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THE EXISTENCE AND THE ASYMPTOTIC COMPLETENESS
OF WAVE OPERATORS ASSOCIATED TO SOME

'ELLIPTIC PSEUDODIFFERENTIAL OPERATORS

1. Introduction

Let PO(D) be an elliptic operator, VS(X,D) a short range
and VL(X,D) a long range perturbation. The purpose of this paper .

is to prove the existence and the asymptotic completeness of the

1 +D -3 +T
wave operators We(P,B.) = s~1im eltle L P (P,), where
- 17 s o) ac 1
== s\ + V ») P S w
el PO VS \L and Pl PO \L

These operators satisfy the following assumptions:

(A.1) PO(D) is an elliptic pseudodifferential operator

on Rn, of order m >0, fermally self-adiecint” (e,

PO(D)€ Lﬂ (0 ﬁa)(Rn), there are two constants R,c >0
27 T
such that éPO(gﬂ >c|E™, for |E|>R, and
(Pou,v)Lg = (u,Pow) o0 e $(R")) such that
1im B (B) = o0
rsiseo 0 (5
. e N iy e . :
ooy nep (= p o ita BERLGE 0} is the set of

the critical values of B thench(PO) is at most a

countable set.

m n 3 \ > .

(B) .VL(X,D)G L?,(N,i*ﬁ)(R l oS >1/2, =00 ds Formally
self-adjoint and it has an extension to a compact
operator V. : G LZ(Rn),

(C) Vo (woplE R®RY, ©>1/2, 9>1, is formally

= 7 - Q_:r (@,(T) ! £ 3 7 /

self-adjoint and it has an extension to a. compact



m ( n l'l)

operator V_,: H (R") =3z L“ (R

)

g n
The elagges of operators L )

s (0,0) &

will be defined in
the next section.
Now, we shall make some remarks on these assumptions,

= The assumpeion (A1) dnpliee that B (D): PR ——w= PEY

0

‘has a unique self-adjoint extension on LZ(Rn) ( D(Poj = Hm(Rn) )i
‘Moreover, since lim PO(E) = &0, this operator is bounded. from

gl ~»o0 '

= = ; apEen : n
below and GYPO) = Géss(PO> = [c,oO),.where e —{1n£ PO(E),EGR }
Let us remark that the condition -lim PO(E) = & is not a

[} -»oa
restrictive one, because the ellipticitv and the symmetry of PO
assure that “lim D (E) = 0 or _Jim P.(E) ==0c0
LR fgj—eo O

-~ The last condition of the assumption (A.1) implies that Ab(PO)

. 2
1s closed and Sard s theorem shows that AC(PO) has Lebesgue measure
zZero. Tt is -known that if PO is a differential operator with

constant coefficients then_ﬂb(PO) is - a finite set.

- From the assumptimns (B) and (C) it follows that Pyi= R VI

and P = Pl Vo are sel feadjoint operators in Lz(Rn); with D(P) =
o)

= D(P = Hm(Rn), bounded from below and that G;hS(P) =

o
).=C{e (P

ss 0) % u;lco),

.) ;

The wave operators are given by W+(P,Pl

il

g-dim aEE B g (P

el itibes exiat.
+—3 oo aE 3k

Definitionvl.l. Suppose that W, .(P,P.,) exist. We say that they

1

are complete if Ran W, = Ran W_ = R%C(P).

If in additien,

Sing(P) =<§, we say that the wave operators are

asymptotically complete.

The main regult of this paper is



Theerem La2t, (a) ‘i P Vo, V_  satisfy the assumptions (A.1),

i g
¢ 4 — = o= -} b =
(B (@i cand it Pl PO 4 VL’ P PO } VL + ]S , then the wave
operators W%(P,Pl) exist and they are complete.
(b) If, in addition, P, satisfies (A.2), then the wave opera-

0

tors are asymptotically complete.

‘The proof of this theorem is based on the estimates contained
in the principle of limiting absorption and on some results about -
smooth operatofs.

T VL = 0 , Theorem 1.2. can’'be proved with time dependent
methods (see [1), 2] ).

Results similar to those contained in Theorem 1.2. were proved

by Lavine -in. [3] for P (D) = A and ¥V (x,D) = VS(X), VL(x,D) =

0 S
= VL(x). |
In the last section we shall apply Theorem 1.2. to the pertur-

bed Hamiltonian of a relativistic particle with spin-zero.

2. Preliminaries

In this section we 1i§t some results which we shall use in
che proef.of Theorem 1:2..

Bisrstaof all wé give éome results Concefning the pseudodiffe~
rential operators used in this paper. The nroofs are.standard i
the theory of global pseudodifferéntial operators (see [4], [5]

and 7l ).

Definition 2.1. Let m, 6,9 €R, €S0 ,6 0<©< I. We say that

A is in ol (Rn) T ECuYRann) and for every d,FEENn there
g, (8,%)

exists C = C(M,ﬁ)bwo such that



~ (i)

{D D A&k ?)%ggc(l + 1x0) (1 +}§‘)m~§uﬂ, ¥ x.5 eRr’.

where “(O) = B fﬁk) =Tl ey e ]

-0 n ™ M .

e deno S Lty =Y = g
We denote by ?,(@’Q)( ) g\; r(@,ﬁ)( ‘)
‘Yﬂﬁfm
Proposition 2.2¢ 1F A:@gsmi 5 (Rn), m.\ - ©@, there exists
o3 m n ~ e A=
Aﬁgsgi(giq)(R o euch that, for all k> 1,
K-t
Ao A, a5 (&™)
J"“:“; ?,(e,m :

Moreover, if B is another symbol with this property then

AR o

fece]
g, (0,0)

We say that A is the asymptotic sum of Aj’ and write

T e
izo

o

We define Lg (6 ﬁ)(R as the linear space of the continuous
r e G -

linear maps A(x,D): $(R?) —= PR") given by

P o = om Sei (x,3) 4 (x,5)a(R) 4% , ue PRM),

- A ol o
where AQ‘SQ,(Q,G)(R e
Propositien 2.3, {a) If Bl ﬁ)ﬁ ey B Gt 12,
= s j F = gl (GJI(G) >
x A ~ = - n =
then ~ Alx,D) = Al(x,D)AZ(X D) g, (0,6) (R"), where m .ml tom,
6 = @l + @2., G = 1nf'(@i +(T2 - @2 + G&)
 Moreover
m-8k | : n
A - (1/!) @ A D Py €8 (R} .
‘0{”;:,“/ / }"; l gl( 4 G-z"] eﬁ’f“G;) )

2 (© Gn)(Rn), then his formal adijoint
57 14 ¥

: : : %*
e belongs to the same space of operators and if A% =-oprelx, DY,

(b) IfF A= Alx,D)elL

then

m-ek

copbn) &

e

Fonercad
o <k

e 1/“">°’gD T et



The most important facts we use in the sequel are the conti-
nuity properties of these operators. In order to state them it is

convenient to introduce the following weighted Sobolev spaces:
p /2
B (R ) = fued @), el T ueH® ®M) ]} ,

which are Hilbert spaces under the norms:

s oemlisally s e o B Salial tary 18
where Q : RO e i ; Rx) =-(l + %x‘z)l/z.

: T ' : ; Sy n
Proposition 2ﬂ4, (a) If Sy2S, 1 K2, then HM4(R )
is continuously embedded in H

Uor)= e Sl>'82 3 %l:>x2 ; ‘then this embedding 1ls compact.

Proposition 2.5. If A = A(x,D) azfg (0 @) B ) and s, 5 e R,

then A has a unique:extension to a bounded operator

n Si=10 n

S

A : Hu(

A class of compact operators is given by the following:

Proposditien 2.6, (a)let A(X,D)EZL% (O O)(Rm) such that
; T i 14 4
(2 ) Lim o A(x,K) =40
' Xl 1El-300

; = 2 2
Then A(x,D) induces a compact linear map : L (Rn) —— L (Rn).

e
(b) A(x,D) €L (o o

tomadi L HI(R ) B (B) ) if andidonlydiie

n 0 .
(R") has a compact extension to an opera-

X+ 6
= - o+8 = =

?s (D) S (x)A(x,D)§ tx(x)% S(D) has a compact extension on L2(Rn).

: m n :

(o) Tek Al D) G.Lg,(grg) (R), 8 =<8 sueh that
e B o
lim  § (x)§7 " (¥) A(x,E) =0

IR 1L 0 : :

Then A(x,D) induces a compact linear map : HS(Rn) e Hi;%(Rn).

Proof. (a) If supb AC ;0 dis compast itheneA L (R
3, (8,8)

R S S ———



eI §E>O, In this case our statement follows from Proposidtion

2.4, and Propedition 2.5,

If supp A( , ) 1is not a compact set, we choose (FECS%Rzn)
such that CP x,8§) = 0 for Ixl + |El>2 and Cf(x,g) =1 For
<l + 181 <1. If we set A (x,§) = @ex,£¥A(x,¥), it follows that

Py

Bg (x/D) e ToR 2

) ey L (R") 1is a compact operator for every
£ 20, 50 it suffices to prove that Aé(x,D) —— A(x,D) when

€

> 0 in the uniform operator topology of %@CLZ S
In oxder to prove this, we assume for a moment that - A . )

satisfies:

2l s s - o el \pleln/2] + 1.
(XiH“&\-dwaX 5 e

Since

o_p :
WA, D) ~ A(X,D)mcp 2. " < C sup \D D A TS A )(X,E)‘
£ :!.:»«(L (R ) ) g CRW £ :
: letd, 1pl < Eﬂ/zE%i
(Calderon-Vaillancourt’s Theorem [51), we need only to verify

r

that:

lin sup IDIDE@ - Ag) (5| = 0, 1, 1pisln/2] + 1 .
R X0 K)*%Q{R\\ X o

But this follows from

ﬂ"f; ré”! Il (’e\-a

x < (1 - W(ex,EE D D,
ID¥pia - 2 (x,0)l € “zﬁz;;:wleDs( pex, €30l B0l x5
D D.F"u - Qenge® oo 0 ," T o mie e

F ! > sl = 4 >

oty Py - . 3 .
{DXD§(1 = ?(2 e ))EG<&G& is bounded and
lim | D%D (x ,‘g)( =0

KlHgl—we0 X 5

To conclude the proof of the proposition we note that (2.1)°

follows from (2.1) and the fact that for u &Cé(Rn) we have
WD, ull? < 4l In2u)
o = va T

where ¢/ (&) ={uec®®) ; uer¥®@), mis2).



= T

(b) is a consequence of Proposition 2i0a ) end (c) fol=

Lews. frem: la), (bl Proposition 2.3, 2.4 @and 2.5 .
In order to apply the results of [7] we need

Proposition 2.7. If A(x,D) =P8 (D) % V(x,b) , where D [D)

0 =0

n ;
(R}, B 20, is a compact ope-

tisfi Nod)ia D) el
satisfies ( ) and V(X’J)Q:Lg,(e,ﬁ)
11

Ea o Brem Hm(R Ece LZ(Rn), then there exists B(fo)Qame

T

such that

B(XID)A(XID) = R Rl (X,D) ’

Kl DYBi(x,D) = T +iB (x, D)

2

-—(_)Ql

e, (0,6 RV, =1, 2.

where Rj(x,D)EjL

Proof. As it 1s well known from the theory of pseudodifferen
tial operators iteis enough to prove that theveliare R>0,. o =0

such that

m

(220 - 4B (8L + Vix,Bin obel iy an merh

Because PO(D) is an elliptic operator of order m, there are

IH_%O, cl>C)such'that

BBl imr , tE R

So (2.2) follows if we show that

Bl AR T e

I§l—00 xeR™ 7

e V(x,D)<aLg s g)(R ), there is a constant C >0 such
14 F

that
abe R s e b L

But for every £ >0 we can find a compact set KEC:Rn such that

-0
Cllin sl =€ x@Rn\Ka :

On the other hand V: Hm(Rn) et L2(Rn) is compact, hence



)5 ls-compdet too. Thoorem Lok,

chap, I1 from |61 implies that

Iame oy (VG EL L+ TR =N

\(??1 oy U we 1“}‘ %
‘ &

which' completes the proof.
This proposition permits to get the limiting absorption

principle in the same way as in [7].

0 satisfies (A.l) and

Theorem=2.8.1f I = PO + V , where P

V satisfies (B), then

)

(a) Any eigenvalue of H, which does not belong‘togKC(PO

has fipite multiplicity. The only possible limit points of the

point spectrum of H are in ﬂb(PO)k)%+00%s

2

(b) For every compact set K'afb,cé)\(ﬁr (H)LJAC(PO) and for

: PP
every 51 /0, there oxisgts a constant € 20 such that

: - ‘ -
HR(lekHﬂm”&QCMﬂON , FELL R, Aer, ketd. 1},

7 ~

where RIAFAR) = (B = [AF ik)) "~ .

At tho end of thié section we state some results about smooth
operators and one concerning the absence of the singular continuous
spectrum. These results can be found in [8].

There are alot of equivalent definitions of H-smootheness.

We give the following one:

= o
Definiction 2.0, Let A beia closed operator and H - B oin A

separable Hilbert space

(a) We say that A is H-smooth if D(H) €D(A) and

sup HAR(MY 1% V1

i < oo
PER, nou=y !

(b) We say that A is H-smooth on £2if APo is H-smooth, where



P, is the spectral projection of H corresponding to the borelian

set &,

Propositian 2,10, Let H = H* and ©cR a borelian set.

If A is H-bounded and

sup NAME —A - ik) & § < o9
o< k<i,Aes2

then A is H-smooth on & .

,\‘,(..
Propesition 7,11, Lot s llis sl = HO raBia Ho—bounded OpE=

rator and A a H-bounded operator such that

(HQ, ¢) - (¢, HyP) = Ay, BY) , PeD(H) , Yep(H,) .

i) 3
Let (SCRwith s =1/%§ 5 and each S% a. bounded open:interval,
L=t
Suppose that:
(i) A is H-smooth on eachgii and B is Howsmooth on eachf’i‘ti

(11) Both- G(H) VS and GYHO)\S have Lebesgue measure zero.

Then the wave operators exist and they are complete.

Progpsit;on 2yl2. Let:H bea self-adjoint operator and f(a, b)

a bounded interval. Suppose that there is a dense set D in H so

that, for each <f€D

sup  sup \(tf, R(x + ig)@jji e oo
S<est a<ich

Then Ran Pa, b)CZEKaC



o, The proof of Theorem 1.2,

We: shall prove this theorem in several Steps. et -V(x b)) be
a pseudodifferential operator that satisfies (B) <« It follows thot

the operater Plx, D) = PO(D) + V{x,D}  belohgs to Lg (0 G)(Rn)’
' 4

o e . T S-m,._n

U >1 . So it has extensions in iﬂHi(Rn), Hae (Bil) oo eah,
All these extensions are obtained from the operator

PleiDla Pl = oy oo Tl

In order to avoid any ambiguity we denote by PS i the exten-
A r N

: . DS Tl Sall, Tl : :

SION OF DCgh) in. Sl () 0 RN Y e ean now state and prove

A

the following lemma:

Lemmia 3.1, Forteach «el-1 1 : .
emma 3 For each «e{-1, 1] the operators Pm/g,@

are invertible.

PSSR SN

We prove that D

o i 1is one-to-one, Ran(Pm/Z,w == A oig
: : ¢ -m/2 ,_ n
> S nd ) R 'S 2nse Ry
closed and Ran(Pm/zrm )-tigdense in HQ{ (R

~m/2

Let u Qﬂfgz(Rn) and - £ &€H - (Rn) be such that

(353 Poe,D)u - da = T

Let Bilx Diel (R") be the parametrix -of- P, Dl — 1
g, (0,0) »

given by Puerosition 2. 7. Applying B(x;Disto (B.1) we gét

-0 n

(352 U =BG, D)F '~—"RI(=, D)., Rix,DIeE Lg,(O,?)(R b

From the eomtinuity properties of the pseudodifferential operators

(Proposition 2.5.) it follows that Elan :

a3 W ul

iy + el

sC (full )

0,0 -m/2,0

: ; : -m/2 ;
On the other hand, by identifying H m/ (Rn) with the dual

m/2 (Rn

Space of H ), we have



(PuF u) = i(ur U) = (fr U) .

Since P(x,D) is a formally self-adjoint operator we have
that (Pu, u) €R for uel™2(@®Y) .

Hence

2 2

S::‘an “U‘“m/zloﬁgauuﬂm/zfo -t (1/4&)11‘{“_]‘“/2,0

i

il =20

Ereomathis and.from (8. 3) we coneludesthat

(3.4) ﬂuﬂm/z,ofgcnfnwm/Zro :

Let v = %%u; then v ﬁHm/Z(Rn) and verifies

(P(x,D) - iJv = &F + [P(x,D), u .

m-1

n 7 . 2 e : N
%,(l—u,lmw)<R ), it has a bounded extensio:

Because [P (x,D), §M}<§L

defined on Hm/Z(Rn ~m/2(Rn). Hence

Juwith alues. in-H
c»_( -

g =R e I, C{;é(juéli /2 B

and :

Ul /2,0 SUEN /5 o+ Cllally/p g -

From this estimate and from (3.4) we deduce that

\

Mokl o = el pscliol o ame dtingl G0 Sl
which implies that
e § i i% e (2
(3.5 “u”m/z,MQQC“f”—m/2,q =.CliP (x,D) 1)uﬂmm/2’x
tor u.GIfn/z(Rn).
, 4
This last estimate assures the fact that P - i is a
: m/2,
: : -m/2 ,._n
one~-to-one map and that it has closed range in H 2 R )
Now we prove that Ran (P - 1) is dense in H—m/Z(Pn)
) p m/2,c><. S i K o oy .
We know that P :.PO + Vs a self-sdioint opelietor on L2(Rn)
m n 2 5]

with D(@) = B ®RY) . Henee (E(x,D) = Lyt @bhi = 12 &").

m .1

Consequently for every ffELi(Rn) there exists u &H (R) so that



(P, D) =08 = F e Proof 1s complete 1f we show that

m I
uE€HL(R ).

Asbefore 1t feolleows that

Setting again v = (Xu, we prove that veEHm(Rn) . We have

LD

L%

el - i, 5=, & Tur F .

We know that g €L“(R"). and that

0,
i : s P , i
Lot v = Ve v, where P (x) = Y(Ex), (;J:CO (RY., Be) = lofor
e oeen m n

ixi=1: sinee vl A cwT @), it follows that v €8 (R

Foc

for every &£ >0. Also ve satisfies

(P (X,D) o j—)vc‘ = h& < h-% - k%,}eg -+ {P, %J&EV .

Because Uss:L% (0,1) (Rn) unifoemly with nespect to €+, we have
r r
that [P, Y le Lg:mlo 1) (R™) uniformly with respect to € . Hence
{4 ==f 5
| < v i \all <. : 8 £
“hayo,o Mc(Lvhmf#l + “gho,o)‘~c1(“fuo,m 4 uuumlo) .,(:211_110,M

The estimate (3.6), with vg insted of u, gives

“vﬁﬂ < clietl

m, 0 0,x
= : : ; : Mol oo : . =
Then %Vﬂsoqaﬂ is a bounded set in H (R ). Therefore it con
tains a sequence )Lv&} ldme. = 0, which is weakly ‘convergent to
) Jred OO j
a function =w @Hm(Rn) Byt limv. = v in & (Rn) , hence

5 -

n

vV =W €£Hm(R F rapd theproof Jis complete in the cace ’X C%[O, 1]

The case we[-1, 0) follows by duality.

Remapk 8020 If (£€ L2 @) a2 (R%), then

( el Reroeidl

P = ) fi= (Pm/Z,o'\ = ) R



- 13 -~

We prove the existence and completeness of the wave operators

WW(P,Pl) by means of Propeositieon 2i. 1l lLet i Ros PO + VS + VI -

Poi=p iapt Sp Yy rand V. be ag ing Theonem: o eilal) - . cWel can
1 0 L 0 L 3

write

(Bay v) = Auy P]v) = (Vsu, Vo %Hm(Rn)

We introduce the following operatorsi: B = B(D) =

= &
= (1 ﬁDEZ) m/4 and ‘A = A(x) = Q(x) /2 . Then we have
(Vsu, v) = (BAVSu, B“lAflv) e V'QHm(Rn) .
: : D Pl e e ~ : co_ 0
Since BAVS%:L%,(Q/Z,G;)(R Vo Ny Int a2 k], N 8/2) and
sl =]y n S =l e
B A e LQ,(9/2,9/2 i l)(R ) we have that BAV (resp. B "A ) is
P. (resp. P,) bounded.
U e o) \ (K q A (E
fetofa, Ble Lo 908 pp<P)hj%pp(Pl)*“ﬂb(PO>) be.a compact
interval. Now we can prove
Lemma 3.3. The operator BAVS (resp. B~1A—l) is P (resp.‘P )

1
smooth en fa, bl .

Proof. We prove first that B a s p,-smooth on [a, Bl

For this purpose we use the criterion given by Proposition 2.10..
We must show that

1l e A 1, -1.%

shp. . s UBESRTHE. R — ik T e e
P Ec’n":“i ke CO;.{I
] ¥

Becaise AT te @AY it ic enovch to prove that

Sup . Sup ﬂBwlAwl(P - A - ik)"lA-lB"l{§< °a ,

Acla,bl ke (o,] ; :

We use the identity

(P]—*A-'ik) e & (?\—ik—i)(Pl—i)— &
b Bk LIS s W < AR
(p, - 1)”l



The definition domain of the operator BwlA~l(P1'~ i)mlAm]‘}fl

/2 ) . ;
H / (R ) and on this set this operator.is ‘equal to

sl oL , : =l =] o] ; ;
P : ~ ] B e follows that
B A (”1 ne 0 o R N f0l loWws tHat
o el el R e SRR T R , =
B "A (P] = el W B iz & bounded operator, In the same manner
e . -1, -1 Simalao T _
it can be proved that B "A (Pl e is a bounded operator
=l e . iy s e S LAl e
Algo iBIEA 1(Pl = v 1(P1 - A 1k)'l(P] - i) lA lB 5 is eqgual
~1,-1 -1, M ey S =1o-1 -1
to B A (Pl' A ik) (Pl m/2, /2 At e TR

o m/2,=6/2 i)

on Hm/2(Rn).

We have the diagram

1 =d =1

=] ; ! ]
25l -m/2 A SemeAD e 2D (Py — —1ik) m ;
PG B T & it st e 5 i i i = S L S
- s gl S L nemey L
e a o mpaE
oy H ol L i ey g S ey H T > LT
~-a/2 - 8/2
where all the operators are bounded and
e . 2 o il ] : :
(Pl - A ik) : L@/2 e H_é/z is uniformly bounded with respect
to Xela, bl and k€0, 1] (Theorem 2.8,),
e e e oy ml-1-1
Therefore 4B A (P i A= Skje b e e }Rfk

is @ family of uniformly bounded operators with respect to
Rel{i, b] amd ke b, 1]

In-order’teo prove that BAVS is P-smooth on {?, bg, we remark

that' BAV, = BAVSABB_lA_l = VlelAMl, where V, = BAV/AB is a boun-

ded operator. From this it follows that

3 *
IBAV, (P - A - ik) Leav )y |l

[

a»;i\‘avl‘ﬁz'\‘s,B"lA“l(P = g i
 which, according to the first part of the proof accomplishes our

proof.



b

Ihie proof of Theorem 1.2,

(a) Let N =@

'ép(P>a;§;p(pl)bmmC(po) which is a closed set

and which has Lebesgue measure zero. We take § = [o,=a)\N =

T‘\Q ]
= J g%j ’ wheresﬂj are bounded open intervals with the closure
J= : 5

also contained in S. Lemma 3.3. ensures that (1) from Proposition

(D= e

Zollon s sabisfied, Siace G
= : Yess e

= [c, ), it follows
that the sets G(P)\NS and QYPI)\S have Lebesgué measure zero. Hence

all the hypothesis~of Propeosition 2,11 are satdcfianm:

(b) It is enough to prove  that G =Dl @ . Theorem 2.8.
= sing
5 : N - (7 1 & :
and Proposition 2.12, imply that dsing (P);_qpp(P)NJﬁE(PO)Q But

from the assumption (A.2) this is at most a countable sety, . so thal

)
sing(P) i

4. An example

We are going to apply the results obtained in the previous
sections to the perturbed Hamiltonian of a relativistic particle

with spin-zero.
In this case the operators are given lkyithe following symbols

B = m® o+ 51512

€ |

O( , m>0 ,

@

Ve SRl i) p

P(x,8) = P, (x,%) + W(x) ,

where A, V and W Sakisty

»OQ( n n

(@) € C RdR a0, szcg%(Rn;R) and there exist constants

&

A
e, CO i Cua0isuch fhats



G el (0 + 1x)) Vs er ..

2 o i Sa e ' Ve
f e, v eC 0 4 ) Le) et il

(3 3) W ec®R":R) and there exist constants Gl € 0
such that

-

IW ()] < Ce (L + Ix1)” ,¥xeRY, Y ey

(il Tl 20+ x>0,V xer’, ¥EER .

Remanle 4.7 1) Uadekr the hypothegis (i) and (iii) we have

A e e s e el e e
for a positive constant C.
2) s iig Al ang iri) it fellows ‘that
2 o 2 o n
(m= 4 |8 = AT + Vix)) sl’(O’H@) (R7)
and that
B e e e o Y
s 0> °1,(0,1+9)

We have now that

Vo (x,%) = By (,8) - Po(®) =
= (~2€A (), 8> + 1AG))Z + V() /(P (B + Py (x,8)

qrse SO
i 100 145)

Tt is easy now to see that all the assumptions in ‘the RtEe=

duction are fullfiled 4f we take V. (x,%) = W(x). (That v and Vg

Myobol L (Rn) results frem Proposi=

are compact optrators from Hl(R

tion. 2.5:) S0 we ¢an apply Theorem 1.2, - to these operators.

Remark 4.2 1) These results are valid also when there exists

n e L2 :
a constant A €R such that A(x) - A verifies (i).
2) We can proceed in a similar manner if:

L e

e |



o e w Rkl P e
+ VM2 )
Here 2i(x) ard W(x) satisfy (1), Wiw) satisfies i) and

me B - nl s sl a0 Nz Eent
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