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Infimal generators and dualities between complete lattices

by
Ivan Singer

§0. Introduction

This paper is a continuation of our papers [20]~[22], and it
is parallel to [13]. In [20], among other results, we have given -
some new examples of infimal generators (in the sense of [12]) of
some camplete lattices, occurring in the study of generalized con-
vexity and functional hulls,” with applications to the theory of
optimization problems; in [21], we have started an axiomatie study
of the theory of Fenchel-lMoreau conjugations‘féﬁx—+fc(?)gﬁw
X and W are two sets andxy:x><w—»ﬁ=[}«5+aﬂis a coupling functional
in [22}, we have shown some relations between dualities‘ﬁ:ZX—%ZW
(where X and W are two sets), in the sense of Evers and van Maaren
[6], polarities ﬁ(g):2X~?2w (where gg;X)(W is a binary relation),
in the sense of Birkhoff [1], Ch.IV, §5 (see also [11]), coupling
functionals and conjugations; finally, in [13], there are given so

(where

me applications of infimal generators to characterizations and re-
presentations of dualities A:E~F, where E and F are two complete

lattices and, in particular, of dualities;Q:Axw>Bw, where (4,<),

(B,<) < (R, <) are such that A% ana BY
The aim of the present paper is to give some applications of
infimal generators to the study of dualities between complete latt

ces, both in the general and in some particular cases. Also, we

are complete lattices.

shall introduce and study the quasi-complement of an element of a
complete lattice, with respect to a family of infimal generators.

The main result of §1 of the present paper is a theorem on th
extension of an antitone mapping Ab:Y—»F, where ¥ is a family of
infimal generators of a complete lattice E and F is a complete lat
tice, to a duality A:E—F.

In §2 we shall use infimal generators'to give some formulae
for A% (z) ,aA%A(x) and Fix(ﬁfb), where A¥:F—»E is the dual of the
duality A:E—F, and SA:E-E is the associated hull operator, with
invariancy class Fix Mﬁﬁ). Also, we shall show that, for the ele~
ments x of a complete lattice E,;the theories of Cf&ohulls and
- In §% we shall consider the set D=D(E,F) of all dualities
OH:E—F, endowed with the natural partial order, and we shall use
infimal generators to study the lattice operations generated by
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this partial order. Also, we shall introduce, for any element x of
a complete lattice E, the concept of the quasi;complement %=%(Y) of
x, with respect to a family ¥ of infimal generators of &, WhiChAmwnt
will permit us to define, for any duslity A:E=TF, the quagi=-complex
R=A(Y,T) of &, with respect to two families of infimal generators
YCE and T&F; the quasi~complements %=%(Y) mey also have interest
for other applicationse

In §4, considering the particular case when E=(2X,;),\
F=(2w,§) and YSE, TSF are the families of all singletons in X and
W respectively, we shall show that, even in this particular case,
the results of the preceding sections yield some new results. Also,
we shall obtain some lattice~theoretic properties of the relations
of [22) between dualitiesAA:(2X,2)~»(2W,2), binary relations g«
cXXW, polavities ([1],[11)) and coupling functionals ¢:X XW—~>R.

In §5, we shall consider the particular case when Ezﬁx, F=R"
(where X and W are two sets), ¥ is the family of infimal generators
of EZﬁx, given in [21], [13], consisting of all functionals of the
form X,x*;d’ where + denotes the "upper addition™, in the sense of
ﬂoreau'(f15},flﬁ]),x{x} E?notas the indicator functional of the sin-
gleton {x} (xeX), end deR, jdentified with the constant functional
hd(x)zd (xeX), and ¢ c P=R" is defined similarly. We shall show that,
even in this particular case, the results of the preceding sections
yield some new resulis on dualitiesAﬁﬁﬁg—¢§w and conjugations
G n

properties.

and, again, we shall give some Trelated lattice~theoretic

Finally, in §6 (Appendix), returning to the general case, we
shall give some relations between dualities A:E—TF and coupling funce
tionals ¢:¥XT—E, where YSE and T<F are families of infimal - ge-
nerators of the complete lattices E and F, respectively.

The notions and notations which we shall use, will be explained
in the subsequent sections.

§1. Dualities between complete lattices, Families of infimal

and supremal generalors.

We recall that if E=(E,¢) and F=(F,<) are two complete lattices,
a mapping A:B—F is called a duality (61, 1137), or, a pelerity

(117, [179, [381) i for every index set I (including the emply set
I=p), we have

Alinf x. )=sup A(x;) Gk e

e U > Wl

=

2); {21

f

we shall use here the term "duality" (reserving "polarity" for

(4.54) below).
In eny complete lattice, we shall denote by +o(-o) the greatest
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(smallest) element and we shall adopt the usual conventions
inf f=+oo, sup f=~o00; (1.2)

thus [13], a duality A:E—F is nothing else than a complete inf-
-anti-homomorphism satisfying (by (1.1) for I=@)

A(+00) =00 . (1.3)

It is well-known that (by (l.1) applied to Xp 1%y ), each
inf-anti-homomorphism A:E—F is antitone, i.e.,

Xl’X2EE' X1$%p = 8(x1)28(x5), : (Xe4)
whence, for x,=+o, we obtain
A(+ey=min{A(x)| x €E}; (1.5)

hence [13], a complete inf-anti-homomorphism A of E onto F satis~-
fies (1.%), and thus it is a duality.

Let us give now some examples, which will be considered in the
sequel.

Example 1l.l. For any sets X and W, let E=(2X,;2), the lattice |
of all subsets of X, ordered by containment (i.e., G;<G, if and on~ Z
ly if Gy 2G,; hence, sup~/\, inf={,+=p, ~-0=X and, by (1.2),
\Jﬂ =0, M £=X), and let F= (2r 2). Then, a mapping A:E—F is a dua-
lity if and only if it is a "duality between the sets X and W", in
the sense of [6], i.e., for every index set I we have

Aa\Je;)= Na(s;) Clagh s uisatin (1.6)
ieX i€l
Bxample 1.2, For any sets X and W, let E=(§x,s) F’«‘(ﬁW <), with
~ the usual p01ntw1se order (where R= [-a5+w]), We recall that a map-

ping c: >R 58 called [21] a "conjugation", if for every index
set I we have (denoting c(f) by £%)

o
(£+a) C=£C4-q (£eRX, acR), (1.8)

where + and + denote the "upper” and "lower” addition on R, respec-
tively, d.e. (251, [16]),4#0400 =4, +04-c0=-00.By (1.7), every conjuga-
tion ¢:E—F is a duality (but, clearly, the converse is not true).
covnlate Thus, as shown by examples 1.1 and 1.2, the dualities between
“flatt¢ces yield a unified point of view, both for the usual dualities
VAN (2X 3)—*(2” 2) and for the dualities AR Y and conjugations
c:R —>RJ. loreover, they also encompass the cases involving two com-
plete lattices E and F "of different types", such as in :
Example 1.3, a) Let E be a complete lattice,/L< E and

HM
F=(2*, 2), and define a mapping AH:E—+F=(2ﬁ%g)by

Vo
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A, (0= {meM|mex} (x¢l). (1.9)
Then.A is a duality, in the sense (1.1}, sinee for any
{x Ysep SE we have

(inf x;)= {mel| meinf x.}= /“\7m£3ﬂm/x }"supé>€x s
iel iel ° iel f%

in [12}’£%4E0:E0"*F’ where EO:{XGE “supAMﬁx)} (the complete latti-

ce of all "W-convex" elements of E), is called "the Minkowski dua-
lity" (however, in [12] the word "duality"™ is not used in the sense
(1.1), but merely im the sense of "simultanecus study of a pair of

objecta"). o
b) In the particular case when Ex(ZX,;) and ¢§g2x, (1.9) beco~

mes the duality
' AlG)={uetlaem}, _ (1.10)
called [6] "the duality associated to the family of scts$p'.
c) In the particular case when E= & 5<) and~MﬁiﬁK (1.9) be-

comes the duality
A, (£)={meft|met) (reiX); e g

in [6], a "dudllty" % R.—%Q ﬂ81mllav to (1.11), is also considered,
via (1.6) and 1dent1f10aulon_0¢ functionals féﬁA with their hypo-
graphs in A XR (see [6], §8).

We recall that if Y¢E <BE, where E is a completellattice, T is
called [12] a family of infimal generators of Eo’ if for each x€E

there exists YXSSY such that

x=inf Y, . : e )

A family of supremal generators of B, is defined [121_ si=-

milarly, with inf replaced by sup.

Example 1.4, If E is a coatomic (respectively, an atomic) latti-
ce, i.e. (8ee e.ge [1], [9]), each xeE is an infimum of coatoms.of
E (respectively, a supremum of atoms of E), then the family of all
coatoms (atoms) of E is a family of infimal (supremal) generatocrs
of E.

Example 1,5 For the complete lattice E=(2X,Q), where X is a
set,JiEﬁ(£:2X) is a family of infimal (supremal)generators of ¢ if

and only if it is a unional (inters ﬁctlonal) basis of ¢ . The coa-
toms (atoms) of the lattice L“(ZX are the singletons {x} (res-
pectiveLy, the sets X\ {x}), where \&X so they form a family Y..of
infimal (supremal) generators of E (see example 1.4).

Example 1.6. a) For any set X, if E=(R",<), then, by [21]), lem-

ma 3.1 and remark 3.1 b), we have




B
; : ‘ = £
= inf (%) feRY) : 1.1°
f i§§{xix}4~f(x.} (feR™), (1.13)
f=gup {1 , 1 (x)] (£e ) (1.14)
: XEX{ Ky : {

where, for any GeX, Xg denotes the "indicator functional®” of G,

1eBley

(x)=0 if xeG
i e (1.15)

hence, the families

Y1={X{X}4ﬁ[xex, deR}cRE, : (1.16)
: ey =
Yzz{uxix}fdlxei, aeR}c R, (1)

are families of infimal, respectively, supremal generators of
E=(§X3<). Note that E=(§£,g) has no coatoms and no atoms,
b) Similariy, using (23], formuls (5.7}, it follows Lhat

Ya=Yl\{»u>,+«§={X{X}%d]xex, deR}c:(R\J{+aﬁ0X' (1.18)

(where R=(~w,+®)) is a family of infimal generators of (ﬁx,s).
For further examples of infimal (supremal) generators, see
[12] and [20]; sece also the "first proof" and "second proof", gi-
ven at the end of §2 below.
Proposition lele Y is a family of infimal generators of EosE

if and only if

x = inf {yeY|x<y} (ero). (1.19)

Proof. For E_=E,this has been proved in [13], proposition
l.1. In the general case, the proof is the same,

Remark Y.l a) If ¥ is a family of infimal generatons of a
complete lattice E, then so is Y\{+w}, csince by (1.19} and (1.2)

we have

x = inf {ye¥|xcy<+oo} (x€E); (1.20)

similarly, if ¥ is a family of supremal generators, then so is

I\{“CO} °
b) If Y is a family of infimal generators of E, then, by
(1:19), (1.20),

-0 :inf Y= inf(Y\{+°°}) ® : (1921)

Corollary 1.1, If Y is a family of infimal generators of a

complete lattice E, then

{yey| xsy<+w}EDex<io (x€E). (1.22)

Remark 1.2, If, in addition,+wd4Y, then

o
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{yeY | xey}#0 e xlhoo ' (x¢E). (123

Proposition 1.l suggests to give
Definition l.l. Let E be a complete lattice and let Y be a

family of infimal generators of E. We shall say that MY is an
upper conical subset of T, if there exists xell such that

M={yeY|x<y). (3.24)

Remark 1.%3. By (1.19) (with B "W) the element x in definition

1.1 is uniquely determined by M, n amely, x=inf Me
‘Proposition 1.,2. For McY, the following statements are equi-

valent:
0 : ; - : :
1%, M is an upper conical subset of Y

29, We have the implication

yeY, inf M¢y=yele (1.25)
30, We have
M ={yeY|inf Msy}. : T faEe)

Proof. 19..3°, £ 1° holds, then, by (1.24) and remark 1.3, we

have (1.26).
The equivalence 2 %°73° and the implication 3°=¢10 are obvious.
Corollary 1.2. Let E be a complete lattice and let ¥ ‘be a fa-
mily of infimal generators of E. Then

wsx—{yeY| zsy} ' (1.27)
ia a one-to-one mapping of E onto the family

W) ={{yer|z<y}] xeBjeat . S iaee)

of all upper conical uubsetq of Y. -
Remark 1.4. a) If E= (2 5} (where X is a set) and ¥ is the
family of all singletons ix}, where xeX, and if we identify -each

collection of singletons MSY with {x}<Ethen (1.27) is the
{x}eM

identical napnlng of E onto itself,

b) If E= & ,<) (where X is a set) and Y”Yl of (1.18), then,
31ncex }+c—%(x d) is a one-~to—one mapping of Y onto XXR, we can
1dent1fy Y with XXR; with this identification, (1.27) is nothing
else then the mapping £—Epi f={(x, d)eXXR|F(x)cd} of & onto the
femily ¢, of all “epigraphic subsets" ([36], 2 Por X XR (by
(Lss0) below).

c) The mapping (1.27) is a lattice isomorphism and a complete
sup-homomorphism of (E,<) onto (U(Y),2) o

let us recall now the following result of [13] ¢

Theorem 1.1 ([13], theorem 1.1). Let E, F be two ccmplete
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lattices, and Y a family of infimal generators of E. For a mavping

VN L—*F the following statements are equivalent:

1%.481a 6 duality.
20e For every index set I (including I=p) we have

A(ig V= .)"' \.)up A(y ) ({Yi}iér gY)o (1029)

These statements imply

3°. We have
A(x)=sup {A(y)| ye¥, x<y} (x€E) . (1.30)

Of - course, the implicétion 10=>’5° follows immediately from
(1.19) and (1l.1). As has been observed in [13], remark 1.2 a), any
constant mapping A(X)zybel?\{»oo} (xeE) satisfies 3°, but not 1°;
further examples that '5‘0:;?10' follow from proposition 1l.% below,

Corollary 1.3. Let E, F be two complete lattices and Y<E a
family of infimal generators of E. If Al’ A2:E~>F are two duali-
ties such that Alli{ =B5|y » then Ay=Dse

Remark 1.5, a) Lf O:E-F is a duality, then, by (1.1) and re-
mark 1.1 a), we have

A(x)=sup {A(y)| ye¥, Xgy<too} (xeB). 2 (1.51)

b) For E=~‘(2X,2), with ¥ = the family of all singletons {x},
where xeX (see examples 1.5 and 1.1) and for any complete lattice P,
formula (1.%0) becomes :

A(G)=sup A({x}) (G eX), (21.32)
xeG .

and the 1mp110at10*1 3 =2° in theorem 1.1 is also valid; 1ndecd,
1 Al (2* 2)—F satisfies (1.52) then for any {G} eI c2¥ we have
A(UG }= sup Al{x})= sup uup A({x})—gupA(G ),
iel b N e iel xeG 1el
ST Bel A

e) For E= (f{ <), with ¥=Y; of (l 16), and for any complete lat-i
tice F, theorem 1.1 yields that a mapping A: Ry-a»F is a duality if
and only if for all fx.1 CX and {di;ielgR we have

13 el
. A ;
£ a. 2 =aup (4 5 ;
[;?I (X{xi}+ l)} =gun (K{Xi} oy g (1.33)

and, if this holds, then

A : 2 ‘
}s{té%z (/({x}ff(x” (fek™), (1.34)

Indeed, if A is a duality, then, by (1.30), (1.16) and the
obvious equivalence

oy qxytaef(x)<d (£eRY, xeX, aeR), (1.35)
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and by (le4), we obtain

/S 2o
£5= aup  ( fa)Bs sup _( +3) "=
e, ac“ Az} xeX, deR Axs
f% o f(x)<a
= gup ()L{ }+f(x)) (£eBX),

xeX

Formulae (1.34), (1.%35) have been observed in [13]; moreover,
by [13], theorem 2.1, AT is s duality if and only if for all

xeX and {d;1;, ciﬁ we have (1.53) with x;=x (iel), i.e,,
_ N b — i
CX{X}+ ;?§ dl) = pun(X{y +d;) (xeX,{d; % <R). (1.36)

We recall that if X and W are two séts, then any functional
@:XXW—K is called ([15],[161) a "coupling functional”. For any
¢:XXW—E, the mapping c(@}:ﬁx~&ﬁd, defined ([15],[16]} by

£2(9) (wy=sup folx,w-L(x)}  (£eRE, wew), (1.37)

xeX :

ig a conjugation (see example 1.2}, called "the Fenchel~lMoreau con-
Jjugation with respect to the coupling functional ¢"; note that, in
particular, ‘ :

(}({x}

Conversely, by [21], theorem 3.1, for every conjugation
o 1 : =

O:RX—?Rﬁ, there exists & unique coupling functional WC:X>(W—+R such
that c=c(¢,), namely,

14 ()=, w) (xeX, weW). L(1.58)

*E(XfW)“(XAX})G(W) (xeX, weW); (1.39)

p, is called [21] "the coupling functional associated to e¢"™. For
extensions of [21], theorem %.1, to arbitrary dualities e ﬁw,
see [13], §%.

Remark 1.5 ¢) above suggests to give the following characteri-
zations of conjugations c:K S

Proposition 1.%. For a mapping c:ﬁx—+ﬁﬂ, the following state-

ments are equivalents

1°, ¢ is a conjugation.
2%, We have (1.,34) (with A=e) and

(R gy FOI = () gy Y40 (xeX, @)’ (1,40

Proof. 1°=52%, 1r 1® holds, then, by (1.13) and (1.7), we .have
(1.%4) . Furthermore, by (1.8), we have (1.40).

2298 0 g0 holds,, then

=X
~;g§ Q{£%+£(Y)) ““up((ﬂixl) Cror(x)) (feR=);
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whence f"’"fcw) (£eR), with ¢= P sXXW-R  of (1.39).
The following "extension thOOCem" will be useful in the se-
quel.

Theorem 1.2, Let E,F be two complete lattices, and ¥ a family |

of infimal generators for B. For a mapping AQ:X~wF, the following

statements are equivalent:

1°. There exists a duality A:E—F such that AeYon° ,

2% 4&0 is antitone and for each family {yi}iéf €Y we ha-!
¥e :

sup {4 (y)}yéY, inf y.<y}=sup A _(y:). {41

¢ Cdel s del ¢
3°¢ Ao ig antitone and the mapnlnp A:E—F defined by
A(x)=sup b, ()| ye¥, x<y} (x€eBY, (a2

is a duslity.

In this case, the duality A of 1° is uniquely determined, na-
mely. it is given by (1.42).

g SRR R :
froof, 1 "=2". 1f 1~ holds, then A is antitone, whence so is
ye Furthermore, since A is a duality, by theorem 1.1 we have

AO::A

(1:30), whence, using also (1.29), we obtain
sup{AO(y)ler, ;n§ yigy}zsupﬂﬁﬁﬁlyex,inf vi<y)=
ie 3 ie]

=A(inf y;)=sup Aly; )=sup A (v;).
iel i€l Sqel

2°=3%, Observe that if A, s¥—F is entitone, then for th@ map=
ping A:E—F defined by (1.42) we have (even when A is not a duali-
Ly) '

Ay V=sup {8, (y)|ye¥, y'syl=a,(y') | : (y'eY),
| that is, ﬁﬂymﬁb. Hence, by (l.41), for any {ylziezizz we get
A(inf y;)=sup 0@ yet, inr yl<y}~ :
ieck ieT
=sup{}0(y)]yff, %§§ ¥3<¥) i?? A (JL)“13§ A&Jl)

‘and therefore, by theorem 1.1,A is a duality.

3°=910. By the observation made in the above prooef of the im~
plication 2%9=3%, the dualitydﬁ,of 3% satisfies Aly=D e

Finally, if A fecasiind, then, by (la‘O) anB’Afy~A s We
obtain (I442),

Remark 1.6, a) If +w¢Y, then condition (1.41) is satisfied

I=¢ (by (1.2)). :

b) If 4w€Y, then condition (1.41) ié satisfied for I=¢g if

and only if




10 = : :
B, (teo)=m00. (1.43)
¢) For I#) and for every mapping 4,:¥—>F, we have the inequa-
lity » in (1.41); indeed, sinece inf y. 5 €Ty (kel), we have
1€]

Ac(yk)éiAo(y)ler, ézi yi<y3 (kel),

whence the assertion followse
Corollary 1.4, Let E:(2X,2)F where X is a set, let ¥ be the
family of all singletons {x} (x¢X), and let F be a complete lattice.

Then every mapping AO:Y-%F is antitone and can be extended to a
(unique) duality A:E—F, namely,

A(G)wup b, ({x}) - (GeX). (1le44)

Proof. Obviously, every AO:Y-aF is antitone (since distinct
singletons are not comparable). Also, +®¢Y¥. Finally, let{{xﬁ}iEI ey,
140, and let %€eX be such that inf{xi&g{x}, leeey x€iX:}. 7o Then

A (ix}Igsup A (e, }), whence we obtain the inequality ¢ in (1.41),
i€l
-which, together with remark 1.6 e¢), a), yields (1.41). Hence, by

theorem 1.2, the conclusion follows.

For Eﬂ(ﬁ ,<) one obtaine, with the method of [13) mentioned
in remark 1.5 e)above (or, using directly [13], theorem 2.1), the
following result:

Proposition 1.4, Let Bx(ﬁxgs), where X is a set, let Y=Y, be
the family (1.16), and let F be a complete lattice. For a mapping
AD:Y—%F the following

Tk

statements are ecuivalents:

1%, There exists a duality A:ﬁXM»F such that AIYE 0®

20, For any index set L we have

TAPRIES o vl - g
DemiE o = g, ) By s e

o

In this case, the duality O of 1° is uniquely determined, name=
Iy, it yen by (1,34),

§2, Duals of dualities., Hulls, Generalized convexity

We recall that if E and F are two complete lattices, the "dual"
O*:F—E of any mapping A:E-—F is defined (see e.g,[18}) by

4% (z)=inf {xeB|A(x)<z} (z€F); (2.1)

note that, by (l.%), we havetee{xeR|O(x)<z}#0  (a¢F).
In the sequel we shall assume that A is a duality. In thls

¥ . . -
case, A" is a duality, too, and we have the equivalence (see e.g.

[18))



A
Alx Yz E(z)sx - (xcE, z€F), (2n2)

whence A »AL.Thus, each result on duxWities can be "dualized",
interchanging the roles of E, F and 4,4 *, For example, the "duali-
zationiof (2.0) is

Aixjxinf~%eF[A%(z)éx} (xeB); (2.5)

the right hand side of (2.3) is nothing else than A .
Clearly, A¥A:E—E is a "hull operator" ("from below"), i.e.,

AA(x)ex o SbeeR) s (2.5)
AEA () =LA KA (%) (xcE). (2.6)

and hence AFA is also a "hull operator" in the sense of [14], i.e.,
AFAx) =max {x’é‘Fix (&) |x’<x} (xeE), (2.7)

where, by definition (and by (2.6)), :
FiX([ﬁQ)S{XéEIA#A(X)ZY}={A%A(X)]XEE}‘ (2.8)

indeed, by (2.8) and (2.5), we have A7O(x)e{x’€Fix QSA)!X(’X}, when-
ce the Lnequallty<:1n (2.7) and, on the other hand, by (2.4), fon
ach x’eFix (&) with x’<x we have x B INCD T SINC IR
We shall now give some formulae for a.(z) AFA(x) and Fix BA)
using infimel generators. In the sequel, we shall denote by Y and T

two families of infimal generators, of E and F respectively..
Note first that, dualizing (1.30), we obtain

AE (z)=sup 165 (1) | veT, a<t] ' (zeF)o . (2.9)

Furthermore, let us reoall
Proposition 2,1 ([13], proposition 1. o, let ¥ be a family of

infimal gencrators of E and let A:E—F be a duality., Then

Lf%(z)=inf{yéY]A(y)gz} el J2u10)
proof [13]. By (1.19) and (2.2), we have

Aﬁ(z)3inffyeE|A§(z)sy}=inf{er[A&y)sz} (z€P) .
Remark 2.l. The dualization of (2,10) is
AGx)=inf {teT | £ (t)<x) GreZ), (2.11)

where T is a family of infimal generators of Fe
Applying (2.1), (2.10) to z=A(x) and dualizing, we obtain

Proposition 2.2. We have

AEA(x) = Jnfﬁg’eﬁ

Alx/)gA(x) f=inf er]A(])<A(xﬁ Geeml), . (212)
ALE (2)= an{z eF| A r® (2’ )< ¥ (z ) Li{ﬁeTlA (t)g& (z)} (zeF). (2.13)
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ﬁigggbﬁwig: a) The expressions in (2,12) contain explicitly
only B, ¥ and'A, but not F.

b) We shall not state separately the obvious dualizations of
the subsequent results, but we shall use such dualizations freely,
whenever necessarye ‘

Corollary 2.l. We have

Fix (88)={xek|x<y (ye¥, Aly)<A(x))}=
={xeB[A(x)pAly) (yeX, ypxi}. (2, k4

Proof. We have x<y for all yeY with Aly)gA(x) if and only if
Xsinf{yeilﬁ(y)éA(x}lﬂ FA(x) (by (2.12}), so it remains to apply
(2e5)¢ :

In order to express AEA(x) and Tix (£%) in terms of separation,
let us first give the following useful property of infimal genera-
tors T, of a complete lattice F (which alse follows from remark 1.4 ¢)):

Lemma 2,1, We have the equivalence
zgz’@w{teflzfgt}s;{telest} (z2,2'¢F). (2415)
Proof, 1f Z¢3 , Lel and z'¢ct, then z¢a'st. COﬂVGLS@Iy’ IE

{teT|a’st} € {teT|ast}, then, by (l.19), we obtain z<
Theorvem 2.1. We have

At =ing fret|dter, x5 (4), ypa(1)}=
y0E(6) (teT, wAF(+))} (xcR), (2.16)

=inf {ye¥
Fix (8A)={x¢E|VyeY, yix,3teT, x>ﬁ?<t),yfa (£)§ et

Proaf, Applying (2.12), (2.15) (with z=A(y), z'=A(x)) and (2.2)
we abtain (2.16). Furthermore, by (2.15), (2.2), for x¢E and yeY
there exists tel with xya®(t), yiL?(t) if ‘and enly if A(y)leilx).
Hence, (2,17) follows from the right hand side of (2. 14).

Remark 2.3, a) If 108 (1) and y%ﬁx(t), then one can say that
the set {x’ M!x>a (t)J, or, ulmply, the element Af(t) "separates"
% from ye ‘

b) One can also express A?A(x) as a supremum. Indeed, by (2.9)
for z=A(x) and (2p2) we have

o¥A ) =sup Ak(t)ltﬁx’ Alx)ctl= :
=sup 485 (£) [ teT, 8% (t)¢x} (xeB). - (2,18)

We recall (see [12], [%]) that for anyMcE, the "M~convex hull®
of an element x¢E is, by definition, the element

B (x)= aupvmeﬂlm’y%eu; : (2,19)

and x is said to be "f-convex" if x=€M)(x); clearly, PH):E —E is



LR
a "hull operator", in the sense that (2.4)-(2.7) hold for “€{)
instead of A™A, where

Fix @)={xeE|¢() (x)=x}={€() (x)| xeB}, - e

Remark 2.% b) shows that if A:E—F is a duality, then for
M={n*=(1)| teT} C B {2.20)
we have
AEAGY=CO0 (x) (x€E). (22

Moreover, let us show now that every result on AKA, where

A:E—F is a duality, is equivalent to a result on €M), where M C
c B and, in particular, theorem 2.1 is equivalent to

Theorem 2.2. For any <k, we have

W) (x)=inf fyeY|Pmedt, xom, yim} (x¢E), (2.2%)

Fix €W)={xeB|VyeY, yix, Imedl, xrm, yim}, (2.24) |

Indeed, we'have shown above that for any duality A:E—>F there
existe McE such that (2.22) holds, namely,/M of (2.21); in parti- |
cular, for M of (2.21), theorem 2.2 yields theorem 2,1, lLet us pro-
ve now the converse, i.e., that for each MSE there exist a complete
jattice P and a duality A:E—F, such that (2.22) holds. We shall gi-
ve two different proofs, since both are revealing.

First proof. Given M cE, let F:(Eﬁ,z), let A,'L:E-»F be the dua-
lity (1.9) of example 1.3, and let T<F be the faumily of infimal ge-
nerators of F, comsisting of all singletons {m}, where mef{,Then,
by (2.10), (1.9) and (1.19), we have .

Aﬁ({m} )=inf {ye¥ | Am(y)a m}=inf {ye¥|mgy}=m (medt), (2.25)
whence, by (2.9), (1.9) and (2.19); we obtain

AE(AM(X) ) =sup ‘{ng({m}) l meﬁ’L,A}t(x)amj = |
' =sup {medjm<x =M (x) (xeR). (o.26)

Note also that, applying theorem 2.1 to F, T and A.M, above, and
taking into account (2.25), we obtain theorem 2.2. :

Second proof. Given M cCE, .i"or any {xi}iélgE we have, by
(219},

€M) (inf x;)=sup {meMlms:}nﬁ x; }=sup fmef|msx;  (ieD)}=
ie

1€l :
=inf sup fmefl|mex;} =inf € (x;), (2.27)
deT SHE T

whence, if €(M) (x;)=x; (iel), then

¢(M) (inf x.)=inf @) (x.)=inf x.,. (2.28)
fel 2 Jel L er ,
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Now, let P=(Fix €M), i.e., the set Fix €() of (2.20) endowed
with the reverae ler 2, (that is, 3 En1E 0 iy 15 ¢
. rge order zp (that is, X;<pX, 1f and only if xy2p¥,)e
Then, by (2.28), F is a complete semi-lattice, and hence a complete
Jattice (see e.g.[l], Ch.IV, theorem 2)}. Furthermore, by (2.27},

Y E—TF 18 a duality, whence, by (2.12), we obtain
@(i)”(%( =inf {x'eB| €U0 (x ’)2E@U%)(x}}$@ﬁw)(x) (x€E), (2.29)

Indeed, the last equalitybin (2.29) holds, since, on the one
hand, by €0 (€O0 (x))=¢N (x) we have @CM)(X)E{X'GEI%KﬁQ(X’)?E
}E€CM)(X)}? whence the inequality <p in (2.29) end, on the other
hand, for each x’eE with €M) (x/)z4¢W) (x) we have xR 00 (/)3
7 @) (x), whence the inequality »p in (?e29 ; for some more general

results, see [47, §l. Finally, by (2.19), (2+20), T=M is a family of
infimal generators of F=(Fix @¢(M)) " 3hence, applying theorem 2,1 to
F, T and the duality €M) above, and taking into account that
@M)Y*E(m)=m for all meM (by (2,29) for x=m and (2. 19)), we obtain
again theorem 2.2.

Remark 2.4, a) One can also give a simple direct proof of theo-
rem 2.2

b) From the above cbservation that T=Mis a family of infimal
generators of P=(Fix €(1))"¢E~ and from (1,12}, it follows that

Fix %&@={erkingJi,-x:aupEﬁy}. 25 i £2.30)

§%, Partial order and lattice operations for dualities

Let B and F be two complete lattices, with families of 1nfimél
generators Y and T respectivelye.

We recall that the natural order on F , the family of all map-
pings A:BE-»F, is defined "pointwise", i.e.,for AZ,AZ:E«»F we write
L 15804 i

A GRAlx] (xeB). (3.1

Now we shall consider the set D=D(E,F) of all dualities
A:E->F, endowed with the partial order induced by the above (i.e.,
D=(D,¢)) ,and 1 e shall study the lattice operations generated by
this pqrtlal order.

Remark 3.l. D has a smallest element @ and a greatest element

LR el O AN S P

£, i.e., we have
OBl (a€D), (3.2)
where ®¢D and QeD are the dualities defined by
B(x)==00 (x€E), (55)
QO (x)=too, 1if x<teo,

Ze00, 1 X=+60, (340
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Proposition 3.1. We have A.sA, if and only if
a2

41 (1)eb,(y) (vt G

Proof. If (3.5) holds, then, by (1.30},

T (f)—uap{A (d)fch, x<yh g sup {8, (¥)| ye¥, %< Y}=h(x) (xeE),

For the sup Lm respectively, the infimum, of a family
{4} egS Dy we shall use the notations V/ A e »instead of
VR jed Jea .
sup A. and inf A: , in order to avoid writing sup (8:(x)) and
j(( : . tJ J : J’CJ

1nf Q.(A)) in the right hand sides of (%.8), (3.9), ete. below.
hb reca]] that, by definition, .

}y?éﬁmminfpngﬁﬁéA (jed )} ({a. }JCJc:>>, (%.6)
,;’C\L,jA_~may pcumm (jed)} ({n, }JCJ D), (5.7)

provided that they exist in D.
theorem 3,1, al D=(D,¢) is a complete lattice, and for any
AjeD (jed) we have

(V89 G =sup M) (eiye (3.8)
JEJ J géJ £ 3
(/\A ) (x)gs LLszT).‘f' O, (y) lyex, x<3{}<1nf Ax) (x€E). (3.9)
JEJ ed :

b) For A.eD (jed), the following statements are equivalent:
1°. We have

(/\AJ)(M inf 4iy) (ye¥). (%.,10)
Jed Jed

22, There exists a duality A€D such that

Aly)=inf A (y) ' (yeX). (3,11)
J&d J

®e For each family {75}5.1 ¥ we have

sup{Lnf A(y)]yef lni ¥;<yk=sup inf A&y Yo (3.12)
1€ 1€T jed :
4°.The mapping A:E->F defined by

A(x)=uupiinflﬁiy)jer3 X<y} (x¢E), (3.13)
: Jale . ;

is a duality.

59, We have

(A as) (x)= supilni‘A(y)lyéY, xgy} (x€E). - (3.14)
ded: o jed ;

Proof. a) Let Aj €D (jed). Since F is a complete lattice, we
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can define A :E—F by

Alx)=sup nix} (x€B) . (Fe15)
J{J J

Then A'eD, since for any Xy CE we have, by A.eD (jed)
: e 2 J ’

sup A(inf x;)=sup sup A(x;)=sup sup Ailxs)e

jed v iel jed iel d iel jed
Furthermore, Aj(x)g[.\(x) (xeB, jed), so .&jsA’ (jed) e Finally,
1f A€Dy D40 (jed), then A (x)=sup é‘ijifﬂl?)%’:/..\(}{) (x¢B), so A'gA . Thus,
jed :

\/ A;=min {Aeb;/\ <A (jed)}=A"¢D, and (3.8) holds.
Jed J d

By the abave, (D,<) is a complete semi-lattice for V/, and hen-
ce a complete lattice (see e.g. [1], Ch.lV, theorem 2)-.
Now, since F is a complete lattice, we can define A" E>T by

A (X)"’lﬁi‘l}(ﬁ) (Xé}b)o C3¢]6}
. Jed J ‘ :

Then, for each AcD such that A(XJ<L (x) (zCCF,, jed), we have

CA<A , whence by (3.7}, /\ﬁ“s& (in o ), Hence, by (1. 30) (applied
jeg ¢ :
ta /\ A:eD), we Obbdll for each x¢€b,
jeg ¢
(/\A;) (x)=sup {inf (/\A;) (y)| ye¥, x<y}gsup Ny yex, %<y},
G S ,
i.e., the first inequality in (3.9). Finally, since each A; is an=-
titone, we have ;
inf Alx)zinf Ady) . (ye¥, %<yl
dey 9 jed d
whence we obtain the second Inéquality 0590,
b) The equivalences 2 %339, 4% rollow from theorem 1.2, applied

to the antitone mapping A mA IY‘ -F, i.e., to
&, (y)=int Q(V) (yeY). (317
Jed ;

The implication 1922 ig obvious (with A= /\AJ
Jed ‘
00,10, TIf AeD is as in 2°, then alyl<A:(y) (ye¥, jed), whence

by proposition '5.1,&341,3- (jed) and hence, by (3.7),&6@{3&-, Thus,
3 ;
by (Be1L),

inf Ay)< (/\A)(y) o ey, (%.18)
jed Jed

v’henco, b;y (3.9), we obtain (3.10).
1°=5°, 1f 1° holds, then by the last otatement of theorem
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1.2, applied to /\4;:E—>F and to A iEal of (3.17), we have (%,14).

'ICJ
0up1°, 1f 5° 1@1ds,‘then, since &, of (3.17) ie antitone, by
the observation made in the proof of theorem 1,2, implication
29=5% (with AM/’}/ ), we have (3.10).
8
uggﬁzlmlﬁ?ﬁ a) Let B=(2%,2), P=(2%,2). Ir we take ¥=E, then,
in general, the first inequality in (3.9) is strict, even when J is|
finite; if we take Y=the family of all singletons {x}, where xeX
(see example 1.5), then, in general, the second inequality in (3.9)
is strict, even when J is finite, ‘
b) If B=(2%,2), Y= the fanily of all singletons {x} (xeX) and

F is any complete lattice, then we have (3.10}, (%.14); indeed, cond

dition 2° of theorem 3.1 b) is satisfied (by corollary l.4).
Theorem %.2, The wapninﬂuﬁaﬁﬁg is a complete lattice isomorphisr
of D=D(E,F) onto D7 *={a%|aeD)= D(F,E), the complete lattice of all
dualities from F into E.
Progts (Hmarly,s Dﬁc:D(F,u), Conversely, 1f feD(F,E), tnon for
,ﬁxf%éb we have A¥=*%= ="y so DE=D(F ,E) and A—nF " maps D onto o A=}
so,Aw%A“ is one- to»one, since Alrﬁz implies Al»Ai‘“A? =Ase ‘

Thus, it remains to show that, for any family { JljéJ‘;D: we
have o
(VA= NT T (3.19)
J(.J J J-J J
AV VAV , (3.20)

Jeie - geg 4
By 21k (3.8) and (2.2}, we obtain

(\v/A )*(2)=inf {xeE]| (V431 (x)<z)=
JCJ Jeg
‘*1nf5xcEiA (;)<z (jed)}=

=inf {xeB |05 (a) (Jeo)f=sup &(z)=( Va1 (2) (zem),
jeJ 4 JeJ

1ee, (3.19) Hence (see e.g. L G i, 97

R (B,05€D)e (3.21)

&

Finally, by (2.2), (3.7), (3.21) and A™=A, we have

(A8 ¥z )X &= ( /\A x)<z &0 (x)<z  (A€D, AgA. (jed)) &

s 3 jed ! J

esn P ()< (aFept. A*<A§ (jéJ))?@(/A\A?)(z)gx (X€E, z€F),
Jed. =

which implies (3.20).

}LMiZ%G?O
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Propasition 3.2, For Ay e (jed), we have

("2 3“(\//u ) (z)=inf {ye¥|sup Ay)gsup ij)}

Jeu J }’:—d (d d : JéJ
=sup A%(ILIAdx)) (xeE) . P2
Jed ked

Proof. By (2.12) and (3.8), we have the first equality in
(5e20) . Ao, oby 0.8) and (34197,

AT e (\/’An)“(nuv>dﬂﬂj) sup A( sup 4,(x))  (xeE).
jed jeg d jed ked Sed 4 ked

Definition 3.l. For each xeE, we define the guasi-complement

of x in E (with respect to ¥}, b

x4y} (xeB). o eas)

e
:

A\

Remark %.%. a) The quasi-complement X den“ﬁds _on the famidy of

~r

- . AT ’ B <
infimal penerators Y. Indeed, for example, if B= (2% ,;) and. ¥’ is the
family of all si
mila (3.2%3) becomes

G=Cx))= k. }{x.»X‘\ Hegeer {3+24)

¢

1gletons {x}, where xe¢X (see example 1.5), then feor-

where we use the notation G instead of G« in order to avoid confu-
gion with the closure of G (when X is a topological space). On the
other hand, if we take (for the same E) ¥ =0® or ¥ =2\ {0}, then
formula (%.23%) yields :
G e \\\“M// g'=x irf X,
C— }}. )' X
G’\\CJﬂ : c{3.250
=UP=0 if =2

5 ~ns P ‘ 1
Note that (QA,Q,G~>G(Y }3 is a complete Boolean alesebrs algebra,

while (2Xg2§ G-»G(¥") is not even a complemented lattice, in the
sense of (3.%7) below (since anG(X”)=CAB for LAGEX).

In the sequel we shall write ¥ instead of %(¥), and (E,x—>%)
_instead of (B,<,x—E(¥)), whenever this will lead to no confusion.
b) By (1.21) and (1,2}, we have

?$5:inf{yﬁihmﬁy;=inf(Y\d+0%)x~a5 (3.26)
Se=infiyeYl-og y}=inf @d=+eo. (3.27)

PropouLtion %.%., We have the implications

XngQEE’ X:LQXZ ‘1‘?551??2 ¥ (3&28)
x,xe¢B, inf &,RX)zx'=T3 %, (5.29)
%,2"eR, sup &, X)<x=x"5X . , 3,508

- Proot, If xléyg, then {"fllxiiy}gi{yéilxggy}ﬂ whence (%.28)

)
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follows. Furthermore, if sup (x,%)<x”, then E¢x” and xs<x”, whence,

by (3.28), x">%»%”. The proor of (3.29) is similer,

Proposition 3.4, For xeB, the following statements are equiva= |

lent:

_ Proof, 1°=2% 1f 2° does not hold, say y €Y, xfy , then 52
cannot hold, since otherwise x(X=inf{yel|x{yj<y - :
The equivalence 2953% ig obvious.
EONE T el : :
59.54%, 1f 3% holds,then, by (1,19) and (1.21), we obtain

z=inf Y=w—o0.

o ]

A O 5
=1~ are obviousSe.
» . O o Sre
Finally, if 2° holds, then X=inf @=+oo.Thue, 2°=5%
Theoren %,%. We have

The implications 4907 dnd s

inf &,%)==00 (x€E) « (3.31)

Proof. If xeE, inf (x,%)=x’, then, by (3,29}, we have ol
whence, by proposition 3.4, implication 1qw4ﬁ, we obtain x’=-ce.

Remark 3.4, By (3831), one can say that every pseudo~comple-~
ment is a “semi-complement for inf".

In order to consider sup &,X), let us give

Proposition 3,5, For xeE, the following statements are egui=-
b2

valent:

T e,

2%, {ye¥|Z<y}i=Y.

3%, {yeY|Ety}=p.

4,0@, Tme 00 ¢

Proofs & ol e Z¢x=inf {ye¥|xsy}, then x<y for all yeY such
that x<y. On the other hand, by (3.23), X<y for all yveY such that
X¢Y - y

The equivalence 2%5%%nd the implication 4°—1° are obvious.

2%9254°, 1r 2° holds, then, by (1.19) and (1.21), we obtain
T=inf Y= ~co.

Theorem 3.4, The following statements are equivalent:

1%, Ve have
sup (x,%)}=tco melmell) (3.52)
2°. We have '
X¢x (x€E, x<+o00)., (3.33)

3°, We have

©




fyey| eyl #Y (X€E, X<+oo). (3.34)

o
4, We have

P

i1yveYi T4yt #¢ (xcB, x<too ). (3:35)

5. We have

P

Xy= 00 (el x<teo ). (3.36)

o (o] = ' =
Proof. 1 =92 o If 22 dpes not hold, say Zgx<+oo , then sup (x, %)=

=X<+00 . :
Gl e 1° does not hold, say x¢E, sup (x, %) =x"<+cc , then, by

(3.30), we have xx%".

s Finally, the equivalence52°Q¢,..‘$$50 follow from proposition
St | '
We recall that (E,x—C(x)) ig called a "complemented lattice",

if C:E—E is such that
sup (x,C(x))=+%0 , inf (x,C(x))=-00 (X€E) . (3.37)
From theorems 3.3 and 3.4 we obtain

Corollary 3.1. (E,x—X), where x is defined by (3.23), is_a com-

e s
(@] :

: e o 50 2
plemented lattice if and only if we have 2°-5. of theorem 3.4.

S

Proposdition 3.6. We have

{yé?!%{y}g§{yé¥lxsy<+mﬂ R (3.38)

b) If (E,x—R) is a complemented lattice, then
Sye Y| tyh={yey| xcy<+e} (XEE) . (3.39)

Proof. a) Clearly, +ood {yey|Rgy} (xeE). If yeyY\ {+w} and ey,
then x<y (since otherwise Xzinf{y’éYixiy’}éy}u

b) If (E,x—%) is a complemented lattice and xg<y<+ew , then X{y
(since otherwise sup G, R)sy<too ).

Let us define the second cuasi-complement of x¢E by

% =® =inf {yev| &y} - {340
Rem%ﬁﬁmi;i; From proposition 3.4 (applied to X instead of St

follows that for an element x¢E we have g=—-c0 if and only 1f X=+oo.

Hence, condition (3.36) of theorem 3.4 is eqguivalent to
F<too (X€E, x<+oo). (3.40)

Proposition 3.7. &) We have

%<% ey (3:42)

Dl 2L (BE,x—3X) is a complemented "lattice, then

X=X ‘ (x€E) , (3.43)
<

il.x2¢¢x1;§2 (xeE) . (3.44)
Proof. a) By (1.20), (3.38) and (3.40), we have

x=inf{er\xgy<+w}g inf{erligy}:i (X€E) .
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L) The proof of (3.43) fasimilar, using (3:39) . Finally, «(3.44)
follows from (3.28) and (3.43). '
Remark 3.6. From (3.28) it follows that

(3.45)

wail

Xl'XZGE'."Xl<x2K$xl£ 5 @
Furthermore, by (3.42) and (3.28) for X=X, x2=§, we have %zx
(xeE) , whence, by (3.42) for X instead of x, we obtain

X = X (x€E) ; (3.46)

thus, by (3.46) (for X instead of x), (3.42) and (3.45), the mapping

x-»X is a hull operator on E =(E,7).

Proposition 3.8, a) We have

0P %, = it T e cE). (3.47)
6T ¢ il el Pabier

b) If (BE,x—>X) is a complemented lattice, then

SUp %, = iht =, ({x,} CE). (3.48)
e L
Proof. a) If {y (LE;E then; by (3.23),
EBET§Z mlnx,ny!qup X, €y =inf K_/‘VﬂYix Ly
iel TET 1eT

= lnf tnfaer)x ¢yt= inf X[
Lerm 1l

b) If (E,x-»X) is a complemented lattice, then, by (3.43) and
Bl 7 “(for ﬁ; instead of xi), we obtain

sup X, ='sup ¥ = Inf ¥io= {dE A,
JelRdias edc T el iel

For the proof of the next theorem, we shall also need

Lemma 3.1, If (B, x—>%(¥)) is a complemented lattice, then for

any I#J, 1% }léIg:E and y€Y with inf X<y there exdsks ily)eTl such
ah(E it
that xloﬂgv

Proof If y=+o00 , this is obviously true. If y<+o , then, by

(35399, lnf X {y, and hence, by (3.48), sup X,¢y. Therefore, X, . \¢
i ily)?

iel e

for some i(y)e¢I, whence, by (3.38), xi(y)gy.

Lemma: 3.2, If (E,x-—>%(Y¥)) is a complemented Jaktlice, then

{yey|y sy<teo}={y_} (Y €Y\ {+oo} ). (3.49)

Proofi. Tf there exist yo,yEY\\{+oo} such that yo<y,then eV when-

ce, by (3.23),
Y =oint {y'ery%y'}gyO<y<+a>, (3.50)

so sup (y,¥)=y<+e , in contradiction with the assumption (3.32).

Theorem 3.5. Let E be a comvnlete lattice and let Y be a family

of infimal generators of E, with +0é¢Y and such that (E,x—X(Y)) is




a complemented lattice. Then the mapping w defined by (20

is ‘a complete lattice isomoy (27,2), satisfying

i

(yeY) . (35518

Proof. By corollary 1.2, w is a one-to-one mapping of E onto the
family U{¥)< h of (1.28). PFurthermore, by +e¢Y and lemma 3.2, we ha-
ve (3.5L.

Assume now that w(3)=U(Y)$2Y, say M&ZY\?HY), and let xosinf M.

- Then we have the strict inclusion ” e

Mﬁ:{erixosy}r 3524
i.e., there exists yOeY‘\M such that xogyd.'We claim that : : , %
Y ‘ (3.53)

indeed, if xoxyDeY, then, by +o¢¥, (3.49) and the strict inclusion
(3.52) , we would obtain M=§, in contradiction with M¢?L(Y)(since by
+00¢ Y we have f={yeY|+oogylell(Y)).

: Now, by McY, yoém, +eoog¥ and (3;49); we have

Mcly\\{yo}m{yéYIyoiy}, (3.54)
whence, by (3.53) and (3.23), we obtain

Toamy en SNt M 3 infier|yO§y}z Vor

S0 sSuUp (yo, ?;)ﬂy0<+aa, in contradiction with the assumption (3.32).

e
Thus, u(Y)=2Y, and hence w maps E onto ZX.
Finally, by (3.51) and lemma 3.1, for any {xi}iﬁ],gE.with T#7,

there holds

winf x,)={yev|{inf x.<y}=iyey|Ii(y)ey, x <yt=
el st ‘iéI - & A ey

= veY|x, syl= \wix,),
et e
and for I=@ we have, by (1.2) and +w¢Y,
wing ¢)=w(+oo)={y(:yl+{>ﬁsy}‘3¢zug'

which, together with remark 1.4 c¢), proves that w is a complete latti-

<

ce isomorphism.

Remark 3.l @) The assumption +o¢Y is not an essential restric-
tion of the generality. Indeed, if +00 €Y, then the above results remain
valid for Y\ {+o} instead of Y. :

b) Theorem 3.5 shows that, essentially (up to a complete lattice
isomorphism), the only E and YS E such that (BE,x~»%X(Y)) is a complemen-
ted lattice, are those of the form E=(2X,2) (where X is a set), and
Y=the family of all sinqletons {x}, where x¢X, for which %(Y) is nothing
else than the usual set complement (3.24). For any family of infimal
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generators on an arbiltrary complete lattice E, the quasi-complements
E(Y) (xeE) are well defined by (3.23), and the cardinality of the set
IXEE| X (Y)=~00} may serve as a measure of the'deviation" of ()
from the above particular case’ (by corollary 3.1 and theo*em 3 abe

c) From theorem 3.5 it follows that our results on E= (2 2) and
Y = the family of all singletons {x}, where x¢X (e.q., corollary 14,
proposition 3.12 bhelow, etc.) remain valid for any ?air (B Y )sisuch
that (E,x—X(Y)) is a complemented lattice. In $§4,5 we shall consider
several such pairs (E, ¥) (see e.g. (4.98), etc.).

In order to define the "quasi-complement" of a duality A, we shall
need

Lemma 3.3. Let E;, F be two complete lattices, with families of

infimal generators YGE, T<F, and let A:E—F be a duality. The mapping
AO:YM*F defined by

R A AT i

A, ) =F ) (yey) (3.55)

{where A(y) A(y)( ), is antitone if and only if

Aly;)=A(y,) (¥ €%, yiey, )i (3.56)
Proof. Assume that Ao is antitone and let yl,yst, Y$Yye Then,

since A is antitone, ijZj =A (yl)>A y2)"z7;"7. On the other hand, sin-
ceA is a dualwty, we have A(yl)»A(yZ), whence, by (3. 28) (in F), we
obtain A(Yl)q (yz); thus, (3.56) holds.
Conversely, if (3.56) holds, then A is obviously antitone.
Definition 3.2, et E, F.be two complete lattices, with families
of lnflmal generators Y E, TS F, and assume that the mapping

Ay,:Y = F defined by (3.55) is antitone. If there exists a dualitv

A= A(Y, T) :E — F such that A}Y or L2, khat

A(y)=A(y) (yey) (3.57)

(where A(y)=A(y) (T)), then, by theorem 1.2, it.is (unique and) given
by

A(x)=sup A(y)|veY, xsv} (x€E) , (3.58)

and we shall call it the quasi-comnlement of the dpality A {(with res-

pect to Y and T). We shall write B instead of A(Y, T), whenever this

will lead to no confusion;also,in-

mn
{

stead of writdng YA existol) -we shall simply write: ReD.
Remark 3.8. If Ex(ZX,g), ¥ =tthe family of alill istnaletonss el (xeX)

and F is any complete lattice, with a familvy of infimal cenerators i

then we have

heD (beD), (3.59)



o=

T (c)= sup A(x}) (AeD, G&X); (3.60)

%eG

indeed, this follows from corollary 1.4 applied to 4g of {3.55).
Proposition 3.9, If there exists AeD such that AeD, then +w4~Y
(excluding the trivial case when F ig a SanieLon)ﬁ

jemma 3.3, (1.3) and

(yeY) ,

(3.27)

proocf. If +weY, then, by

EGT=A (o) =00 =405

and, on the other hand, by lemma 3.3, (3.57) and (1.3) (for BeD),

) =E 7551 =& (+09) ==03 e

so I is a singleton.

whence +00 ==09 ,
£ +oo¢y, then for @eD and Led of (3:3) 340,

Proposition 3.10. If

we have

®=0¢p,0=0e€D. (3.61)
§£gg£; By (1.30), (3.57), +0¢Y, (I 22 B3 (3.2 1) k3 4) ana

(35260,

[ yey, xey}="m =teo=0(x) 1f x<+oo,

= sup Q".‘:—-C\'_\ .—-..n (x) if x=+00 ,

B (x) =sup {@ (v)

Oulx) =sup ‘Uy )| yey, xsy}m$352—00= @ (x) 1f x<+oo,
=gup @=-o0 =0 (x) Lf x=t00,

Proposition 3.11. Assume that (3.59) holds. Then

a) We have »
AANR=8 (AeD) o (3+62)

the family of all singletons {mﬁ (weW) ,

p) If F=(2",2) and T =

then

AV B= ) (A€D) , (3.63)

(B, 5 7A) 152 complemented lattice,
(A E5)  (3:3L) and (3.3), we have
(YEY) ’

so in this case
Proof. a) By (3.9),

(AATD) (y)ginf (a(y),B(y))=inf (A (y) B @) ) =0 =0 (y)

by corollary 1. 3, we obtain (3. 620 =

whence,
similar, using (3.8), (3. 57) and that A(y)N

The proof of b) is
N3 (y) =f=£&L(y) for all yeY (since +o0d Y
If (3.59) holds, we shall denote (A) by A.

by prooosition 3294

pProposition 3.12. If (3. 59) holds ;_and F= (2 215 = the family
of all singletons {w} (weW), then :
2 =A (AeD) . (3.64)
ggggg. By (3.57) and (3.43) (in F), we have
(yeY) , (3.65)

R(y) =Bly) =A(y)=Aly)

whence, by corollary 1.3 awe obtain (3.64).
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$4. Dualities A: (2 D)= 2,2

: : W
Let us consider now the particular case when Ez(ZX,Q); Fm(Z“,a)
(where X and W are two sets) and YCE, T<F are the families of all
singletons in X and W ragpectively.
By example 1.1, A:E—F is a duality if and only if it satisfies
7 2
(1.6). The definition (2ot eob A?:(ZY,Q)w¢(2Y,2) becomes now
*
b (Q)zﬁwmﬁ,/ G (oW, (4.1)
GeX
Q< A(G)

i.e., the one of [6]. The equivalence (2.2) becomes now
0cAC)&Ger* () (GeX, QcW), (4.2)

which, together with AﬁﬁuA and the principle of dualization, have
been observed in [6], propositions 1.12 (vii) and 1.13.

Formulae (2.5) and (2.7) become, in this case, the known fornulae
(see 161)

cc 2®A () ‘ GeX), (4.3)
_AﬁA(G)=//i«—_\\\ Gl (GeX); (4.4)

e ('3
GfeFix (ATA)
GG’

the fact that A%A is a hull operator on {ing), has been noted in [6]
remark 4.1. Formulae (2.10), (2.11) become now

2* (@) ={x'ex|oc A ({x'})} (W), (4.5)

a@) ={wren| G a® ({w')} s R (4.6)

The results of &2, expressing A®A (%) and Fix (AXA) with the aid
of infimal generators, yleld, even in our particular case, some new
results. Thus, formulae (2.12) and (2.13) yield now

p¥p(e) =N\ A G={x’ex|a(@) c a({x'] 1Fe (e &), (4.7)

G'c X
A(G) € A(G") : :

EgIE N g =wrena o) iRl el (4.0
, 0TS W

A% () € A% (")
in particular, for the hulls of singletons, they beacone
AEA ({x}) ={xrex|A({x}) € AT} (x€X) , (4.9)
AAﬁ({w})={w’eW!Ax({w})g:Ax({w’})}  (weW). (4.10)
Since A¢ B is equivalent to ANB#0, formula (2.14) yields

Fix (Afa)={G < X|A(G) \ AQ@PFF  (x'e€X\O). (4.11)

Hence, in particular, the equalities

e



o
ATA({x})={x} (x€X) (4.12)

hold 1if and only 1f for each pair x, x'€X, x#x', we have

AURE)NA(x"})#0. : (4.13)

Theorem 2.1 says now that
AEQ'A(G)_{— r I:{] e ,--. > 7 w ¥ N g g =
={x"€X|AweW, GSA ({_w_g-) y XTEXNAT ({w})} =
={x'€X]x’eAﬁ({w}) (weW, G¢ A“!( )):'( (Cex) iag)

Fix (a%a)= Yrrga, Tuel, 6 A% ({u}) xexN\ 2* (Wi}, (4.15)

where, accox:dinq to remark 2. 3 a), the condlLlons G A ({w})A, x'e X\
At (»‘w ), can be expressed by saying that at ({w}) separates G from x’;
the part € of (4.15) has been given in [6], proposition 1.12(v), where
its "separation" aspect has been also noted. From (4.15) it follows,

in particular, . that we have (4.12) if and only if for-each pair x,x’eX,

T ; ¥ ;
x#x', there exists weW such that A™ ({w}) separates x from x'.

Remark 2.3 b) says now that

: - /’““\
sl )\ WE (= N

{wl) (Ce X) =y (4.16)
weA (G) ch

* (fw})

clearly, the last term of (4.16) coincides with the last term of (4.14).

Formulae (2.19), (2.20) become now, for any % ZX,

\IC.I_ (Gex), (4.17)
M 1~
G

n o
‘—-‘Q

Fix _w&-s{ X| €00 (6)=cY={¢W) (6)| c o X}; (4.18)

in {20], €M) (G) has been called "the M~convex hull of the set G" and
Eix: ‘5(&‘"&,) has been denoted by ¢). The theory of "M, -convex sets" (i.e.
of the sets in Fix €@M)), originates in [2]. ,

Theorem 2.2 and formula (2.30) mean now that, for any .ff@gzx

QW) (G)={x'eX|fAMeM, GSM, x'€X\M}  (GeX), (4.19)
Fix @) ={Gcx|¥x'¢c, IMel, GcM, x'eX\M}, (4.20)
Fix C0h={e x|3McM, o=/ "\ M}. ’ (4.21)

Me J%G

In‘l[ZO]-, an equivalent way has been followed: Fix ¢(¥) has been
- defined by (4.20),then ¢@) (G) by (4.4) (with A28 replaced by “(*)) and
then (4.21), (4.18), (4.17) and (4.19) have been deduced from these
definitions ([20], propositions 1.3 - 1.6). :

The observation made before theorem 2.2, says now that the theo-

ries of A*A-—hulls, where A: (2X,2) > (2 ol ,2) is a duality, and M-~convex
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hulls, where Mc2”, are equivalent, viq (2.21), which becomes now

M=§8% (i) wen} g 27, (4.22)

respectively, via the dualities (1,10) or ¥M). Hence, since by [20],
. > 2 . SO =L

§1,the theories of M- convex hulls, where Jl&£2%, and "W-convex hulls" E
|

(of sets GgX), where ”fir (f7}f [20]) ,are equivalent, it follows that

so are the theories of A" *p-hulls and W-convex hulls (of sets GgX),

where WcB®; we recall that the W~convex hull of G&X is defined by

M mgns (w) | (w,d 1)ew X R} € 2%, (4.23)
where
s, 60 ={xex|w (x)ed} (weRY, deR). s

Indeed, given any duality A:{Zx,g)-»(zw,e), for ve B defined
by

i S
A o SO (.{wj,)éwuw} (4.25)

and for fl of (4.22) we have, by (2.22) and and [20], theorem 1.1,
AEA @) = (G)=2(W) (@)  (GEX).. (4.26) !
Conversely, given any family WK‘RX, for:kthe auality A (2 2

%
IXF |
%XR,Z) defined by : |

ey (2
5(G)={(w,d)eWX R|sup w(G)gd} (G& X) (4.27)

we have, by (4.5) and (4.24),

A (v, e ={x ex|w (x7)ga} =84 (W) (weW,deR) , (4.28)
whence, by (4.16) and [20], formula (1.52), we obtain

AA(G)”/‘M\ 7) =€) (G) e %) (4.29)

(w,3)eA(G)

or, alternatively, fortﬂ,fil of (4.22), (4.23), we havesﬂ=ﬂl (by
(4.28)), whence, by (2.22), ATA(G)=€(#,) (G)=¢(W) (G) (GeX).

Similarly, the results of 33 yield, even in our particular case,
some new results. Formula (3.1), defining thg éarﬁial order AléAz , be-
comes .

BB ol : (Es%); (4.30)
and the dualities  ©,Q of (3.3), (3.4) are now

O@©c) =W . (Gex), (4.31)
n(C)=g, if G#J,
W, if G0 (4.32)

Proposition 3.1 means now that



1@.\24-_;»131({x}):;,-zzzt‘ixz) (e}, (4.33)

W .

For any dualities Aﬁ,A?,Aﬁzczxpg)m%(Q ) ed)., cone-cah denote
the inequality A.€4, by 4,24 “and call the dualities of (3.6) and
T 7 s 2
(3.7), the "intersection" and the "unicn" of the Aﬁ’s, respectively:

in gymbols,

Mg =N 8y g =/\ Ay (4.34)
bl i g el S

Then, formulae (3.8), (3.10) and (3.14) become

(N A)E) =M1 (@)= A, (G) e=X), (4.35)
jeg 7 jeg jeg 7
A A ) =(JA) ({xh)=\UA ({x)) (xeX), (4.36)
jeg jeg ? jeJ o
(/N ALY (@) =(\JAs) (@)=Y \_JA; ({x]) GCX); (4.37)
Jed jeg I %G €T I

note that (4.36) and (4.37) always hold, by remark 3.2 b).

Formula (3.23) means now (3.24) of remark 3.3 a), and the sub-
~ sequéent results of §3, on XeE, reduce now to well-known properties of
complementary sets (3.24). Note that (2X,2, G—G) is a complete Boo-
lean algebras ‘

By remark 3.8, we have now (3059); and formulae (3.57) and (3.60)

become now, respectively,

T ({x})=w\ A({x}) (xex): (4.38)
F(G) =/") (WN\ A ({x})) (EEX) . (4.39)
xeG

"Also, by proposition 3.11 by (D;A~%X) is now a complemented com-—

plete lattice. Moreover, we have

Theorem 4.1. The mapping ﬁ:A—*K is a complete lattice anti-auto-
‘ 2 X A : S -
morphism of Dmu(QZ_,a), (2t =0 )
Proof. By (3.64),Q is a one-to-one mapping of D onto {tedlfac
Furthermore, by (3.57), (4.36), (3.48) ,and (4.35),

(B () =T BT ()= (xp) =/ ()=

e i J jed J jed - jed
=OVE xp) =/ B ({=]) (x€X)
jed jeJ

whencé, by corollary 1.3, we o6btain

= A ' : (4.40)
SeJ 7 jeg

Finally, by (3.64) and (4.40) (for Kj instead of Aj),

T E N/ R =B AT e
o D jerd je0 lges 1
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Remark 4.1. From theorem 4.1 it follows (e.g., by 1l eh a1 508

e e d
that
B <A, by Zh . (4.42)
i e g
We shall denote (A)X by A® (recall that we have now (3.59)).
Proposition 4.1. We have
A* =E% ¢ p* i) (4.43)
Proof. By id.5), (4.38), (4.2) and (3.24), we have
B (4w}) ={xex|weB ({x])}={xex|wew\a ({x})}=
e ‘
=X\A" ({w}) =A" ({w}) : (WeW) . (4.44)
Thus, for each A”¢D” there exists a duality. from (2N,2) into
X

(2%,2), namely, Zx, satisfying (4.44), whence, by definition 3.2, we
obtain (4.43).

Combining thecrems 3.2, 4.1 and proposition 4.1, we obtain
Corollary 4.1. The mapping b= BE=p®

W

is.a complete lattice anti-
= : :

: s | 5 W R
~isomorphism of D:D((Zx,z), (2 ,=2))septe D :{AngeDJ=D((2N,g), (25,2)),

(TR =N = AT (4.45)
el adEg b e

(N *= A al= \/E* | (4.46)
SEg i eg e

Proposition 4.2. We have

K(G)={w~sW)GhAX('{wj,f)=¢}" (G eX), (4.47)
Bl@=/4 o et el
WEW ,

CeRNb Iwr )

A

={x’ex|a({x'}) e \ LA ({x]D)] @ex). (4.48)
2eQ
Proof. By (4.6) and (4.44), we have

A (G)={weW! G ait {wh)} ={wew] e X\ E* (Jw})=g}=

'={wEW}Gf\Aﬁ(iw})=¢} ' (Gex),

Furthermore, by (4.16) and (4.44),
e e NI
Co? S 7 o e { R e Sy
AXA(G)=1/ : \\\ Ax(iw )=//’ \\\ (X\\A*a{wg) (¢ )

({w} G ox
weW weW
R s S
Gy @Qwp) - GEXN\NA" (4ws).

Finally, by (4.9) and (4.39), we obtain

ey




Zi‘{{"A‘(G) { '(Y}/ W\ (ixlf) ) C:W N «_\(_{Xl})j:
}\{_(7

=ilenl A Cixh ) e U AR (G &X)
(e :

Rcmalk 4.1. By (4.48). we have, inparticuliar,

WXK( %):{xléxlA({x'})g;A({x})} (xeX), (4.49)

v

whence, by (4.9),

AEA (xR (xh) ={x ex|a({x'})=a ({x])}  (xeX). (4.50)

Let us give now some examples of complementary dualities A and

v K i

"complementary hull operators" ATA.

=X

Example 4.1, Let X be a set and W R .- Then for the duality

R WXR .
A:(27,2)— (2 ’g)vof (4.27) we have, by (4.47), (4.28), (4.44) and
(44380,
B(G)={w’,a’)eWXRlw’ (x)>a" &G}, Gl
ZX({Wrd}):{x’éxiw(x'bd}' (weW, deR), (4.52)
AX-'A—(G):—./WV 2 \\ {_X'GX‘,W(X')"dZS' (G E0) (4.53)
weW, deR

wix)>d (x€G)

In the particular case when X is a locally convex space and W= X,:
the famlly of all continuous linear functionals on X, by (4. 29) we
have A A(G) =& G, the closed convex hull of G, and, by - (4.53), A“A(G)=
=eco G, the "evenly convex hull" [8] of &, i.e‘,'the intersection of
all open half-spaces containing G (see e.g. [20]). Thus, the complemen-
;tafy hull operator to the closed convex hull is the evenly convex hull.
Example 4.2. By interchanging A and X in example 4.1 and using
(3.64), it follows that the complementary hull operator to the evenly con-

wvex hull is the closed convex hull.

We recall that if ch)(W is a binary relatlon (where (x,w) €Q is
also denoted by x¢w), then, following Birkhoff [1], Ch.IV, §5 (see also
[11]1), the "g#polar“ of any set G X is defined by

GTr(%):‘;WEWs (X,W’)é(’; (XGG)} (4.54)

and the mapping ?ﬂg):2X~¢2w is called the "polarity between subsets of X
and subsets of W defined byg“. In [22], theorem l.l-and 1ts preof; we ha=
ve shown that the theories of binary relations, polarities and dualities
‘are equivalent, since a) every polarity ™(Q) determines uniquely-the binary

relation S namely,

0 qjx w)EX)(W,we{xJ )}; - (55

X W

" b) every polarity ﬂ‘g):Z o 15 ardnality and, conversely, for
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W‘*here exists a unigque set SA(’X X W such that

(4.56)

every duality A:Q%Qw@
A:wng),

namely,

¢ = {x wlex X Wlwe A({x}) e (4.57)

Let us give now a slight generalization of ‘a known lemma (see e.g.

[19], ch.II, $18, formulae (6), (6’) and §20), which will be used repeated-

ly in the sequel:
Let A be a ¢ omplete Boolean algebra, B a
Then B is a complete Boo—-

Lemma 4 e

lattice and u an oxdﬁr lQOWWTDqum of A onto B
a complete Boolean alcebra isomorphism.

lean algebra and u is

monTty

Then xk\sup Xy (kel),

proof. Let u(xi)eB,'where gicA (1eI#0)
Pn the other

whence u(xy)su(sup o) GkeT) o
< v waT i b :
hand, if u(x)€B, where x¢h, ands 1TE ke l)/u( )i (ied ), then xiSX«(ieI), whe-

nce sup X. \x, and hence u(sup X5 J¢u(x). This proves that sup u(xi)=

i€l LEeT ied
=u (sup x,)e¢B, and the proof of the corresponding fact for inf is similar.
iel iel

Hence, if sup (x,R)=tw, inf (%, %)=-c0 , where xeA, then sup () e

=u (sup (x,%))=u (+e0)=+teo and, similarly, inf (u{x), u(X))=-0c . Finally, since

it preserves the distributivity of A.

a co*o]ete Boolean algebra, and the
XX W

u is a lattice isomorphism,
Theorem 4.2. D=(D,<,A~A) is
Boolean algebra ;somorphlsm of D onto (2

mapping_g:A«#QA is a complete

2,@‘*%), w1th _inverse (g) lr? Oy (Q).

Proof. By the above, g. A—ng a one-to-one mapping of D onto

2X><W. Moreover, by (4.33), (4,.57) and example el

Meme = i ;%2. : (4.58)
Hence, since (2XX ,2,g~+§ ) is a complete Boolean algebra, from
lemma 4.1 (with u=(q,) ") it follows that D is a

orphism.

complete Boolean algebra and %.is a complete Boolean algebra isom

Finally, by (4.56), we have (&)=

Remark 4.2. a) By the usual definition of inclusion" for binary

‘relations (see e.g.[17]), we have “Qlézﬁz" if and only if (x,w)€@, implies

(x,w)egz, or, equivalently, 1€y ag subsets Qf KW adien, ngqi in

(2X><w,2). Hence, the usual operations (see e.q.£l7})/ﬂ\o ; égj and §
are, respectively, the operations \/'x e and%’in ( XP(W s Punthen
egd Senl ;
-1 j ]
more, by (4.54) (for Q "), we have
wig H=m)* (@€ XX W), (4.59)

where g'l<;w><x is the "inverse" binary relation, defined lsee e:d. 17])

by
¥ (4.60)

e e i
g t={w,ewX x| (xywieg

sl



= e
and_?ﬂg)ﬁzz =92% 4o thelpoldrity defined ([ll}, formula (2.2)) by

={xeX | (xyW)eQ (weQ)¥ (QgW); (4.61)

{

note also that 7 g»; of (4.61) coincides with A¥ of (4.5),for A=w(g) of (4.59.
b) From the above, we obtain the following simple proof ef theo~

rem 3.2 for this case: The mapping A'~%AK coincides with the composition

of the complete lattice igsomorphisms "onto"

=k

g el 7 ek ;
A~>¢<A‘.—;»(c,;A) M'KW((%A) y=AT, . : (4.62)

where the last equality follows from (4.59) and (4.56).
Using the relations between couollna functionals w:X><W~»§ and

dualities A'(Zx,~)~-~>(?N

2), given in [22]), we shall show now some rela-
tions between the natural ‘partial erder and lattice operations for coupnling
functionals %«(Q sl ;<) and the partlal order and lattice operations for
e _
We recall that for any coupling functional @:XXW-R, "the duali-

ty A :(Zx,g)wv(ZW,Q) associated to ¢" is defined [22] by

ol
Ay (G)={w'eW | @(x,w')>-1 (x€G)T (G=X). (4.63)
In particular, for @z-o0 and ystoo, We obtain
o -
A_MwﬁLA+wﬂu," (4.64)

where € and ® are the dualities (4. 32) (Al Furthermore, we recall [22}
that a coupling functional ¢: :XXW—R is sald to be "of type 10 ﬂx} 5
@ (XX W) Ol —an peh i & if‘?can assume only the values 0 and -60 . Clearly,

for any coupling functlonal @:XXW—>R of type {0,-c0} , we have
AW(G)={W’6W\<€(X,W’)=O (x€G)} (G Xy, (4.65)
W\ A, (G) ={w'ew|Ixea, gl )=o) llcem) ko (4.66)

According to [22], theorem 2.1, for each duality A'(ZX,Q)—+{2W =

there exists a unique coupllng fumetional #=%, O of type 10 —mw , such -that

A=A? , hamely,

s —

S XA(le)(W —Xa% ( )(x) HaoeX, weWl it - (4.6

this ¢, is called [22]“tbe coupling funcLional associated to the duality
N
Theorem 4.3. The meppinq A, P ﬁAv ig g dlatene

e anti-homomerpnism
XXW ol X
onto D=D((27,2), (2

W,

and a. conplete inf-anti-homomorphism of R

with kernel

Rer &, ={ee® V| o(x,w)z -1 ((x,w)EXXW . (4.68)

Proof. By the above mentioned result of [22] on 2 the mapping

A maps R XAW onto D. Furthermore, it is a Tatkice anti-homomorphism and

a complete inf-antihomomorphism, i.e.,



e

= 14 { 7=
max (¥, %) A?j/\Afﬂ (el ) (4.69)
= NS z
e e e (4.70)
Lo W e ey
Wes sloi
indeed, for any . eﬁxs v ‘{?.},”AQZ§X>\W and G < X we have
At 2 e _]tJ
{w'cwlmax W1;*2)(X,W'>;“1 (XEG)}=

=/ Y ({H{w’ thﬁi(x,w’)énl}LJ{W’EW1TZ(X, w')z-1%}), (4.71)

th
7w 'eW|inf @ Wl z=1 (XCG/;~ Qﬂ\qw rw[ - xfw’);—l}, (4.72)
ST o _ feq, jeg

whence, by (4.63), (4.37) and (4.35), we obtain (4.69), (4,50
Finally, by (4.63), we have @(x,w)z-1 ((x,w)eXXW) if and only i

A, (G)=H (cedyy, (4. 73]
ice.,AV:@ of (4.29); hence, by remark 3.1, we obtain 468

Remark 4.3. a) From theorem 4.3 (or, directly from the definition

(4.63) of 4,) it follows that a2 b is antitone, and hence
/\g =X XW
_,Lm ¢, S SR 4.74
sup 5%y fo I (4.74)

b). The mapping A, of theorem 4,3 is not a complete lattice anti-

»homomovnbl sm, since (4.71) does not eALend to infinite Famllleq,qj j(J
——X (W

R (with max replaced by sup). However, (4.71) extends to infinite
famllies‘V%}‘, !!éO,—uﬁ-X)<Wi and hence Ar:A,1 sosn desa. compliete
3°3ed N el ;
. XX W XKW
attice anti-isomorphism of the complete sublattice {O } of R

onito D, with- inverse A~¢@A (of (4.67)); for a sharpening, see theorem

4.4 below. Thus, we have

P aint ¥ @ g (4.75)
S Nt A lEadge 5
JEI°3 jeT 7] oelas 7
= g8 ¢ < 5 e
fah = o B ({84}, 5<D) (4.76)
jed Jee J& J
c) By theorem 4.3 and e.g.[9], Ch.I, §3, theorem 11, one can de-
fine a congruence ton RX}\W by
GEQ(V)ED D, = bg s ; (2.77)
1 2
and the (well defined) mapping
<X XV e
pilel={¢ e BT wagmif -4, (gleldl, peR S | (4.78)
is a lattice anti-isomorphism of the ‘quotient lattice §X><w/r onto D,
with
[ Y
pl=[e,] : (AeD) (475

(see (4.67)); for a sharpening, see theorem 4.4 below. The eguivalence




SRR
relation ¢ s:““‘_’z('t‘) of (4.77) (not fegardedias a lattice Congruence)
has bean introduceq in (22:;’ + Where it hag been a1 So Observeg that
(4478) 1e a (well defined)' Qhiento-one o Pping of }’>‘>"N//,~ onto D, ga-

4

tisfying el o .E"urtl'lermorca, in {?7} 1t has been aiss shown tha¢

N=f () es {(x,w)gx)ﬁhﬂ‘,ﬂ] (x,w);»ﬂ T={(x PWIEXDCW [ e W)z 1k (4.80)

-
and hence ¢ each P%ler(xlelnc*o glasm_g [¢] (vﬂ:l_t:‘_r(: ¢e REAW ) Sontains S_an
ERldue ¢° of type {0,-cop, namely,

oy
" XJ%(X,W}:«X)\W[«(X w)>~l7' il
Moreover, let yusg Observe theat Lhe apping
Ol O (peREXW, (4.82)
AW { 5 .
is a latf‘l(‘(, lSONOI’DhlSm Sm of REX L/':: onto 10,00} X><W; for a sharpenlng,

See theorenm 4.4 below. Note also that, by (4.68), the definition
(4.78) of [ J 7 (4.80) .ang the definitidn [9] of Ker 2o, i have

i

Kerin ="+c=f:§ HenTe e (4.83)

{
L

DefJnltlon 4\1_ a) CJ.ven 4 coupling functionag PE -m}x’\<w

; we

. 3 5 5 = = X><w
d.eflne the Egg\nglemntary coupunq Eunc Llonal C{CL cfc.} b

2 A, w)ex X W FlX, Wz e Bl el

: XYW
b) Given an €qUivalence clags [¢] eR

/T, where T is the congruen-
SO define the C‘Simp,,l_-?ﬁ@:_{kt.iﬁz_,.ec‘l}];":.‘i{ﬂ?:{{?e class TZ;FE‘EXAW/'C'
by
_ i : ' (4.85)
T
where c,cof-;{o, gl XXW is that of (4. 81).
: Remar]g {4 a) By the obvious formula

(¢qo,-m}xxwh(%8@

il
]
=

1(x,w)€X>(’W[ P(x,w) =0}
we have
BT =0 it (©%) =0 (7e{0, —eo X>{W),(4,87)

so (7{0, ~w}-x><w,s,v~~><€) Se g Complementeq lattice (since o is its
Jreatest element)

) By [¢1=[%°] ang e e
min ([¢], m ) =min ([‘{)Oj [ﬁf )= [nun (¢° Y’ij - (<{)C~§X><w) r (4.88)
max,({‘ﬁl,mh[max «°, @ )J SR [-hvj (c,osﬁxxw) r (4.89)

so (ﬁxxw/z’,sf,[‘ﬁj““”m S complementeq lattice,

Theoren 4, 4. ({O, -o«ﬂXX 1S, ¢ ) and (RX>< Vg [{f~>f‘fJ

b Nt

el e e

are comp'leto Roolean alqobras S,_and the dJ Lagram

3y



i,

e W %
R’ o \"\] ng)“ I{X "\Y/C .,.JZM;@ )\O ,“‘0\’)}- \{/ \Y/\T
N ; o -
A 0 o .
\g P e ¢ (4.90)
- )
S XY\ v
Dl D e Sai o o

is commutative, where o (of remark 4.3 ¢)) and g (of theorem 4o are

complete Boolean algebra isomorphisms onto,{B,Af (of remark 453 el

-
¢ S 1
g wp»%f(x,w)cX/\W[tdx,w)=0} (QE{O } \\V (4.91)
are completeleolean algebra anti—isomqrnh}sms onto, with
¢ (o) =—y (Q CXXW) (4.92)
S () /L% %_a. 3 ’ 4
A, is as in theorem 4.3, and the guotient mapping
7 el (peRNM) (4.93)

18- a lakttice homomorphism and a complete inf-homomorphism onto.

Proof. The statements on {0, ~co}Xn§w and Q are
immediate , while those on RX"W L0 and ﬁ follow similarly to theo
rem 4.2; using theorem 4.2 and lemma 4.1. Furthermore, by (4.57),
(45650, (491, = (4.82), (4. 85 (4800 (.08 and (4.93), we have
Qar = 1lx,wle XX Wlwes, (fx})}‘:g(‘?) (pe{0,- 00} * XM,
l{) 7
L 5 = £ =[] 0 X><\
ACV“( LéT‘)J ) A(ioo A‘{‘ l( a,L1 , ) ((1 CR ) 14
g X
pa(¢)=p(lel )=, (geR ),

so the diagram (4.90) is commutative. Finally, the statement on g afoe
lows from q=ﬁ"lA ", and theorem 4.3.

Remark 4.5. a) By v=4°(z) (@e® "), theorem 4.4, (4.39) (for

AéA?) and (4.63), we have

e

B, (@)= C(G)=bs(G)=/ N (W\ B, ({ x})) =

¢© ¢ %€G B
M\ {wren] etewic-1 . weB AT, qex); (4.94)
XeG ‘ '

on.the othex hand,using alsc (4.67) and (4.2), we obtain

?g(x,w) =Pr (,W) ==X () (W) ==X 5\ p¥ Gu}) (x) (A€D,xeX,WeW) . (4.95)

b) Since the families

3 (W
Y ={{(x,w)}!xex, w&W}CZX’\V ; (4.96)
Y= { XX W N\ Ax,w)] | xex,wew}czx'\W, (4.97)
i : 3 : XXW -
are infimal, respectively, supremal generators of (27 20 lsee

example 1.5), from theorem 4.4 we obtain the following families of i
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fimal generators of the other complete Boolean algebras of (4.90):

S o IR L T s Wi q
(¢.) (Y)=mw(¥)=4w({x,w})| xeX, weW; in B2 2) @ 2 )y (4.98)

S e = oesye XX W 2
€ (l’>L{NAX>CW‘\ﬂx,wﬁ—!XQA’W€W} im0, -} . (4.99)

e e - L R
o L l(Y’):‘iim}”x}i’\w\{(X,W)}-E} xeX,weWy in R G e (4.100)
where, by (4.54),

w(ix,wh — i
T oy if o={xl,

(Al
= g sl (e L0

Also, the complements in (4.39) and definitieon 4.1 a), b)) coin=

asi- :
cide with the@éomplements with respect to these families of infimal
generators, in the sense of definition 3.1 (by the uniqueness of.the

complement in a Boolean algebra). Thus, we obtain

= S P : :

A = //” \_\ ’rT(“{‘X,W})::// b ‘TT({X,W}) (AED) ’ (4.102)
xeX , weW xeX, weW
Agw({x,w}) weW N\ A ({x})

= e XXW

$= inf e i) (Pef0,~00F =), | (4.103)
XEX , WeW e .
¢ (x,w)=0

One can also give similar formulae for the other complements
occurring in this péper, but we omit them. :

c) By theorems 4.3, 4.4, and the remark made-after (1.5); A, -and
AE. are dualities, whence, by (1.30) applied to ¥, of (1) in EX>{W
and to @Ml(Y’) of (4.99) in {Q,~mu}x><w, and by (1.35), we obtain,

respectively,

oo et gk : R (4.104)
xeX,weW,deR X{(X w)}+d
e(x,w)<d ik

Ly (qe«{o,-m}xﬂ’v\W). - A i0s)

¢ = b
ch,wdj X’xxw ~ o W)}
?(X ,W) =00

~ One can also give similar formulae for the other complete inf-
-anti~homomorphisms onto and complete anti-isomorphisms onto occurring
in this paper, but we omit them.
d) In general, g and qq:%>~»yo are not complete sup-~homomorphisms.

Let us consider now the mapping Z‘:q~9§;', givefa by (4.94). .

:

Corollary 4.2. a) The mapping &, :9—Ajis a lattice homomorphism

: : =X X W
and a complete inf-homomorphism of

onto. D, with kernel




S e o
Kers AcsNe R el wlc=1 (s v e ol W) s (4.106)
b) The mapping A? = A, i is a complete Boolean algebra
LEOR o Vi i) =
isomorphism onto D. :
Proof. a) The first statement follows from theorems 4.3 and 4.1,
since 7\:;.7(13? . Note that here, for each AeB, w'e have
(4 L0
Finally, by (3.64) and (3.61), we have 'E;:(Z}r if fand only "if
AHO=.§3,, Loes by tda32)
A (G)=g if G#Y, 4,108)
¥ = if =i \ -
but, by (4.63), this happens if and only if @(x,w)<~1 ((x,w)eXXW).
Thus, there holds (4.106).
The proof of b) is similar, using theorem 4.4.
Remark 4.6. a) By corollary 4.2 a), we have
e =X X W 5
A , \/A (P PR (4.109)
max (¢ l’( o Pty ety
XX W
prre ) (4.
Aice o /\A . (,{"j}jga ¢ R ¥ (4.110)
B J :]CJ ]
je
e T Wk o ) (4.111)
Sup &{)j ]&J j 5 j 'J{
jed e
b) By corollary 4.2 b), we have the equality sign in (Aei ) for
: s XX W . ;
all Lﬁj jed € 10,-7 = and
P s S N Ardo e 4112
(“’\/Aj Seq 53 Uslie sanit ( :
jed =
i = AN T 5 W At el (4 113
e - 0biE Aa535e
: =W =X =W
§5. DualLtles A RX-~>RW and conjugations C:iR - i

3 = =W
Let us consider now the _case when E=R", F=R where X
and W are two sets) and Y:{LX +d|xex,deRE, T={ id| weW, d=R}:. For
% = A AAE O S
AT " <R fcR we shall write £°, £ oE= e instead of A(E),
A'A(f) ' ‘f’(}“) G
Let us first note the following complements to the equivalence
7 < oo
(1.35) ,which are immediates =~ ” : : For any feR  and
;(J_xg-+OEY' we have
b i cid & {
f*?‘.{_x}'}d e Cah s . {5.1)
fy 49 & fix)zd and fix')sre elaX s fxt)
7 Aix} = : : (5:21

""" —aRE i‘\~+d'fY for some d’zd.



s 2 - =X
The defimition «(2.1) of A R =R DeCoOMes Now

A SR T - \
g = Anf aleR I pd

:;jg}—r 5% 3)

A . B e \ﬂ
dl.cw, the ‘onevgivensin | :

e : : : e
(211, formula (4.1), for any mapping A:sR T =>R
(not necessarily a duality). The equivalence (2.2) becomes now

b

fAsq¢>gA <f (FeR™, g@ﬁw), (54
which, for a conjugation A:c:ﬁxw+ﬁw, has been observed in {211, propor
sition 4.1; alse, by [21], theorem 4.1, 1if Azc:ﬁx->ﬁw is a conijugation,

: : * =W =X i . ; 3
then so is c¢—:R"—R° and we have c” =c, whence a principle of dualiza-

tion for conjugations.
Formula (2.3) becomes now
P $
£8= inf {gcﬁwiga <E§ (£ e By, (54.5)
and formulae (2.4)-(2.8) remain unchanged. Formulae (2.9)=(2.13) yield
now, by (L5 and (i 150,

A:('f. : J AX b =
g e 08 e elis [, SER g vikes LG E R D (5116)
- ]
o' (x)=ing {aeR]| (), ta) ") (geR", xeX), e
A [ : AL " ! Aﬁ{ : b A
£~ (w) =inf KLdER‘(x:{w‘f‘)—d) gf}’ (EeR 2, weW) , (5.8)
% ]
£287 () =inf {h ()| neRS, hief)= ' :
—inf {aeR |(y,, F) Peelh (FeRY,xeX), (5.9)
& SRty " 4
B L y=ing {s ()] seR", s® <g” }=
e * :
=inf {dﬁﬁg(ﬁf ;d)A éqA i (qe?w, wew) . (500

tw}
In particular, “if A:c:ﬁx->§W is a’conjugation, then, using (1 :8)

and [16], proposition 3 @), from.(5.1) chove we obtain

3k
g° (x)=inf {deﬁi(zixz)c-f-—dsq}='
= ( D N c-;-.,. A1 =
inf 1déRt(A{X}) - g gd] ‘
=sup () 13y St=9) () (geR", xex), (5.11)

which has been given in (211, formula @22 simivarky . 5.8) —(5.10)
yield the remaining formulae of [21] ;aconollary 4.4, '
Formula (2.14) yields now, using (1.35),
i :
poe8 Lr)ed  (xeX, QeR, (gt et (5.12)
l\-‘f~ 53 5
hence, if A=c:§x-m>§w is a conjugation, then, by (1.8) and [16], pro-

positien 3 c), we obtain
x

£=£°° &= £(x)<a (Xéx’dﬁﬁf(({xz)cf”fcéd>' (5180
; i 5
Theorem 2.1 yields now, using (5. el athat



* :
o8 :inf-qixhid xeX, deR, AweW, ecR,
i) .
* *
£30y e b el bl (fﬁR“) \(5.14)
£yt gy J e
AT b -
£=£°0 e Txex,VaeR, £(x)>d, JwewW, 3 ecR,
* ok -
A o A
£3( Abﬂ 7O pde) B, (52159
where, according to remark 2.3 a)the conditions
ok *
. o= BN A o
*5(l{w}+e) : X1w (x);)d : (5. 163
can be expressed by saying that (y§w2+e)A separates f from %x1; d.
: I g ' : : Al
In particular: 4f A=c: B R is a conjugations. Bhen,; using (1,8) =th

equivalence at-e>deat-d>e (a,d,e€R) and [16], proposition 3 c), it
follows that (5.16) is equivalent to

CX Ciii
(K{w}) (X>?"d>e3(liwi) e . )
Remark 2.3 b) yvields now, using (1.35),

* *
FaA =gup {(%jwm%d)A iwew, deR, fA(w)sd}=

. Afg e :;E - —
=sup ) 4,1+ |wel, deR, (x4 ,+d) <f} (feR

£
In particular, if A=c:§x-w+§w is a conjugation, then) by (1-80%,

formula (5.18) becomes

s ey

* ¥
eferiiaeattin < ey o
£7° =sup {(xqn) +-dlweW, deR, £ (w)sd}=
¢ c* (e e

=sup Y(X{w})“ f—diwew, (K{w}) EedeEr (FeR ). 55199
Formula (2.19) becomes now, for any ﬁ&;ﬁx,
7 (J¥ 5 o

g 5 “zsup_{ms Umst} (eeRty 520

iie. o the ! Moconvex -hull of s f Sinsthe sensecas ol

5
Theorem 2.2 and formula (2:30) mean now, by (5.1), that

@ (5 ¢ ¥ f =
f”c )Zle 14 FdixeX; QER,TQmev, fom, mixi>ds (FeR i), (557
/! iX} =
Fix €01 =1£eR"|¥xex,VasR, £ (x)>d,;3Ine, f5m,m(x)>d}),  (5.22)
Fix €M) ={£eR*|3M,- f=sup h}. (5.23)
. tve.'f

Again, in {20] an equivalent way has been followed (see the re-

7 A A )‘
mark made after (4.19)-(4.21) above); let us mention that, for ?Q;R

{5<22) has been given in ZSj,'prooosition 15667
The observat;on made before theorem 2.2 says now that the theo

ofethe hnlls 1—~fAA , where A:RX~9RV is a duality, and M [ —convex hul

=X , :
where Mo K 2 are equivalent, via (2.21) , which becomes now




S

P o R
H={ () y ¥ lwew,de men e (5.24)
A
respectively, via the dualities @il o te I par b el dus et
G e conjugation, then, by (1. (5.24) becones
3 (5.25)

Medlrg:) +-d{weW,deRf C R
-

’ ey ke 1 o
since (ﬁéw}> =%E(-,w) (weW) , where ¢, is
this M is nothing else than

(89 4520,

8}, formula

the coupling functional

(see [21], theorem 4
(5.26)

{ e
M=qw, (*,w)+d|weW, de B

o’

all Jelemencary functionals' (associated to 4%),

the family of

i.e.,

in ke Sencg o Tlef]
Formala(3.1), defining the partlal order Al‘ X becomes now

A A :

Bl (£eRY), BT
and the dualities ©®,0 of (3.3), (3.4) are now
o) )

i lerl ), (5.28)

e £4400,
= -0 LfEe f=toa . (5.29)
Proposition 3.1 means now that, for Al,A26D=D(§X,RW),
A A
; i ) ; 26
l‘A “V("’x}+d) é(gix +a) (x€X,d€R) . (5%.30)
X R the set of all conjugations

We shall denote by €=C(R", R")
E ®"), we have a natural partial order on C,

B 5RY, sineeCeD=DI(R, R
induced by the one of D, i.e., by (5.27).
Theorem 5.1 For any 9J’RX>\W (jeJ) we have (where \v/c(wj),
bea o - jéJ
2 o/ Nee) are: taken in D)
Jjéy
A clg) cfsup ¥.) g
f' e S 1 J :f JQ‘I j (fé.‘ )r = .(5'31)
p
jeJ :
e (v.) ¢(¥s) c(inf w.)
. = T T4 . i 5 ey A Sl
(},X§+d)j€° = =§n§ K4 }+d) 4 =(Lixl+d) jed 3 (x€X,deRU{teo}), (5.32)
€
ZN\c (¢2) ot j
£369 I —gup fing (1, ) 7 | xex,derUftw}, £(x)<d)=
jed ke
einia X
Se ek L Gl e G328}

of D=D(EY,®") (and thus -

Hence, C *é a complete su
‘VC=‘V/D, \ \“) and the one-to-one mapping c(+): @ —c(¢), defined
J€J J€T  j€T jeJ
by (1.37) (with IHyetEe are Gl o, of (1.39)) is a complete lattice iso-

morphism of RX/\W onto C.
Let us recall that if Z is any set and h:Z-»R, then, by

Proof .



7P

%lG}, formula (4.8) and [23}, lemma 2.1, we have

sup ih(z)+a}= sup h(z)+a (aeR); (5.34)
Z€7 zé?
inf {h(z)+al= inf h(z)+a (aeR\U4-e0} ) o (5e35)
267 e

and (5.34), we obtain

J (w)=sup sup {qn(x,w)f~f(x)}:
JeJ xeX

, : o
=sup 4 sup ¢, (x,w)+-£(x)}=£f ded
Xe X > jE J

Furthermore, by (1.8), (1.38) and (5.35) (with a=-d), we have

(fgﬁx, WEW) o

e tinf %j) ¢ (nE )
: ol jed ‘
([ ¢ 1+d) "(}\{X;) ‘l""d‘:
+
: o c(#5) :
=inf i?j(x,o)fwd§=inf (oo +9) - (x€X,deR U {+oo}) .
2 5 oites

e JET

Thus, since Y; of (1.18) is a family of infimal generators of R
condition 2° of theorem 3.1 b) for Aj=c(vj) (jed) dls-satisfied v
(with A=c (inf %j ). Hence, by theorem 3.1 b) and corollary 1.3, we ha

el - :
(5.329 "and (6.33) ¢ Thuss - by-{5:81) and 5330

7 =X AW
NS ol )=c (sup %.)eC Glear o gSR T ), (536
JEJ SET D 1
NG J
e le. ) =clint e.)eC ({Q-}'ngRk><h), (5.37)
jed ) jeg J sl

whence the other statements (of theorem 5.1) follow.

Remark 5.15 a) By theorem 5.1 (or, by: (L.8)2anmd (1.39)); we . hay

C KC &% <¢
Gl )] C1 Cy
b) By theorem 5.1 (or, by (1.37)), the smallest (greatest) ele-

feigowo). (5.38)

ments in C and D coincide, namely,

c(-00)=8, el+oo)=8LL, (5.39)
c) Since
lem{(x,w)} w‘LdI‘(x’,w)f‘:X}’\W, deR} (5.40)
X AW

is a family of infimal‘generatérs of R (see example 1.6), from

theorem 5.1 it follows that

L+ (x,w)eXXW,deR} (5.41)

...’—4( N
C(Yl) LC(;Y\‘{(X,W)j’

S —W <
is a family of infimal generators of C(RX, R“), where, by (1.37) and

(1.15), for each feﬁx we have

e



+ad)
A e 2 / x
A ,w) ) (w!)=sup {

Gy R e e Gl
B O XWlr

“ql-F(x) if w'=w and fey...+R,
AqXF

=+¢0 oOtherwise. S (5. 42

Theorem 5.2, The restriction of the complete

== B =W =X
heb (B R ~» A €D =D(R" ,R) (see theore

lattice isomorphism

te
, By o v
320 w0 CoCURIGR Iieeaihe

- e % : ! o ;
mapping ¢-»cC (where ¢ 1o defined by (5.3)905, T iisa compllete lattige

e p % £ s =X
isomorphism of Cr—‘-C(RX,R') Guto € =1¢C “cccjzc(}ih, R®), the complete lat-

! : : ; =W =X
tice of all conjugations frem. R 1nto R

Proef. By the remarks made after formula (5.4), we have,

CXQC(}_{W,T{‘X), Conversely, Hf ¢c'e ("fiw,'IiX), then for'cr—'(c’)x we have

x e 7 ' TR A : 2 5
c:{‘:(c’)”‘ﬁ(:c’, ={e} C:"{:(,‘(RE ,Rx) and c-—c" maps C onto Ck. Hence, by

theorems 3.2 and 5.1, the conclusion follows.
’

5.2, similar to the argument of remark 4.2 b): Since the mapping

- =X AW o
fpE i (\{:c:RX/‘v) , defined by
¢ (w,x)=¢(x,w) (xeX,WeW) , (5.4:3)
: ' R WX '
is a complete lattice isomorphism of RX>/‘W onto RNAX, the mapping

c-»c™ is the composition of the complete lattice isomorphisms. "onto"

Cc - lf’c-m-ﬁ*(‘i’c‘)-'*“}v (. (‘f’c) _):CXP (5% ,44)

indeed, thyves(srRaE TR El 3005 (b Asiiand (.37 applied to (<€C)—:W><X-?=“
—»R), we have '

e : a7
g© (x)=sup((x{x})c+~g) (W) =sup ‘{(‘F‘C) (w,x)ﬂ;"g(w)}=

e weW
Rl ) .
S T (xeX, geRV). (5.45)

Let us recall that, for eaech coupling functional s@:XXW——»ﬁ, the

"conjugation of type Lau L(¢) e

definition 3.2) by

associated to ¢"is defined ( [22],

£ (®) (y)=—ine £ (x) (£eRS, weW);,  omin  (5.46)
xeX - ‘ :
?(x,w)z-1

we shall denote by CL=CL (ﬁx,ﬁw) the set of all conjugations of type
Lau from EX into B
XX W

We recall that, by [22], corollary 3.2, for each weR there

exists a unique ¢°¢ {O,—w})\x‘w, namely,‘%‘o of o @B D S sachs et

B (5.47)

hence, in particular G2l corwllary 3.1

L (¢)=c (¥) (‘s’éi_O,wv}XXW)- (5.48)



SR

= = e ; : 2 e
From (5.47) and ?21{, theoren 3 10 it follows that ciR° 7P 2

a conjugation of type Lau if and only if it satisfies (1.7),(1.8) ar

SN W
Ol €lDi=act” (x€X) , .Y
or, equivalently (where B is the functional (1.39)),

: XYW _ . _
Tctlb,“¢C“ ’\h; (5500

> 4
however, if c satisfies these conditions, then there are many func—
tionals veR 77 o satisfying L(W):c (see (5.60) below).

is a complete sublattice of C=C(§X, T

fmem;(m D3 Chs CLAR,R

and the mapping L:¢—L(¢) is a lattice homomorphism and a complete i
, , o . =X X W,
-homomorphism of R™ onto CL, with 01ne1

: XX W 1
Ker Lzlq’n R ‘q-’(x,w)<~l ((x,w)eXXW) | b5
NN
Proof. By the definition of CL, the mapping L maps RX"\W onto
ClLi.- Fuxthermore, by (5.47), [(5.36) and (5.37) for \any {gj}jed.gﬁx><
we have (where fv/ Les), //\\L(wj) are taken in C, and ¢%= (%j)o),
HEd ' Jj€J J
VL qj)m\df c(4%)=c (sup ¢%)=L (sup w])fCL, (5.52)
J€J JEJ J jeJ J Jed
/\ j oA 'j =c {inf n)?)=L§inf LPQ)ECL, (5n52)
e : jed Jed

so CL is a complete sublattice of C (and thus \/’CL=\/C 7 /“\CLz
Jei degnd

=)L Alse, by (5,470 (5.36) (53T a0
jed
(¢eR’ /<W is a lattice homomorphism and a complete inf-homomorphism

(see (4.90)), we obtain
Limax (7, %)) =c (max (¥, 1,)) ©) =¢ (max @', ))—c(f )fc(?§)=L(?l)Vld¢2)f (5.54)

L{inf ¢.)=c(({inf %)O%{\uﬁ ¢ /\c Y=/NL (%)

ied j€J jeJ 3 jeJ 3 jed ¥

and thus L is a lattice homomorphism and a complete inf-homomorphis
Finally, if $(x,wl<-1 ((x,w)éX}(W), then, by (5.46) and i (5.28),

£ () =-ing G=~«)=fﬁa(w) (fe RS, weW);
3 - Ele B s oy e - -
Senwetclne i = feR s hen . by (5.46) and (5.28), we cbtai
”i?)f( "X“'(XEX I ‘?(X,w');-]_}z'o" (WeW) ,

elx,w)z-1

whence ¢(x,w)<-1 (xeX, weW).
Remark 5.3. a) By theorem 5.3, .L ds dsotene -and hence

Lifsupi g )z N L(w ) ({q.} = QPX><W (5:05163)
e j€d i s

b) In general, the mapping L of theorem 5,3 is not a complete su

g
s



homomorphism. Howgver, by (5.48), L =L | ey X 1isia
i in BN 7N\ 2 A j UE SN
U, —00 0 P00
o Siele ; i = iEas el ¢ XKW
complete lattice isomorphism of the complete sublattice 30,-oof of
XX W = : J
AN D Sy ey e
3l e) =X X W =
([ () ) = {peR= > ) (BL57))

(see (5.63) below); for a sharpening, see theorem 5.4 below. Hence, sin-

S XKW

5
ce -ogegh (ve "('»O P00y

), the smallest and greatest elements of CL

are, respectively,

Tl o e =B 0 Ee ), (5.58)
where .
RO o OO R E(x) . . (EeR, weWDs - (5:59)

¢c) By theorem 5.3 and e.g. 9}, ch.I, §3, theorem 11, one can

define a congruence ton 7 DY
? =% (7)€ L(g) =L (¢,), (5.60)

~and the (well defined) mapping

AN

L:[9]=4 el

= \./ v b) . T 3
{?’QRX"'higfgqttH‘«@ Tl el [, 9eR ) 5 (5.61)
: g : 1 2 ot =X X W
is a lattice isomorphism of the quotient labtice R

o > s i
T @ e =1¢) e

/= onto CL, with

) {5062

(the fact that L is well defined, one-to-one, satisfying (5262 ahas

been observed in [22], remark 3.3 c¢)); for a sharpening, see theorem

5.4 below. Moreover, by [22], corollay 3.3, for wl,vzeﬁx/<w we have

L(Vl)=L(wz) iEand lenliye i FE ko =A@ : thus, the congruences vof (5.60)
St 2 g ; i
and (4.77) coincide. In particular, for ¢ of (4.81) we obtain

Li(¢) =L (¢°) e (5463)

(this also follows from (5.47) and (5.48)). Note also that, by (55080,
(5.61) and (4.80), we have

Ker L =[-c0] = Rer . (5.64)
XKW :
Definition 5.1. a) Eor each WERX/\W, we define the complementary
conjugation of type Lau f(y):ﬁk->§“ tor Lty . by
»»»»» ':‘U 3
xeX
@ilx,w)<~1

P

with ¢ of (4. 81 'and ¥ of @efinition d.lsal.

ool &
b) We define a congruence J on C(RX, RJ), by

el r=clle) (Prese =¢ (T, (5.66)

withicle) of (LL37) "and et (5.60)=(4.77) . Furthezmore, for each
25

c(¢)] in the quotient lattice C(RX, By /4 , we define the complementary
q ﬂ i



jl(nlne, > ¢ )) f1&~cw)$_€';_zmx LR AW

fL (AL () (L )AL

L (OVLLe) _L(v7) L (i ) gl (max (e, ¢ })Ef’(o)zfc<o) (fgpx,¢&RX)\w), + (5.69)
So (Gl LT G ) s a complemented lattice.
b) Since the quotient mapping
s+ cle) —> [c ()] (pe XX, (5.70)
: e = X M i
is a lattice homomorphism of C(R , ) onto C(R R b/ lsee cig. 9l
we cbtain, by e=¢°(), (5.66), (5.67), {5‘r5) and \5=68), ;
inf ([c(e)} + [c ()]D)=inf (], [ele°N)=[ e (421 c(¢°)] =
=[L (¢ T(¢°)] =18] (R (5.71)
and, similarly,
= P s e oSNy
sup ([c(e)], [c(¥)]r=[c(0)] fen A e - aE

=¥ o
SO(Q(RX, RN)/F;g’ [c(@)] —{ C“ﬁ}f is a complemented lattice.
: X =W, ;

] ROVpesy [e(9)] =
—»lc(¢)] ) are complete Boolean algebras and the diagram

L
BXW_g  g¥XW XXW

Theorem 5.4. CL:(CL,s,L(w)maL(%)) and (Ckk

/t L->40,-00} : >
gt e (573}
\\'v‘\a\i' : r N

¢ ®, B)-Locn &, RY) ~2sc R, R /p

g -ﬂ/’i

T et e 555 """‘M

ischmmutative, where 167 an@ p are the_cpng;uences (560 =14 .99) and

"(5.66) respectively g and ¢ are as in theorem 4.4, c(.) is the comple-

te lattice iSomorphism ontQﬁ_Qf theogem Seeli N isvas in theorem 5.3, the

mapping

p : cl(¢)—L(y) : (%-ﬁxxw) (5454

and the quotient mapping s of (5.70) are lattice homomorphisms and com-—

plete inf-homomorvhisms onto, and L, e (0f 1 remark Sesae) . bl Sr:S]CL

and zfscfo) are Boolean algebra isomorphisms onto, with

t‘{o s }Xx W

prXX W

v (5.75)
1 T e l9)])=4° (@eREXWy (5.76)

where ¢° is defined by (4.81).

are similar

Proof. The proofs of the statements on CL and ﬁ, T
< XXW
to the proof of theorem 4.2, using that RX/ h/?:‘and {O, co} 2 are com=
plete Boolean algebras (theorem 4.4) and using remark 5.3 )bl and



S

lemma 4.1. FPurthermore, by (5.74) we have pc(.)=L, whence p=L(C(~))~l S

a lattice homomorphism and a complete inf-homomorphism onto (by theorems

o, I and S8 S lenee ), e oL by 1015 Ch o, 3, theorem 11, one can define

Sy
a congruence p_ on C(RX,RV), by
15
&3 14 e v = B
c EC, (,~p)<-.». plcy)=plc,), (BT
e
which induces a lattice isomorphism of L(RX,R‘)Aup onte Cle But, by
qr:S;CL POBE O SRS AW (D660 5 60 and s (563, we have
N s el 7 f ¢ kot T T
g (L(‘rl)>—-s (L($5)) @ [L(g))i=|L(¢) e[ l)!~{c<\?))\ ----- >
e #9260 () &> Lg =L (%,) (9, 46K \<W) , (5.78)
L” i 1402 s s

so s¥ is one-to-one. Also, by (5.70),Wi%o(r), (BR66) (5 A7) ands (5474 ),

s (e (@))=[c(e)] =[c(62)] =[L ()] =T L)) =5 (plc(e)) |(peRN W

o L

)\ (5.79)

e Al
SO s=slp, and hence s® maps CL onto C (R ,RL)/g and there holds (5.75).

Mereover, by (b7, (5.74), (5.60) and (5.66), we hawve
c vy )=c () (k) e ple(?)))=p(c(¢y) e L (v )=L(¢))

XX W

e 0 =¥, (T)esc (v )=c (9,) (1) L

, e :
whence p =p. Thus, by (5.77), (5.74) and (5.75), the lattice isomorphism Of

=X = =X = ‘ ; ;
C(RX,RW)/ﬁpzc(R ,RN)/F. onto CL, induced by gp=p1AlS the mapping ,

olell-—= p(ce))=Lp)=(s") "t ([c(¥)]) (peREA Wy, (5.80)

i.e., the mapping (sr)‘l. Hence, since CL is a complete Boolean algebra
(see the beginning of this proof), so is C(ﬁx,ﬁw)/ﬁ, and s* is a complete
Boolean algebra isomorphism (by lemma 4.1); also, s=srp Teoria - Lattice Thomo=
morphism and a complete inf-homomorphism.

Now, for y=s¢ (= ’YO «mjy)<\ we have, by (5.48),

(9)=sc () =s" (LT (¢)) (vef0 ,—o0] XA, (5.81)

g

and hence yis a complete Boolean algebra isomorphism onto (since so are LY
and sr), Satisivaing ey (5750 “and (5057 ),

e M=) T L (e ()] ) =@F) L @ (9)) =¢© (oeR

(s¥) XXW) i :

dme s S 76 Binally, by (482, ?Ozv(r),(S.él) and (4.93), we have

Lo ([#])=L(¢®) =T ([+]) (e XX T
iq(‘?)———i(twi )=L(¢) (W-ﬁxxw) ,

so the diagram (5.73) is commutative.

Remark 5.5, &) Mhc equivalence relation (5.66) (not regarded as a lat-

tice congruence) has been introduced in [22], together with the mapping

o s '
8() R W /e o e @) /i defined by

~X\(W

gle=[c ()] (¢ b (5.82)

where it has been observed that S (.) is one-to-one and onto.From the above
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o

7 -
it follows that &(¢) is a complete Boolean algebra isomorphism onto, whichz
can be inserted in the diagram (5.73), so that the new diagram remains CO?J
mutative. The fact that s* is one-to~one and onto, satisfyving (5.75), has %
been observed, essentially, in {22}, remark 3.3 @) Fowi(5nlbl ., soﬁe parts§
of (5.78), (5.79), and some related propertieé, see [22]. i
b Erom (409090 508l) = (570N, S5 48] and theorem 5.4, we obtair theg
following families of infimal generators of C(RX R ,/m and ‘CL respective- |
1y
= « -
pes = ?LP(H“X/YV\Q(Y‘J) Nxex, weW} in c®, /u {5.83)
¥ ) ={e )| xex, weWy in CL, (5.84)
L /*X)( WA {(x,w)} .
where, by (1.37),
(G
£ TRRX W, w3 ).(w')=—inf FOD I wiew, ..
=—inf FEN{X} if wi=w. (5::85)
: ;
Alsoc, the complements (5.67), (5.65) coincide with thegépaplements é
with respect to (5.83); ' (5.84), in the sense of definitieon 3.1, %
Corol laric Dndwa )2 ihe mapping'i:%h»£7$Y is a lattice anﬁi-homomcrphisn?
and a complete inf-anti-homomorphism of s onto €L, with kernel |
Ber I :{?rﬁx"ﬁlﬁdx,w);~l = ((x,w)éX){W)}. {(5.86)

b) The mapping Lr:il ES o Se e complete Boolean algebra anti-
~~~~~~ .{aiqog}k>xﬁ Sy - o e
-isomorphism onto Cls
Proof. a) The first statement follows from theorems5.4 and 4.4 and
corollary 4.2 a), since we can write T i “as. the composition of the
nappings
: A A > i .
A A L T =X X W,
%vm»»A%wAma L) > > L{¢°) =L (¢) bpeR TN,
? :
where the equalities hold by (4.94) and (5.653). The proof of {(5.86) is
similar to that of (5.51), using the first equality of (5.65).

The proof of b) is similar, using theorem B
Remark 5.6. Corresponding to remark 4.6, let us note, for example,

that =
XX W

L(max (7], 95)) =L (9 AL(¥,) (7,968 ), (5.87)
Tt 9=\, 1le) ({e.%. ey (5.88)

el er . e

Theorom 5.5. The restriction of the complete lattice

cec (B, B —c® e c®=c (® (see theorem 5.2) to CL=CL(R"

mapping L(v)»@L(%)’, is a complete Boolean algebra isomorphism of CL=
Tk N Lo te okl i =W =i e e L e s e e
=CL(R",R ) onto (€L) =4L (@) |weR '~CL(R",R"), the complats lattice oI

W

. . - s . =X f s : 2 e :
all conjugations of type Lau from R into R, and we-have (woere ¥ 15 dai=

ven by (5.43))




> 3 =) 7 T i
L(¢) *=L(¢7) =L ((¢°)7) il (5.89)

Proof. By (4.61) and (5.43) , we have

Ot e Siee ,,,,--.-:-XXW :

() "’”f""w{(\.ﬂi,x)szw;»{>';1a§»‘(x.,w)a~1}f“‘ £ \e X ) . (5:90)

whence, by (547 Zie T e (appisiediito c=c (¥°)), (5.48) and (5.63), we
obtain

* x ‘ N 5T ra . = bourd ’/\’;’_ ‘
s 0 P e TR e Y=ttty e

which proves (5.89) and that 2

=W X X G
where weR 7", then Li{yv) ¢

: S ; Wy
- e ® con ®, ). Hence, if Liy) e cL®RY),
CL e B et and Tilw=L G clel)®, isor (EL) =

5 =

=CL(§W,§X). Thus, by theorem 5.2, the conclusion follows.
Combining the diagrams (4.90) and (5. 73),, ‘onc-obtalnssfmrther fresulitsy,
for example, the following '

Theorem 5.6. The diagram

~ 2 N T
izX/\VJ:“G g :‘%{O,‘OG’%X’”‘ W
N T
Aol T e S (5.91)
R e S \\\
k.4 ¢ \J; v T ™
=X <, % 3 X W

c@® R s p(2%,2), @V, 20 2L &R

is commutative, where, for each ceC (‘ﬁx,'ﬁw) and AeD( (2X,;~) 4 (Zv",:z) Ve

§e (G)r—{wgw; (Xt ) (w)z-1  (xeG)} (GeX), (5.92)
A e o)==t t0 k) GRS, ew) (5.93)
x€X

weA ({x})
Hence, Sn is a lattice anti-homomorphism and a complete inf-anti-homo-
morphism of e® R onto D@ e (2" 20y, with

Ker o, =c{er A)) “(5.94)

(see (4.68)), and ) is a complete Boolean algebra ant;i—'ivsomorphism of

p2¥,2), (2%,2)) onto CL(®,R), satisfying

x"lagt =p (5.95)

e nld

Brooh. By (59200 %01 38, (4.63) (5.93) ‘and (5.46), we have

QWV)(G)ziWGW!%Kx,w)a_l (xeG)}=A?(G) (@eﬁxxiw, cE X, (5.96)
MA,) : e : ¢ o
£ ¥ ()=-inf )=t ) @B AT RS, wew), (5.9

xeX
wix,w)z-1

so the diagram (5.91) is commutative. Hence, using also (5.63) and (5.47)
we obtain

oA X =X XW
L ) N L@ (62) yoa =8 e ),

¢ 8% e



¢

So00 g
so . (5.95)-helds. The othex statements follow from theorems 4.4 and %
i

o - { i : . & e
Remark 5.7. O, and A(A) have been introduced in 2 det

and remark 4.2 a) (where they have been denoted by AC and LA} and called

"the duality associated to the conjugation c¢" and, respectively,

jugation of type Lau associated to A Y, Pormulae (5.95)—(5.97) and some

i

i

related results, have been proved in (22 %
Eonol Layy bl > The mapplnq S el e a complete Boolean ;
isomorghism of D2 “,3),(2” 2)) onto LL(K R ), and for cach Ak %
(ZW,Q)) we have |
IR - : i
MA)—>\(A)‘L('ﬂ"A)‘“'C(’*’A)“L\1"3)*‘>\(A) 7 ‘.5‘-98) %

(4) - X %

#*@) g)=- int £ 0= inf £XNAE @) ER wem), . (5.99) E

xeX : i

weW\A (§x})

{

where %A" and & are, respectively, the complementary coupling fu;ctional i
(4.95) and the complementary»dqality (4239 . ;
Proof. By A:A%) o (5.97), (5.650: (48] —and (4.95), we have (5.98). ;

: A i"

Hence, » =47 (where q(A):A), and thus the first statement follows from theo-

ereok 6 andld T Fipal s oy (5 288 (5.93) (applied te Kp, (4.305) and
(4.2, e obtain (5299
FProm theorems 5.6 -and 5.5 there Lollowo

T A

Gorellary a2, “The mappirq ,(A;w»,(A) is a comnlete o
}somorghism'of CL(EX,ﬁw) onto {CL)’ —CL( W,R ). and " for cach Aebil (2 e

-

250 we haye
ﬂl‘._ o i =N x /
Ma)T=L(y x)“c‘*%)“L((?A) Y=x2 (A7), : (5, 100)
A A ;
%
gXM)(m= inf g)=-inf g(a({x})) (geR", xex), (5.101)
W‘W 3
xeA iw 9)
*
f}KA)k(A) (x)=sup inf f(AK(fw})) (£RS, xeX). (5.102)
wed ({x})
Proof. We prove only (5.102). By (5.101) for g=fA(A} and (b.923), we
have ;
\ *® \
AWNBT i £20) (A x3))= swp 28 )=
weu(\x%)
= sup inf I(A {wi)) (feﬁk, x£X) -
weA ({x})
Using also corollary 5.2, one obtains }
Corellary 5.4. ziiﬁmawggnq A—»A(A) is a complete Boolean alaebra is0-
morphism ofD iﬁﬁﬂfis) onto (CL) "=CL (R RK), and for each 2 eD((Zx,Q),(ZH,N)
we have
=k = R ey L e e L)) = x (5103
X(a) T=x(8) T=LiG) =cly )—L(WA) y=EXMAT) : (5,103

A AX



S
Ay * g , it L S
g (%)== inf 5 gl)=~1inf g@\ A({x})) (geR",xé€X), (5.104)
XeX N AT ({w}) &
BYN BN e e = :
£ 4l A0 (%) =gup inf FIXNAT ({wh)) (feRX, xéX). (5.105)

welW \ A (4x1)

fined ([24], formula (17)) by

£%(w)==1inf £XNAT({w}) (2>, wew), (5. 106}

% XAW

and has observed that «=c(y) (in the sense of (1.37)), where y:VAé{O,*m

is defined by

v(x, w) :W;{X\AX({WE‘)(X) (X':EX, WEW) ¢ : 5007
also, he has-observed [24] that
-X e .
g% (x)=-1inf g (W\A ({x})) (geR", xeX). (5.108)

Note that, by (5.106), (5.99), (5.107) and (4.95), we have

a=N(8)=N(A), v=9=F ",

56 (5.108) is a part of (5.104).
Let us observe now that if AQD((ZX,D),(zw,E)), then for the family

2" defined by (4.22) we have, by (2.22) applied to Sd(h) (hfﬁx, deR) of

&
(4.24) (in E=(2X,9), i.e.; with WCH)(Sd(h)) Of - (4TI,

(521098

£ =f (EeBo), - {5 110

0 (a%a) "t o W)

where £ (respectively, £ )) denotes the greatest functional h:X—R

0 (a%a) 0 (1
such that Sd(h)=AXA(Sd(h)) for all deR (respectively, such that Sd(h)=
=£@%)(Sd(h)) for -2kl deR); majorized by °f; i [20], fQ(ﬂJ isw=ealled "the
Ml-quasi-convex hull" of f. :

o = <, ag £ e WS e
Now we can express LQ(AXA) as follows:

Theorem 5.7. For each AGD((ZX,Q),(2W,2)), we have

NN () * -
it =F Rez)s 5.111
0 (a%a) £ . (feR ) ( )
Proof. By [20], theorem 2.2, for any57;2x we have
o G i wie rlRG) H(EERT xeX) : (5.112)
xeX\M.

Henlee, by a5 1120 “(applied to M of (4.22)), (4.2) and (5305},

we obtain
= = i £ \,ﬁr‘]‘& }:
fQ(AxA)(x) fQ ﬂ)(x) sup inf F(XNA ({w})
weW S
xeX\AT ({w})
e s x .
N o
e (FeRS, xex). (5.2102)

Remark 5.9.:a) Alternatively, one can also- deduce theorem 5.7 from

[20], theorem 4.2, applied tO;VQZX ot (4. 22}

L ; e 3 B ' =X =W
5.8. M.Volle has considered the "conjugation" x=«(A):R"—R de-

N
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b) The eguality
e sl X
. A N o / o i o

fo(ﬁxA)(x): sup e R A (sl B8 (e R e X0
2 weWw : 0
xeX ™\ AT ({w}h) i

(which is part of (5.113)) has been also obtained by M.Volle ([241, theo-
™
1

vem T.1.5 and formula (18) ). who has been:unaware oF 200 =4 0J ¢ iin tact,

a number of other results of {24] can be also obtained as the particular i
case J=(4.22) of some results of [20]. |
‘ : ; X W !

Corollary 5.5. For each A &D((27,2),(2",2)) we have |

i

NAY N (a) ;,

£ %%~ =f M =f_ o (feR™) (5.114) ‘

Q(A™A) QW) o i

i

where i

X({W}HW:W} (5+11:5)

M ={X\ A

Proof. This follows from theorem 5.7 and formulae (5.98), (3.64) and §
(5.110), (4.44).

Remark 5.10. By {221, remark 2.3 e}, it is possible to modify the abo-
ve definition (4.63) of Av (and then to change %, of (4.67) accordingly),

for various purposes. Now, the above results suagest to replace (4:63), for

each $6§X><W, by %
QJG):{W’EWDHWX,W’)SQI (x€G)} « (Eiae)y (5.116) é
correspondingly, for each AGD((2X,2),(2W,2)), thé unigue coupling functio~i
nal W'ﬂc% of type {O,wmﬁ~, satisfying A:f;,, will be' : ~§
¢4 <,X'W):'7CW\A<{X}-) (w)z-X'X.\ % (g (x)  (%e€X,weW), (5.117)
;
whence, by (4.95) (Seeralson=(5-309%) ), : §
¢= =Py - (5,118} )
Indeed, let us mention some advantages of 1; i %
a) If X is a locally convex space and W:XX, and if we define %
@1(x,@)zé%x)—2 (xeX, @cxﬁ), (519 ?

then, for any set G &X,
Fo (G)={07ex®| 4" (x)¢1 (xeG)}=G°, , (5.120) |

1
the usual polar of G.

3

; L= X : :
L) Ifodsia set andiWe B and-ifiwecefin

D

Pyt X X (WX R)—>R by

¢ (5, Lw,d) ) ==Y

TE pida i3 ) 5ol
Aéyexiw(y)>d}(x) (xeX, weW,3€R]) ,; (5.:121)

then by, (54116

.Eﬁ(G):%W"d')éw><Rf"%fYéXlw’(Y)>d’?."

={(w’,d")eW XRlsup w’'(G)gd’'}=4(G) (6= X),
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where AﬁD((ZX,E),(Zw,Q)) is the duality defined by (4.27).

¢) "“The hull ioperator H¢:2X~»2X associated to a coupling functional”
#:XXW—R can now be defined (modifying [22] , formula (2.17)) by
H ,(G)z'%X/GX}Q"(X' wgd (w,d)eWXR,sup @(x,w)s d)}- (GeX) , : 5.122)

(;4
XeG
which generalizes (4.29) above.
d) By (5.98) and (5.118), we have
X
’

X(b)=c (F;)=c (¢}) (aeD((2 o (5.123)

A
so A will now be replaced by X of corollary 5.2, which has the advantage
~that (5.111) dnd (5.110) contain explicitlyienly A (while (5.114) contains
simultaneously A and A). l

e) By (5.99) and (5.116), we have

XU;) i o ;
(E (w)=-inf f(x)=-inf f(x) (feR" ,weW),~—» (5.124)
xXEX xXeX ; ;
weW\f@({x}) @(x,w)>~-1

which also contains (as does A(Aw), too), as a particular case, the usual
Greenberg-Pierskalla quasi-conjugate [10] defined, for a locally convex

space X, by

((¢,d))=-inf £ (x) E(feﬁx, (¢,d)eW=x" XR) ; i (51259
$(x)2d
indeed, if we define ?35{0,—09}X><W v
e o (@ dn == sy)zar (xex, (§,d)ew), - e (5.126)

then,_py (5124 SEon Q=?3 andf (52508
o ((g,a))=£°((¢,4d)) (£eRY, (9,d)eW). (5.127)

Theorem 5.8. a) The mapplnql" @»Ar is a lattice homomorphism and a

sl onto D ( (2 Y,Q),(ZW,_)), with kernel

complete sup- homomorphism of R

Rer [ = e X7 | o(x,we-1 ((x,w)eXXW}. - (5.128)
'b) We have

=&, e (5.129) i

XU is a complete Boolean algebra isomorphism onto

and hence ﬂ =I ‘(
D. 10,"00}
Proof. The proof of a) is similar to that of thecrem 4.3 on A, ,muta-

tis mutandis. : ~

lop)e ItiE yE\O —a:’A><W, then, by (5.116) and (4.94), we have - ¢
L(G)={w’eW| ¢(x ,w7)=-00 (x£G)}=E_(G) Cen,

seti(5:1129) Fhellids® : _Hence, by corollarv 4.2 b), we obtain the
Slast statement: :

Remark 5.12. In the general case (i.e., with ¢ not necessarily of
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type {Q,nmﬁ~), by (5.116) and (4.94) we have f;#ﬁ;; ?owever,{é=§}would nct

: Reks
be a good replacement for A% of (@03 ),; sinee it isVof "closed set” type and

it does not contain the usual polar set (5.120) of G as a particular case.

§6. Appendix: Relations between dualities.A:E-—F and coupling

functionals ¢:¥XT-R
We shall now show, briefly, a possible way of extending some of'the
preceding results to the general case.

Definition 6.1. Let E, F be two complete lattices, with families of

infimal generators YCE, T<F, let ¢:YXT—R be a coupling functional and

assume that the mapping Ag:YwaF defined by

Az(y)Zinf {teT | ¢y, t)>-1} ey (6.1)
is antitene. If there exists a duality A@:E—?F such that AQ]Y=A3 Slen
i that
| A?(y)=inf {teT| ¢ly,t)z-1} (yey), (6.2)

then, by theorem 1.2, it is (unique and) given by
AQ(X):sup {inf {téTl@(y,t);—l}lyéY, x<y} (xeﬁy,lw~ww i (6.3)

and we shall call it the duality associated to the coupling functional ¢ .
Alsc, instead

‘of writing "AW exists ", .we shall simply write: A¢€D.
Remark 6.1. a) If E=(2X,9),Y=the family of all singletons {x} (xeX)

and F 1s any complete 1attice, with a family of infimal generators TC¢ F,

then we have

A €D ey (6.4)

7

A, (G)=sup A% ({x1}) (@eﬁ
? XEG i { }

M (6.5)

indeed, this follows from corollary 1.4 applied to AO=A: of (601 ) T

the particular case when E=(2X;2), F=(2W,2) (where X and W are two sets)
'and Yc E, T&F are the family of all singletons in X and W respectively,
definition 6.1 yields the duality A of (4639, :

b): If Ezﬁx, Pl (where X and W are two sets) and

Y:{X{X}id‘xéx,deR}, T:fl{w}%e]wéw, e€eR} (6.6)
(see example 1.6 b)), and if ¢:YX T-»R satisfies
; an e +d+ x€X, weW;d,e€R), -
(?(X '{Xj’ +d ,X {VI} +€) kP(X{X} ’X{W} ) e ( 1 (6 7)
then (6.1) bgcomes

A
a7 i =1 7) 4 = @ 1 H -]1Y=
+d) (w)=inf {X{w,}(m)+elw cW,eER,{%XdX}Fd,Xiw}+e)z l}

(X{x}

=inf {eeR|¢( )+d+ly-el= -

Xix} A {w}

==X sy A gy ) -d-1 (xeX, weW, deR), (6.8)



SO A :Y—F is antitome, since g x11+d‘qlx 1#d2 implies x7=x, and d;<d,.

Tf we identify Y with X)XR as in remark 1. 4 b)), and, similarly, T with
WoER - Ehien, ‘bye (Gl s van extension of HK>&W XX W-+R (here we have
also identified (X X{0%) X (Wx{0}) with XX W). Conversely, given' any cou-
pling functional ~+:XXW—R, one can define an extension ¢: (XX R) X (WXR)-»

-»R of v,by
w((x,d), (w,e))=y(x,w)+d+te (xeX,weW; d,e€R); (6.9)

then, with the above identifications,y satisfies (6.7). Furthermore, if
we identify R with the family %O of all epigraphic subsets of XXR, as in
remark 1.4 b), then}{ }+d {(x,d)} is identified with Epi (quy;d):{(x'd’”
dle R, ddils, and vHof (6.16) is not only a family of infimal generators
of ¢, but also of (e
¢) Similarly to remark 5.10, one can replace the mappings Ag,A? of

definition 6.1 by the mappings ﬁ?:Y—aF, Q:E—&F defined by

I (y)=inf {teT|ely, t)< -1} (yeY), (6.10)
F(x) =sup {1nf {teT|¢ly, t)< l}lyéY,xsy} (xeE). " (6. 11)

Then, for B, &, Yrand Tras at the end of a) above, we obtain the dua-
ity {;:E»¢F of (5.116). On the other hand, for E, F, Y and T as in b) abo-
ve, and for ¢:YXT —R satisfying ‘ .

qKX{x}+d'X{w}+e)_q(X{x}’K{w})—d_e (x€X,weW;d,e€R), (612)

(6.10) becomes (using (1.38) and (b))
2]

 Fe
(w{ } ¢ (w)=inf {eeR|¥ K{Xl’xiw‘ ~d+lse}=

= = c( ) e s
“V(X{x}’ﬂ{w})_d+l ij (w)+1 “xéX,weW,deR),ﬂ (6171 3)
X

- 8o ﬂg can be extended to the duality [;:R —~R" given by

le

P s sy - (£eRY). (6.14)

Note also that if we replace <-1 by <0 in (6.10) and (611, thienm Ehe
term +1 in (6.13) and (6.14) disappears, SO f;=c(9); thus, one obtains L
again a result of M.Volle ([24], theorem T2 o4 :

Definition 6.2. Let E be a complete lattice and Y a family of infimal ; i

generators of E. For any x¢€E, the generalized indicator functional of x is

the funectional 2 Y~m10 +co} defined by
0 I Xy
ZX(Y)ZX{y'ey]xsy’L(X) ﬂ+o if xey (615

Remark 6.2. a) If E and Y are as in remark 1.4 a), then ZG:XG (GeX).
b)) If B amcitErarctas intvemark el 4 b).,; then, with the identifications
s = S
of that remark,‘;f—XEpi-f (EeRG).

Now we can generalize i of (4.67) as follows:

o



?heorem 6:2; Tiet E, F be two complete lattices, with families o

i
fimal generators Y CE, T ¢ . Then, for any duality A:E-—>F rthere exists a

Unlgue @ | > = —
Yeoupling functional %:%X:Y}(T~4R of type {0,-},8uch that all sets

mn

:{tf;.'l‘!iag)(y,t’);—l}r (yeY) » (6.16)

M
Y P

are uppexr conical subsets of-Toandthat A=A? , namely,
(O T D A ) - 2 - C & g SRR, G
Pzl =sg oy L) Mt’eT]A(y)gt'};(t) (yeY, teT). B (6.17)

Proof. By (6.16) and (6.17), we have

» iy r £ " _..( 7z y §
i - t,nA"‘at”WA (y,b)z—l}—itch“A(y)st} (yey), (6.18)
and thus each M. is an upper conical subset of T (see definition 1.1).
I ,A 2
Furthermore, by (6.1), (6.18) and (1.19),
A(:,) (y)=inf {teT|A(y)st)=A(y) (yeY),
. L

whence, by defimnition 6.1, we obtain A, =A.
A

Assume, now that We@,—mo}y><T satisfies A=Aq{J and that all sets (6.16)
are upper conical subsets of Ty Then:, by A=A@ , (6.2) and (6.16), we have

; o R - 7 ; ’ e | ¢
A(y)~A(P(y)—lnf {t eT|#ly,t Jo=li=ant My,<r’ g__(yey) o

whence, by our assumption on tﬁe sets (6.16) and by proposition 2 we

obtain

fteT| ¢ly, t)2-1% =lew={te’l‘| ing M ’(Pst}:{teTlA (y)sth.
€

Hence, by ¢ p,—co§Y><T, it follows that ¢=¢, o (6170

Remark 6.3. 15T F=(2W,2) and T is the family of all singletons {w},
where w¢W, then every set MET is an upper conical subset of T
The further extension of the preceding results, along these lines,

remains still open.
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