar
M.
(4.6.2) nplxre s xo X,

Then we have:s



- Al oo
THEOREMs The following conditions are equivalent:
: : . : : }.( : i ; :
(1) yﬁ is the restriction to of an inner automorphism in Lay;
(1) for any z in Dithere exists a-unltary operator

G

ctng s Z i
U'zz}'\( }(’I;Z)m—:;- X '« 2} so that

o2 et

(4.6.3) x| kPN Tz = v xu X[ (Fi2y; xe X

PROOF, It sufficies to prove that, under our assumptions, the
present condition (ii) implies the condition (ii) in Theorem 3.6.

Let‘pm [fﬁ?] and %x [f% I . From Proposition 4.5. we obtain

. . 2 % N
(46,4 pilizs 0 "= D pilz)iz e D, 0€\T £,
2ol zZ I oo,
Now let us put V?mUZp(z).~By (4.6.3) and (4.6.4) we derive

easily the desi r ed relations (3.6.1) and (3.6.2). This concludes

the proof,
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