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OPTIMAL CONTROL FOR SEMILINEAR HYPERBOLIC
BOUNDARY VALUE PROBLEMS
by

DAN TIBA

INTRODUCTION. We consider the unconstrained distributed control
problem:

(P) Minimize L(y,u)

subject to
(@1 Voo By fly, 2y, yt) U : in Q,
(1.2) y(0,%) = yg(x), y,(0,%) = vgx) iDL
(1.3) ylt,2) = 0 inZ

Here (1 is a bounded domain in the Euclidean space Rh, Q = 1x]Jo,TL, 2

: T : o
=0 TE andow E»LZ(C.J), Yg€ Hé((’)‘), Vg é.LZ(fl). Function f: R4 R

satisfies the growth condition
(1.4) ¥4 >0 350

| fly) - f(z}! LE-+ifvh 1y = zf for |y-z]< J where y,zéRmz and

{+] stands for the modulus or the Euclidean norm, as appropriate. Similar

conditions were used by F.H.Clarke [7], V.Barbu [2],-V.l<omomik and D..Tiba [9]

previously. They allow a large class of examples including polynomials and

exponentials. . |

‘We assumne sthat L : LZ(Q) X l._2(®) -»R is convex, continuous and
continuously differen‘tiaﬂe with respect to u. '

‘The main result of this paper gives first order optimality conditions for

problem (P) and will be stated and proved in section 2. It extends some results of

Tiba [12] §4, V.Komornik and D.Tiba [9], J.F.Bonnans [4] Ch.IL. In one space

dimension, By the method of characteristics M.Brokate [5] obtains necessary



conditions for a more general problem.

However, ocur approach is different and may be applied to a large class of
problems.

It is based on arguments both from the theory of optimal control for
variational inequalities V.Barbu [1], D.Tiba [12] and the ﬁheory of singular control
problems as developped by J.L.lions [8].

As a general remark, we don't need imbedding theorems of Sobolev type
and therefore we have no conditions on the dimension of SL. We use only the.
simplest existence and regularity results for the linear hyperbolic equations and
this explains the many possibilities of aplication of the method.

By (1.4) f is locally Lipschitz on Rm—Z and we express the optimality
conditions for (P) by means of the Clarke [6] generalized gradient of f, denoted Df.

In the last secfion we collect several technical results used throughout the
proof.

‘2. THE MAIN RESULT

As it is wellknown, the state system (1.1)-(1.3) ray be not well posed for
such a general nonlinear term. Sbee Lions [8], Ch.2, §1.4 for a thorough discussion
of an example when f(y, v y,yt) R {eT0E

We define the pair [y,u] to be admissible for (P) if u é&L‘Z(@),
. f(y, vy,yt)éLz(Q) and y is a solution of (1.1)-(1.3).

The existence of admissible pairs may be just'.ified in special cases and in
this respect we quote Tiba [10] 3?4, [121§ 4, Brokate [5] §5 (well posed problems)
and Lions [8] Ch.2, Bonnans [4] Ch.3, Tiba [11] (unstable systems).

We assumeé the existence of an optimal pair [y¥*, u*] which achieves the
infimum in (P).

THEOREM 2.1. There is p” & LZ(@) and \é’“*é LZ('C\J),' zr*e Df(y*, wy¥, yz)

such that the following optimality conditions are satisfied:

21 =p” = :,aZL(y*, g™

(2.2) <p%, &, -06+[y"(€,95,8)D=<K3 1" u"),8e> for all



§ € CH@), (0,0 = §,(0,0=0in 5 and £t =0on L.

Above we denote by <., .> the inner product in LZ(Q) and by [ .,.] the
s e )
inner product in R™ ™,

SI6 S a u'x“ﬁilz((“) are the two onents of 2L (y*,u™)

1Ry Tut), 3 Lly",u)€LT(Q) are the two components o o

the subdifferential of L.

In order to prove Theorem 2.1. we consider the approximate optimization
problem (Pg ), €>0:

(P¢ ) Minimize

sl T S 2 .
Le (o) + 12} £° (v, vysy) - f67 vy sy )] [ 2¢qy + 12 fu - o™ fz@ &

Ly = 2 2
Uzly-y* H2(q *+ 12t [ Y- 2y + 10y, Ty,y) - u ng(G)

€ s e e
Here L, and f are regularizations of functions L,f given by:

@3 L (= infllz,v) - ()l 52@),/2{ +LzW ],
Vi

e

(2.8)f @) = fHz- £v)p(m)dT, zeR™

with ¢ € CO(RH-@-Z)’ suripj‘ﬁ ol ‘f}i( 2: dt = 1;
GARRY

P20, p(-T)= (T

This is a variant of the so c:alied."adapted penalization' method;'the idea
to penalize the nonlinear term originates from the theory of singular control
problems, Lions [8], while the penalization of y - y* in higher order Sobolev spaces
was previously used by Barbu [2].

A pair ly,u] is called g-admissible if u éLZ(Q), y - y%& HZ(Q),

£ 2 : ; -
£y, vy,yt)éL (Q), y(0,x) = yO(x) and yt(D,x) = \/D(x) infl, y(t,x) = 0on 2.

PROPOSITION 2.2. The pair [y* + z, vl is ¢ -admissible for any vé LZ(Q),
z € Cz(ﬁ), 7% = z{(D,x) = 0N, z(tx) =0 an &
PROOCF.

We have to show that f (y* + z, vy* + vz, y* + zt)éLZ(Q) for all z with

i

the above properties:

| 6 vz vy o oyt ez ]

. o s 1 o %, ] % % /%) A
< Jlftw-g5 )] p (8)do < [fy*, vy*s ¥/
0w . ’ = X1 =

£ fifweep )= fy*,vy% Y Lp (BT
s
S(0,4)

# * ¢
where w denotes (y” + z, vy* + vz, y¥ + Zt)"
T



By (1.4) we infer
5 i
oy vz, 9y w7,

y:" - Zt>§-§ Syt 3? +C§(l Vil my ™ A 5 )f}(z,v«z,zt)— el p (6 )dC

since the term (z, v z,zt)- -~ £% is uniformly bounded on Q.

Voo >

Finally, we get
E P (Y}ﬂ + Z "fy* + V2, Y; i 70? S_Cl(j i ff(}’%sv}’%ﬁz)i )

and the proof is Tinished.

PROPOSITION 2.3. (Pi ) has at least one optimal pair [y, ,u, ]
PROOF.
: o ' 3
Let [yk, uk] be a minimizing sequence for (Pﬁ s Then {uk}, {f (yk,
vyk’ykt>3 are bounded in L2(®-) and {yk- y*} is bounded in HZ(CJ). On a

" subsequence, we haves:

ukv?a - weakly in LZ(G),

: yk@_? | strongly in LZ(Q),

vy v?f strongly in‘!_z(G)s
v e a

yktw}» Yy strongly in L7(Q),

£¢ (yk, 7YY 1t )—w\‘ weakly in L (O)
To identify ?} we reason as follows. For - any ?i>0, there is @{»@

meas mbles meas (Q - O, )< n and (y; s B3

,y‘(t)w‘:s'(% @P)‘/S"t) uniformly on C\),.,,z , by
the Egorov _tneorem. Next (2.4) gives f (yk,v){k,y[<t>«3 £t ('i,"\"‘?,‘?"t) uniformly on -

Q,,, that is
{

i/ (a8 Ll

(y, 7y,y,) a.e.Q.

-Obviously 1S an g - admissible pair and, by the weak lower
semicontinuity of the norm, it is ¢ - optimal. We denote it [y-& Bl

LEMMA 2.4. For €0 we have

(20 cen” : strongly in L° ((Q)
(2.6) y o7 y* >0 : strongly in M (@),
2Dy, 2y stronaly in LA(Q),

(2.8) vy, - vy* strongly in 1L4@)",



Let J, be the cost functional associated with (Pﬁ 5

e ; ¥ % o £ ; SRy
J¢ (v sy, )Sjg pa =l (W a7 f s vy*,y{z)

er ¥ % *y1 2 * Mo o g
- FT Ty ) | {20y + 128 !y% ~ Ay e ey
2 E !7:2((3)} =L, et o0 s tle) i 2 (y*, Vy)L,y(,_,)
S R S 4 %KY L~ - %X % sy 2
- fly™, vy ,>€) } L?L(Q)SL,; (y™,u”) + (,l\_l wlfe Ye e YAyt vy ,yt)i Lz(@) Y

by Lemma 3.1 from the Appendix.
Therefore:

(2.10) lim sup 3 (y; sug ) < Lt
Bl ol I

We obtain the estimates:

@l iy ¢ Y bounded in LZ(Q);

(2.12) {\yg % y*7} bounded in HZ(G)),

(2:15) {{fs (yi 'O Ye sYe i:) 1} bounded in l_Z(Gj,

(

N

a5) {Lg_ (ye sug ) i} bounded,
- <
(2.16) %ep T B £ (yi s PYe ’}&/:t) - u, >0 strongly in L (Q).
By the properties of L¢ and (2.15) we see:
il 2 -1
Elp ol sty g )| L2@) x L2 * L+ € 3L) y, ,ug IKC.
Since L is bounded from below by an affine function and {y,}, {ug}

are bounded, it yields

1/2 - ) ¥
ET13 L g (g yug) ] LA L@ S

and we conclude that

[ye st - L+ € 2307y ug )= €31 (v, yu, )20
strongly in LZ(Q) X l_Z(Q).
: Denote by [y,U] the limit of [y ¢sUg I Then

(217 lim(I + £3L) (y, ,u, )= [5,]

-
. 2.0 2 9
in the same topology (strong - weak) of L°(Q)",



A

By an argument similar to the proof of P2.3. we see that

g " E? o s ,. ; A L . . T ]
fyg s 7ye aye t)»wf(y, wy,yt) weakly in L7(Lﬁ)o Therefore [y,0] is an admissible

pair for () and by (2.17) we  infer (2,18) lim inf
£=3 0

s e ot e et 2
g (ye_ U )ZL(_\/,&.Q + 1/& Lo L_’f(@) w12 Ve v H2<®).

- Taking into account (2.10) and the optimality of [y*, u*], we get ¥ = y¥,
0 = u¥. From (2.10), (2.18) we remark that :
L, PG T G L e z__>"1<,ﬁ A

3 ; ey *
* W28 Oy sy by ) - R oy )] f2 g+

o wa2 . %) 2
w2 L o4 gL@)-Fl/Z(Yg e {H(Q)‘

Then:

Z
B (ﬂ)

w2, '

1/2 %fa e 1 7Y ,yf t) - fly*, vy’ sY{_)j

+1/2 E e - Uki

sl 55 L)“l(yﬁ_ Ug )
and the ,{;ETLM is proved.

LEMMA 2.5. There is pek L (@) such that the approximate optimality

system is satisfied:

(2.19) -pg = 3 b (v sug )+ ug - u*
£ :
(2.200<pg s -8 § +17F (ye avye oy , ) (5, 99, D =

r?, < 3 * s"
= <f (}/E 7T Ve Y ¢ t> = f(y*a Vyis}’j\:):[?f (‘/g 1V ¥ Y ¢ t)s
(g

—sTy
-

Ths §P <ol e lyg g )G+ <y - ¥E, 602
forall ¢¢C@), §(0x)= §,(0,0=00n Land ¢(tx) =005 .
Here we use the notations of ﬂmgﬂ_&h We denote by <. >F 2 the
inner product in HZ(@) and by vf . the gradient of f ©(.) as a function on R

PROOCF.

We take

P = l/uyﬁtt by, +f \v&,&y&,yat)"u&)
To obtain (2.19) one has to compute the subdifferential of J ¢ with

respect to u and to use the minimum property of u £



~»

e

&

3

L v f€(y€; YV Ye oY g t)} is bounded in L“(Q)

By Proposition 2.2. the pairsly, .+ 4 § ,u; ] are ¢ -admissible for all s ¢éR

and we infer (2.20) from

o=limJd. (y, +8§,ue) -3y, sug Vs
A e

VAL R i
PROOF OF THEOREM 2.1.
By the assumption on L and (2.19) we see that p¢ s strongly convergent

in L?"(-GJ) to p*. On the -other hand Lemma 3.3. from Appendix shows that

el Then, Lemma 3 from Barbu [3]

shows that on a subsequence

v io(ye suye sy : t)w-";zfj‘"é: Df(y*, vy“gyg) weakly in LZ(G)NZ, Here we

One can pass to the limit in (2.19), (2.20) to obtain (2.1), (2.2).

REMARK 2.1. “J‘Jhen T is differentiable, we can assume only that L is
continuous. Then, the argument is a combination of the above proof and of the
proof of V. Komornik and D.Tiba 5l

REMARK 2.2. This method to derive the optimality conditions is, in a
certain sense, independent of the form of the state system and may be applied in
various situations. For instance, similar results may be obtained for unconstrained
control problems governed by parabolic semilinear equations:

Yp -AYy* gly, vy) =u inQ,

y(0,%) = yO(x) in (L,y(t,x) = 0 on 2
under condition (1.4) for g. This can be compared with the work of V.Barbu [1] §5 3

3. APPENDIX |

: ; E
In this section we prove some technical lemmas on the behaviour of £~ .

G JtE -l ke [H D)

with C independent of € .

-~

8y - 1] < S 1y - e3) - ] p (B)dTg
SO A
1
i

od \..»«
H

& f(] iy Dlsl ¢ (3) <ce@+ LD



-

e

by hypothesis (1.4).

LEMMA 3.2, For ¢ sufficiently small, we have:

(3.2.) [#p] <1+ 2], yerR™2

LR} < 1EE ] + £ - f] < 1 By ]

LEMMA 3.3. For ¢ sufficiently small, we have:

s

(3.3) |v ff'(y)g <l tf?-(y)g’ )

with C independent of €.

-

PROOF,

It is enough to show (3.3) for a component i, 1<i<n + 2 of the gradient

e <Pt
vf . We denote it fi:

)"'(yl

-<lim C/}

e ()

c L1+
e ('l’vL i}

{\<A “+

-<~C2<l 4

3 (
| £{)] <liml/{h] Jlfly-€2 )-
k20 im,ﬂ

> i o e
preceayyth- €5, s o €Z§n+2)2“{9“(b)d(§ﬁ

l?

£ :
!g5(14--5f(y-f@)}g)fh!f(“ﬁ)dﬁﬁ

(o 1)
)] + Iy = g5 ) - ] ) p(a)dBg
(] )+ C2la+ 1l ) €181 p (B)dB<
-

[ f) KC(1 + | £5 (] )
Here, we have used several times assumption (1.4) and (3.2).
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