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GENERALIZED ADJUNCTION AND APPLICATIONS

by
;Pamiﬁ‘ TONESCU

Introduction. The linear system |K+C| "adjoint” to a
curve C aﬁ 8 projective surface was studied by the classical
italian geometers. The adjoint system to a hyperplane sectior
H of a smooth projéative gurface was investigated sygtematicz
ly, in modern terms, by Sommese, see E??] end Van de Ven, see¢
|26). The map associated to the linear system | K+(r=-1)H|, whe
re H is a hyperplane section of a smooth variety of arbitrary
dimension r was used to clessify submenifelds &f%fn with “ame
invariants" (e.g. degree, sectional genus, etc), see K}dﬂ, On
the other hand, Sommese, see'[zj],{?é],[?ﬁl, studied adjoint
systens to a emooth ample divisor H on a smooth threefold X
and obtained, as applications, many inﬁeresting results about
the pair (X,H). As noticed independently by several authors .
(see e.g.[17),{], 11 ) the sppearance of Mori's deep contril

- tion [ééa(ae@ alao {?1}) put the subject of adjunction in a
new perspective. Accordingly, the present paper - which relie
heavily on Mori®s results and on the contraction theorem due
Kewamata-Shokurav (see {14)) - contains a systematical study’
of various adjoint systems to an ample (possibly non~effectiv
divisor on a manifold of arbitrary dimension. More precisely,
the main result (which is contained in section 1) gives the

precise description of polerized pairs (X,H), where X is a con

'plex projective manifolﬁ;@f dimension r and H an ample diviso
on it (not necessarily @ffective),sueh‘that Ky#+iH is not semi

. ample (respectively ample) for 1<i=p+l, r,r-1, r-2 (respectiy
ly i=pr+l,r,r-1). This theorem was first proved, for surfaces,

by Lanteri-Palleschi, see [17], using Mori's results, and by



Beltrametti~Palleschl, See |4 ] and LantEeLL—raliSosns wew | ==
f£6r threefolds, using both Mori’s results and the Kawamata-Sho-
kurov contraction theorem. Our approach does not make use cif t ke
precise description of varieties whose canonical bundles are not
numerically effective, which is available only for dimensions £ 3 .
Inspired by {}9}, Theorem 4, we prove in section 0 a useful estima-
tion for the size of the locus ofbcufves belonging to an extremal
ray (Theorem 0.4). This is used at a critical step in the proof of
the main result. The following applications of the main theorem are
given in Section 2. First we recover and sometimes slightly improve
the main results in Sommese's paper [247) f(or {25)); we also give an
alternative proof of a theoreﬁ due to L.Bidescu, see (IX;{?S,(}],
classifying smooth projective threefolds which support a geometri-
cally ruled surface as an ample divisor; more generally, we describe
ail (smooth, projective) threefolds containing a smooth surface which
15 hot of general type as an ample divisor. Finally, using the idea
of [43, we classify the polarized pairs (X,H) of arbitrary dimension
r whose sectional genus is "small" with ‘respect tosthe "degree"
M) (see also[id},[}i}, where we considered the case when H is a
very ample divisor). |

We would like to thank M.Beltrametti for pqinting out a gap
in an erlier version.of‘this paper. Working independehtly, M.
Beltrametti and M.Palleschi also obtained partial results of the
same kind. |

When writing down the present version of this paper, we recei-
ved a note by T.Fujita entitled "Generalized adjunction ma?pings"
announcing, without proofs, results similar to burs. However, some
of the exceptional varieties are nies ing inthistlistasle also recei-
ved a manuscript by A.J.Sommese entitled "On the adjunction theore-
_tic structure of projective varieties", dealing with similar questions
about varieties admiting certain kind of singularities, but working

with spanned ample line bundles. His techniques are gquite different



(101 3) Corollary Let X be o manlfoldvof dimension 1 and let R be an

extremal ray. Then there exists a normal pro1ective variety Y and a

gggiective»mogﬁdsm f:oontR:Xm»vY wlth oonnectod fibres quch that for

RS e

any integral curve C.on %X, dimsf(C)=0 is equivalent to [C)eR.
The next theorem, which seems to be interesting in itself, will
play a key roledin the proof of the main result. Its proof was largely

inspired by Mori’s proof of Theorem 4 in [19\.

(0.4) Theorem. Let X be a moqifoldAofrdimopsion i defined over any

algebralcally closed fleld and let R boﬂon‘ogtremal rayrof ey Dooote

by k tgevgggimenslon in X of the locus ‘Of points of curves belogginq

to R. Put: b=min&f(Kx.C)\EC3€R, C a rational curve}.

Then we hames 2k r+1-bx

proof. Let C be a rational curve in R such that b=—(KX.CO) and
et f lew?c be the normalization morphism. Let Hom(L ,X) denote the»;ﬂ
scheme representing the functor of morphisms from @1 to X and lot U E
be an irreducible component of maximal dlmen51on contalnlng Lfl gis
ven the reduced structure. The universal family over Hom(P L) 1nduces:
the commutative diagram:

Zic iPlxX 2 s, X

U

where m and n are the projections anid i isea closd immersion. Consi-

der the closed (reduced) subscheme 7il-of Ml given by Lem (4 (G2 s B
generic flatness we get an open nonemptv subqet U of U such that the
restriction of 2’ tO XXUO‘ls flat over UO. Thus, by the universal pro-y
perty of the Hilbert scheme of X, we get a morphism d:UO~w>Hile.

L R aat hy



§O. In this section we fix our terminology and notagion, recal
some results needed in the sequel and.prove a useful estimation for
the dimension of the locus of curves belonging to an extremal ray.

We shall work over the field of complex numbers unless other-

wise specified. A smooth, connected algebraic variety is called sim-

ply a manifold. All manifolds are assumed to be prgjective, unless

otherwise stated. A polaxizedrpgir, denoted (X,H), means a (projecti

ve) manifold X together with an ample diviseor: I nokt niecessarily effic

tive. A divisor D on X is sdid to be nef if (D\C)P0 for any cEfecuify

curve C. A nef divisor D is “Dilgitinf (Dl)>0, r=dim X. A divisor D is

said semi-ample if the linearsystem 1mD\ is base-points free, for

my70. KX will denote a canonical divisor of the manifold X. We write

1 "

~ wespectively: "2 ) for ‘the liﬁeaf (respectively numerical)
equivalence of divisors. If Z is a‘closed éubécheme of X and B dsia
divisor (class) on X we denote by Di, its restriction to Z. A ratiler
curve is an irreducible reduced curve whose normalization is_Pl.
We refer the reader to [26} for definitions and propertiées of

extremal rays, extremal rational eurves ,etic. This paper relieceonsith

following two fundamental results:

(B0l Mori’s'gopgvThgorgm (see [26} Theorem 1.:5). Let X be a manifol

Then the closed cone of effective curves, denoted NE(X), is the smal

%est‘closedhconvexmcqggAgoptq%Eigghthe set ﬁﬁjX)={QEﬁE(X)‘(C.KX)%O}

and @ll the extremal rayvs. For any open convex cone U contaihing

ﬁE(X)—{OE there are only finitely manyrggt;gmalrrayg that do not die

in U U{QS. Every extremal ray is spanned by an extremal rational cut

(0.2) Kawamata-Shokurov Contracﬁ}pg”Tthrem (seei}A} Theorem 2,6).

e

Let X be a manifold @nd D a_pgﬁmdivisop G0 uitacs Assume that aD~KK is

nef and big for some apl, Then D is semi-ample.

Using |21} Propositien 3.1, ‘the mext coroliary follows frem (0520,



taking the common image of the maps associated to points in afl(t).
Denote by T the clesure of '(U ) and let C be any curve correspondin
to some closed point in T, We claim:

(1) Cgco and, moreover, C is irreducible, generically reduced.

Indeed, to prove the first part, we may assume that C correspo
tora pointlin @(UO) associated to some map,sayAg:P;~~»X, Then, for
any Le¢Pic (X) we get: -
(CO,L):deg fozdeg gXer(C.L), where d is the degree of g. This show
that Cé&dc. But then [C}eR sinte R is an extremal vay. Ac € is o ©at
nal curve, the minimality of CO gives d=1., On the other hand, it is
not difficult to see that any irreducible component of a curve C cor
ponding to a closed point in T is ratienal. Sincevcdgc, C must be ir
reducible and generically reduced again by minimality of Co’

Returning now to the map %, we remark that the above argument

=1

shows that for any closed point téd(Uo),fx (t) ‘identifies to a part

of Aut(Pl), Therefore we get:
(2) dim-Trdim UO~3
By l}9},'Proposition 3 and Riemann-Roch theorem, we get:

Hom (P, X)) % (£°T,) =b+r (where T, is the tangent bund

(£]

(3). dim Uozdim X
of X),

Consider now the commutative diagram:
ol
\\ l
o }%
T

induced by base-change from the universal family over Hilbx, p and q
being the projections and j a closed immersion. By (2) and (3) we ha-

ves



(4) dim YybtI—<s

By (1) it follows that p(Y) is contained in the locus Of points of
curves belonging to R. Therefore we get:

(5) dim pilY)Lr=k.

<

i

=l
If we put Y _=p Cllaras Txr—w(YX)ﬁiYX , we get by (4) and (5);

6) «dim TX=dim Y%Zb+k~2, for any xe¢p(Y). We get from (6

. =1 :

dim w (TX)Zb+k~l.

Since we have a fortiori dim p (w“l(Tx))ér-k, we may apply once again

the same reasoning with wml(TX) replacing Y. Thus, if we let TX L
. 7

=w (Y ) w(Y,,) for xep (Y), x’ep(w—l(TX)), we get:

(7) dim T X{bb~r+2k*l.

14

- Next we claim:
(8) aim T, 40, for xep(Y), e T ) =
i : =

The conclusion of the theorem follows from (7) ands (8%

Assume that (8) would be false. Then we may find a complete curve D
contained in T, such that the corresponding‘curves in X all pass
through the points x,x'. Moreover, we may choosé x,x’' to be smooth dis-
tinct pointsof some curve of the.family parametrized by D. Let'ﬁ be the
normalization of D. Let S be the reduced scheme structure of the surfa-
ce got by base-change over D from the map w:Y—>T and let S be the
Sernalizatien of 5. By (1) &ll the fibres of the map W:Sv~;5 deduced

from w are irreducible rational curves. It follows cacsily that the fca=



S o S N S S S S DU o DR e - ST B O e I B e e (A o e 1LY )

with the normalization morphism. Therefore 7 is a Wl-bundle amd . in
particular, % is smooth. But we have at least‘two disjoint sections
BB for o which are mapped to the points x and x’ respectively. W
‘get:

2

(E2)<O, (BE 00 B B =0 and (E—E’)Z:O

which is absurd. This contradiction agives (8) and thereby completes
the proof of the theorem.

We also need the following statement, which follows from the explici:
description of extremal rays in case of threefolds, see [203'or (21}

Theorem 2.3 and Theorem 2.5.

B U ———-

(0.5} Corollary. IE C is an _extremal rat}ona};pgryequma (smooth,

prpjectivg) threefold X such that (KX.C)=—4, it Follows that X is o

Fano t@rgefgld‘with Piieie) o &,

We shall also use the following simple lemma.

(@65 Lemma. Let (X,H) be a Polgrizgdmga;r Assume that KX+1H 0 for

some integer i}0. Then K +iH~0.

Proof. We have % (& (x,+iH))=x(8,), see(45], ch.11, §2, Theorem.

XX X

The hypothesis implies ‘that -K is ample Therefore x(@/( +1H)ﬁ\ {éi

X
=iH) ) and (O ﬁ’ O =1 by Kodalra vanishing. Thus we get L2 (é§(KX+

+iH) )=1 which gives KX+iH~O.
The following useful characterizations of projective spaces and hyper

quadrics: will be needed several times.

Theorem (see [16] and [}]). Let X be an integral projective scheme of

dimension r and H an ample divisor on it.

(0.7) If (5)=1 and h® (0 ()3 r+1, it follows x-p%, HE|O(L)l ;

(0.8) 1f (uY)=2 and hO(C&(H))Zr+2, it,fpllowé X ds isemorphic to a

NP | e




section (we shall write Hé\@?lﬂ 3

Agsume moreover that X is a manifold.

(0. 9% Df Ky + {r+lyH~0, it follows %P, melO)

(0.10): If K * rH~0, it follows xzt, mell(l.

(0.11) Let (X,H) be a polaxlzed pair with dim X=r. An effec-

tive divisor EcX is called exceptional if ol il l @‘(Hxﬁé% =

~(F(1) and ( (B%s =G l) Note that the set of exceptional
divisors contained in X is finite, and, iﬁ ry3, any two such
exceptional divisors are disjoint. TF W%, H) ds A polarized
pair.and E an exceptional divisor on X, considef the morphism
G:X—>X’ which contracts ¥ ttoca qmooth point) and the unique
divisor H! on the manifold X' such that 9’(H)”G (8',(H'))QQ
(@Qg ~E)). By L?] Lemma 5.7, it follows that H’ is ample on
X?, Continuing in this way, we find a new poldrnzed pair
(xf,H?) such thats u:X—>X’ is the blowing—up of n distinct
points Pl,...pPﬁax'; uml(Pi)mEi is an exceptional divisor for
felein @rx(mz’u%(@, (@ ))® T (~E -, .. By ¢ (X',H!) does
not contain exceptional divisors. Such a pair (X',H’) will be
called a reduction of o0, H), see,[?@). In case ry3, the con=
tfaction u is uniquely determined by (X H). This is no longer
true if r=2, but all we shall neeéd is the existence of a reduc=
tion.

Let (X ,H) be & polarized pair with dim X=r o
(X,H) 1s called a ﬁSEQii if there is a morphism f:X—>Y onto
some manifold Y with dim Y=s3>0, which 4s alPt ~ - bundie; such
that H induces 611) on each fibre.

(X,H) is called a hyperquadric fibration if there is a mor-

R S L R e e S ?



phiem £:X—>C onto some smooth curve C such that'@&ﬁh (eloaa
fibre of f is iscomorphie to & hyperquadric and H induces
G(1) on it.

As we shall see in Sectiaﬁ 1g any fibre of £ is reduced and,
if ©35, it is also irreducible.

We shall introduce now several notations for the isomorphism
classes of polarized pairs which will appear frequently in

what follows.
(0.12) (X,H)eA will mean Xof%, He|G(D);

(0.13) (X,1)eDH will mean X>Q°, Helb (1)l or (X,H) is a scroll

over a curve;
: o - N :
(0.12) (X,H) €D will mean (X,H)¢Bor 2L, BelB(2) ;

(0e15) (Xgﬁ)éi%i will mean that either:

1) Ey+(r-1)H~0 (dim X=r); these are called Del Pezzo mani-
*
folds, see [Sjg and their classification is completely known

see \:‘}. 2] and [§) §,
2) (XQH)‘ia a hyperquadric fibfation;
3} (X,H) is a scroll over a surface,
(0.16) (X,H)égﬁ will mean that eithers
xP4, melC2) or X023, HlOI, or x2Q%, BB , or

: : 2 : . 2
¥ ie all “=bundle over a smooth curve and H 1ndueesé?(2) on

each fibre.



o LU o

Finally, we shall need the following simple facte

(0.17) lenma. Let (X,H) be a polarized pair with reduction

(x*,H')o 2£ (X° A YeRuBuE, then (X, HEAUB U B o

ez

(x*,H1°) is a geroll, or T3

7 3 x Ly - i 1 r P it
Proof. If xup T, I (3)for X0, v i@ (), or

and (¢',BH') ds a8 hyperquadrie fi=

bration, it follows easily that we must have x=x*, If (X' HY)
& 9

i& a Del Pezzo manifold, the same holds for (¥, Hke IT (X' ,H')

is a two-dimensional hyp%rqaédric
ﬂgé gre|d(2) , (X,H) hes to be &

for (%,H)s Finally, if TP

L. 0 1 s 4
Serall over P (of degrcs 5

fibration, the same holde

), unless 0 A

)



§1l., This section is devoted to the statement and proo:
of the main result. Using the definitions and notations give:

in (0.11)~(0.16), our main theorem is the following:

Theorems. Let (X,H) be a polarized pair, with dim X=r}>

Then we haveru

(1.1) Koo + (r+1)}H is semi-~-ample;
“%,& b

B

(1.2) If (x,B)¢ 8, Kyt (r+1)H is smple;

(13) 1t

H

(X,H)}’éd@ﬁ KZ{%‘H is semi-ample;

(L.4) 1T (X,H)q/(f?ufg:)lix—%rﬂ ig ample;

Assume rp2; .

oo

(1.5) If (X,HEAUR | Ko+ (r-1)H is semi-ample;

ey
(146) IT (XﬁHkﬁ@u551ﬁéﬁ there is a reduction (X*',H*} such th

K'+(r-1)H* is ample (where K‘m:§xs§§

Assume furthermore 133;

(1.7) ;g_(xgﬁkéﬁgUQWJgg there is a Teduction (X',H') such th

either (X’,H’)eég or K'+(r-2)H' is semi-ample,

Remarks 1°.Clear1y (1,1) and (1.2) follow from (1.3);
we stated them separately since we shall prove them in this
order, and moreover, this way the result looks more symmetri
cal.

2. If |H] is moreover assumed to be base-points free,

(1.2) was proved(éven if not stated) by L.Ein in [5].

%. Using (0.2), we may restate (1.3) as follows: if

PR i



e e e e e ey e (e
4. The above results were Pirst proved by Lanteri-
Palleschi, see [17), in case of surfaces, and by Beltrametti-
'Pallesahiﬁ sae E41r end Lanteri~Palleschi, see [15], in case
of threefolds,
5s In case H is very ample (1.5) can b@ made more pre=

; ; A
cises if (X9H§¢Jﬂh® | Kyt (21 Hl is b&S@Mﬁeﬁntg free (see L?Q}a

ﬁ.»

ro

Proposition 1.5 , X?F) Theorem II for r=2, and {10] Theorem
l.4 for ry3). Is it true that, with the hypotheses.of (1.7)
and assuming moreover H to be very ample, | K*+(r~2)H*| is base-

points free if (x',H')¢§a?

The proof of the Theorem is based on a lemma which will be
stated belowe. ‘

Let (X,H) be a polarized peir with dim X=r)l, let i}1 be
an integer and assume that Kx+iﬁia semi-ample. Therefore,if
m? 0, the mérphi@m.Wixz@\m(xx+iﬁ}\:X““9ﬁ?'hés connected fibres
and maps £ onto some normel veriety ¥. Keeping these assumptions

and notations we have the following:’

Lemma a) One has either dim Y=r, or dim Y{r+l-i;

b) Assume that dim Y=r and imel7le'££fPi is not

8 finite morphism, then i=r-l and X containg en exceptional di-

visortsed0.1%));

¢) Assume that dim ¥<r;

= depd o (X H)evE
- if i=r , (X,H)ED;
£ i=r-1, (£,0EG.,

P

s

Lo

Assuming for the moment this lemma we shall prove the Theorem.

Proof of the Theorem

(1,1} If V is sn effective curve on X. such that (V.KX)?Q



it follows (KX¢{r+l}ﬁeV}>ﬁ by ampleness of H. Aasqme that
KX+(r*1)H is n&t nef. By (0.1) we may find an extremalnra%iox
curve C such that (Ky+(r+1)H.C)<0. But (H.C)}y1 by ampleness
of H and (KXQC}zmﬁwl Sincelc‘is:an extremal rational curve.
We reached a cmntr&diction3 which shows that Ky+(r+1)H is nef

By (OQE)KK+(r+1)H is semi-ample.

(1.2) Using (1.1) we mey apply the lemma with fertl,

Since (XsﬁhﬁdégiPr+1 is generically finite by ¢}, hence it i

' finite, by b). Therefore Ky+(r+1)H is ample.

(1.3) By (0.2) it is enough to prove that KX%fH is nef
Assaming'ﬁh@ contrary end using (0.1} as above, we may find e
extremal rational curve C such that:

1) (Kx%rﬁacﬁiés
If we let a=:(H.C), b=:~(Ky.C), we have a)l, b¢r+l; by (1.2)
we‘gat: |

(2) (Ky+(r+1)H.C)70.

Comparing (1) end (2) it folio@s:

(3) racb<(r+l)a. '
Thus we must have &a32 and we get:

2r{ardhsrtl,

which is impossible for rvl.

(1.4) This is,as in the proof of (1,2))3 consequence ¢

(1.%) end assertions b) and ¢) of the Lemma.

(1.5) Assume, as in the proof of (1.3), that (X,H}éU%U
and Ky+(r~1)H is not nef, We shall prove that X:£2, melC(2)l.

Using (0.1) we may find an extremal rational curve C such the

if we let a=(H.C), b==(Ky.C), it follows as above



oo "

Theraefore a2 and we get:
4
2 (Pmlﬁ < (W‘”‘E § a<b(r’§'
This implies r=2, a=2, b=%. Now, using the expliecit

description of axhy@!al rational curves in case of surface
: 2

*'-’$ : £3 2 4 ~ "}
gee Laﬁ]ﬂ Theorem 2.1, it follows X=i . Alfarg&ttvviga conaider

the divisopr Hlﬁ;K
& 4 2 7 p\/ “ t".‘
=0, it follows by (1.2 LuQ}?g HEQK)il}ég 80 Hé]@tg}}@

{1.6)} The procf is similar to that of (1.4}, using

(1.5), warts . b) end-c) of th@ Lemma and (0.17).

(1.7) Assume that mquv&er%klaﬁﬁ consider the reduce
tion ("‘g H'). Then (X! Hv>ﬁ@u%u%; see (0.17}. Suppose that
E'+(r-2)2' is not n@f; Using (0.1) we find an extremal rat;en
curve C such that:

(4) (K*+(r-2)H".C)<0, ‘

If we let a=(H'.C), b=-(K*.C), 80 that ayl, ber+l,it
follows by (1.6): '

(5) (K*4(r-1¥H'.C)>0,

Therefore, waing (4) end (5}, we gets

(6) (r=2)ad<(r-l)a.

This gives a2 and:

(7) 2(r-2)(r-2)agber+1.

Thus, one @f'th@ following holds, by (6) and (7)s

i) i‘m‘gp agrf’g bﬂ:fi;
di)ir=3, a=2, b=3;
iii) v=4, 82, b=5,

In case i), it follows by (0.5) that Pic@)«4i, If

we consider the divisor Hy=: -Kf - H', we hava(ﬁl.C)=l,

so Hy is ample since Pia(E 127%, We h&veTCK°%4H?¢G}ﬁO, there-
/ ‘ 7 v 2 7 > 1 e

fore by (1.2) , x+D7, Hy ¢1€(2)], hence H'elC(%)] .

If we are in case ii), we let H, =:K'+2H', By (1.6} Hy

+2H. Hy ls ample, by (1.4). Sinee {KK+3H1EC)$

)

BN A e S

SR Lt PSSt e
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1s ample and we have (K'+3H,.C}=0, so {X’,Hlkﬂ£¢3by (1.4).
Clearly we can’t have Xﬁﬂase H1&3611)5. We are left with two
possibilities: either X%¥Q3g Hlﬁlﬁﬂl}}, SO H‘&I@%2)}, or- (X! 1

DD :
ft -bundle and H’ induces

is a scroll over a curve, so X’ is a
0(2) on each fibre. Finally, assume that we are in case iii).
Then Hlm:KF+3H“ is ample by (1.6). Since (K’+SH1.C):O, i€ fol=
lows by (1.2) that Xﬁﬁfép Hrélaﬁl)l@ hence H’¢|0(2)) .

Thus we proved that either (X’,H’)&@.or K'+(r=2)H'
is méf; hence semi-~ample by (0.2). The proof of the Theorem is

‘complete medulo the key lemma above.

Proof of the Lemma

a) Assume that dim Y¥{r and denote by F a general
(hence smooth) fibre of %i’ We have:

m (K +iH) |0, hence:

(8) KF+1H]F’A~_O.
 Kodaira vanishing theorem gives:

(9) 13 (8, (R #nH| 1)) =0 for $70 and nyo.

Using (8) we get: =

(10) 8°(Q H i

‘ » (10) (Vp(RptnH |5))=0 if nfl-l.
Consider the polynomial P(n):%&ég(KF+nH\F)).
By (9) and (10) it follows that P(n)=0 for 1{ndi-1. We get:
dim P = deg P2i-1.

Since dim F=r-dim Y, it follows dim Y<r-i+l.
- B) If VeNE(X), (Ky+1iH.V)70 since we assumed K,+iH nef.
Moreover, (KX+iH.VY7O if (K4.V)70, by ampleness of H. As we sug
posed that Tyvis nok. finite, thefe is an effective curve V such
that (KX+iH.V)=O. Therefore, by (0.1), we may find an extremal
rational curve C such that (KX+iH.C)$O. If we let a=(H.C),
bz—(KX.C), we get:

aimbér+l,'

Since, by hypothesis i»r-1, one of the following holds:



1i1) ry3, a=1.

In case i) the conclusion follows easily from the explicit des-
cription of extremal rational curves in case of surfaces, see [?d)
Theorem 2.1; Case 1i) does not occur. Indeed, we would have b=4, so
PiC(X)xE by (6.5) and in this case wz would be finite. In what follows
we shall be concerned with the remaining case rpl, a=1, hence b=i. If
C’ is any effective curve belonging to R, we may write C’#«C for some
positive rational numberfks Since we have a=l, 1t follows that o is @
natural-numbef. Therefore we have b:min{m(KX*C’)iC’ an effective cur-—
Vo of R}. Denote by Ko X the locus of pointslof effective curves be-
lfonging to R, Since b¥£2r—l, it follows from (0,4) that we have
glm Epm=1 . As‘?i is generically finite, we must have E#X, hence
d}m E=r-1. It follows that E is an irreducible divisor, see E14] Pro-
position 5.5. Moreover, the argument in 52?}; Lemma 3.3)shows that we
have czzw(E.nyO. The morphism f=conty, (ege 0.3) i an isomorpiilsm oulb
Side E and s=:dim.f(E) =1, Our aim is tb prove that E-ie an esceptios
nal divisor, see (0.11). We first show that s=0, so E is contracted
by £ to a point. Suppose the morphism £ is given by the complete 1li-
near system [D}|. Denote by B the intersection of s generic members of
|[D|{ (so B=X if s=0). By Bertini’s theorem, B:is smooth and connected.
Let £’ denote the restriction of £ to E and let F' be a general fibre
of 7. Note that F is' 5 (reduced) contlected component of G=:B\E. We
wan£ firgt toprove that:

CLT) Hj(CE(MnH(G))=O for j¢dim G=r-s-~1 and njc,
o proves (115 consider the exact sequence:

O“ﬁcg(memon %”?5g<—nHiB)‘"?€£<-nﬁi ) =20,

B G

By Kodaira wvanishing we have:

(12) Hj(é%(~nH{B)=O for j¢dim B=r-s and n30.
On the other hand, we claim that the divisor G+nH§B on B is nef

and big if nye. indeed, by ampleness of Higr we have (G+nH{B.V)>O fok
any effective curve VCB which is not contaired in 6. If VTG,

it follows TVvie R since v 1S contracted lonr et Re~



calling that (B.C)s-c, we get (G+nH |3.C)70 if nje, so
(G+nH]g@V§ZO if [V}eR. Therefore (G+nH(B¢V)7G for any effecti
ve cufve VCB. Horeover, G%nH]B s alﬁo.big, since Hjp is émg
and G is effective. Hence we deduce, using Kewemata-Viehweg
vanishing, see {13] or [27]:
(15) H“(Qé(aawnﬂgg))ma for j<r~s and nj)c.
By (12), (23) end the exact sequence we get (11). Then, we
also have (since F is a reduced, connected component of G)s&
(14) 2(0(-nt|))=0 for jer-s-1 end nye.
On the other hand: .
(15) Ky~ (KytB)| pR(-b=c)H|p. .
Indeed, by the properties of f, any effective curve on
F belongs te R. Therefore, if'Dl'anﬁ D23 are two.divisors en X
such that (Diéﬂﬁ(DgoC} we get Dq| ¥ Dy|p and the relation (15
follows.
’ Using Serre duality and (15) we obtain:
(g (bl(wn&»?)}mHa(bl(um+nd{q))“O for n¢bte=1,
Consider now the polynomial P(n)n:x(@F(nﬁlF))a By (14)
end (16) it follows that: '
(17) P(-n)=0 for 04n<b+cw1g
This gives: ; =
peg-l=dim Fedeg Pyb=iyr-1, hence §=0 and b=i=r-1,
Therefore we have F=E and moreover:
(18) UG (~nli| ) )=0 for céndetb=l=ctdim E-1.
If we let dﬂ:(H]E)fml 0y the relation (18) gives:

(193 7C(OJ(mIE))m(lm-)fg(n**'»r,:)(11'1::#'('::*-1).,M(rr@'c%rrr'-~2).
Next we want to prove that %(@ﬁ)ml, :
Indeed, since KpX(-c-r+1}|p by (15), we get using [15)

Ch.,1I, §2, Theorem 1l:
(20) x(@b>mx&6}<xﬁ+(c+rw1)ﬁlE)).

u¢2767

But. bv duality and (14).-it follows:



Using (20) eand (21) we get:

(22),x(@§};h0(f% Kpt(etr-1)H|p)), 50-%(@é)30 or 1

since waQQ@fwl}HSE%QQ
By (19}“ﬁ(@ J#0. It follows thats
.

B Y x () =

(23) }{“E} 1.
Using this TCLQbIGn (19} gives d=c=1 and:

(24) ?Kt%{mﬂiﬁ))m?T%Q§Y?(R+EXE¢E).a»(n+rw1)¢ |
Now, by Serre duality, the relations (I4) and (24) give:

(25) he(@«( -e-(m-z_mpm)mf’“f’ CASIE LTI
2 (-1 T Ll (~ D 1)) = -1 T2 (1) pep,”

Sinece c¢=1, (15} gives K, ¥~-rH| so Ko+ (r+1)H| & H|pe
B iL lE

§’:ﬁ

Therefore, KE#(rél)H\E'iStampleg (KE%(rﬂl)HiE)rwlﬁ(ﬁlﬂ)rulz

md= l snd h (Cjﬁuﬁ+(r%1 Hig))=r by (25), It follows by (0.7)
that E-PT-L, H]E&\@TI}|a51na@ C is a line and@ (E.C)s=-c=-1, we
get G&(E)@E%ﬁ@(wl), 8o E ia\an exceptional divisor, as we wan-
‘ ted. -

¢) Assume that dim Y<r.

If i=r+l, ¥ is a point by the first assertion of the

Lemma sndl we get Ky+(r+1)HX0. By (0.6) and (0.9) we get (X,H)e -

Lt iﬁ;, dim Yél.by statement a) of the Lemma.

If ¥ is a point, using (0.6) and (0.0 as above we get
x=Q", HE[O(L)|. If ¥ is a (smooth) curve, §_ is flat, If ¥ de-
ﬁotes a smooth fibre of ¥, we get FET 1, HlFé{@TI)\ as above.
Now, if E is an arbitrary (closed) fibre, it follows (=1, m)=1
by flatness of Y,, In particular E is irreducible and generical-
ly reduced, hence reduced because it is Cohenwmécaulay@ By sg-
micontinuity we get: - .

0 (U (1) gy (o (1 ) ) =r

It follows ELT*Y | g &b, vy €0.7), s0 Y. is a

£3



geroll over a curve, Thus Gxgﬂ)ég% if i=n,
Assunme now ﬁh&trim?wia Again by the first part of the

Temma we get dim Y42, If Y 1s a point,using (Oeé) we get tha
X,H) is a Del Pezzo menifold, see (0.1°). We are left with
the cases when Y ig a curve or a surface. First of all, if r
and ¥ is a curve, (X,H) is easily seen to be a hyperqusdrie
fibration, with reduced, possibly reducible fibres. Assume t.
r)3. In order to have better control on the special fibres w
replaceﬁffml by a contraction of an extremsl ray. Indeed, us:
(0.1), we may find an extremal rational curve C with (Ky+

+{r-1)H.C)=0. We let again a=(H.C), bszKXQG} end we gete:
a(r-1)=bdirile

Therefore, either a=1l, or r=%, a=2, b=4. This last possibili:
is absurd since by (0.5) we would have Plc(x)“zﬂ, SQ‘PQ wou L
be constant, So we have &=1, b=r-l. Consider the extremal ra
R genersted by Ce If R is not nef, réasanimg exactly as in tl
proof of part b) of the Lemma, we may find an exceptional di
gor on X. Therefore, after replacing (X,H)} by its reductien
(X*,H'), we may assume that R is nef. Consider the morphism
fw.cgnﬁ“ For a gan@ral fibre F of £, we get as in the proof
of (15): ' :
’ KKy | ¥ (1wplﬁlro
 Using this and Kodaira venishing 1t follows as before:.
%(8f(KF%nH°{F})$@ for lénsr-2; hence diﬁ‘Fzr~2¢
Since K‘+(ru1)ﬂﬁﬁog dim F<r, or equivalently, dim £(X')70.
Assume that dim P=r-1, héna@ £(X') is a (smooth)curve, Then 1
s flat and a simplé argument shows that it has redgée&, irre
ducible fibres, see [21), p.185. It follows by (0.10 that we
have FxQ° "L, H’{F@iﬁfl)i for a emooth (closed) fibre ¥ of f

For an érbitrary fibre E we get(ﬂ'r"l;E}mz by flatness and
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& SRR & S

‘is also & hyperqueadric by (§@8§ and (X',H') is a hyperquadrie
fibration. Actually, since r?3, we must have X=X*, see the .
proof of (0,17).

'?iﬁally; assume that dim F=r-2 and denoteby § the image

of £, which is a normal surface., We claim that f is equidimen-

sional and S is smooth, Indeed, let 8¢S be a closed point and

®

denote by B the fibre over g. Consider the embedding of X' gi~
ven by |mi*| for m»0. Let § be the smooth surface got by in-
tersecting T g@nefal memnbars af | oH®| » We first prove that
dim B=r.2. Assume that dim B=p-l; since (E.R}=0, it follows,
as in the proof of (15): ' '

(26} Bjp % 0.
If we dencte by T the restriction of f‘tﬂ;é, we see that ¥
contracts the curve széf\ﬁ to a point, Therefara weAget_wsing

(26}

5 5 P
Q)’V“)* e T gt e @R ) e,

Thie contradiction shows that dim:ﬁzrmE, hence f is equidimen-
aional. Therefore, by construction of'§; we may assume that

SNEB* is zero-dimensional and reduc ed, where B' denctes E with
reduéeﬁ structure.On the othex hmné, for a general Tidre F, we

}L

- get using (0.9) Fﬁ@rmgg HY w“.(lfu Therefore, % nas degree
m:mgg since the number of peints in;S(\E' is m, 2(3* T*rmg)k
zm?"E and S is normal, it follows by a Wdilmknevn eriterion
th&t f is dtale over s. Therefore S isg smooth at s since § is
smoothe Now, since both S and X' are smooth and f is equidimen-
sional, it follows that f is flat. Theréf@re (H‘rwg.ﬁ)zl for
any fibre F. It follows that F is irreduecible ahd generically

reduced, hence reduced since it is Cohen-Macaulay. We mey now

deduce exactly as before, using semicontinuity and (0,7} that

< y

e



. S 5 5
ﬁﬁr”zﬁ ﬁ*‘FEH}(l}[a Thue the reduction (X',H'}s a scroll ow
& surface.But in this case, see (0.17), we must have X=X°.

This ends the proof of cur lemma.



82

€2, This section is devoted to a couple of applications

of the mein result. In the following four corollaries we consi-

der polarized pairs (X where X is a threefold end H is an
ffective mm@@%hgampl@ divisor on X.

.6

The first application is an improvement of a resull due

to Sommese, see [24],Theorem 2.4 , In case H is very ample it .

was proved in |11}, Theorem II.

Corellery 1. Consider s polarized pair (ﬁgﬁ) guch that -

H is a emooth, birationally ruled surface. Ihen (XQE}EU%Uﬂéu%g

o ff

or there is a reduction (X*,H'}eX,

Proof. By adjunction formala (Kg+H)|Kye Since H ie ru-
led; Ky, hence also Kﬁ&Hg is not nef., The result follows from
(1.7)

The second result is due to L.Bidescu, wﬁe proved it
by direct arguments, see |[I] Theorem %, [?]Tm@crem 1 and Theo=-
rem 3, and (31,

Corollary 2 (BHdescul). Let (X, H) be a polariged pair

Pt

such that H is a smooth ﬁﬁﬁu +pieally ruled surface. Then

(k H) is either a seroll over & curve, or, in case QIL}xﬁ71

there sre two further possibilitiess X~E3 HC(OKE)S and X”03

nel &)l .

Proof. By Corollary 1, (X, MEDLYE or there is a reduc-
tion (X'yﬁ’}égg. We shall prove that either (X@H)E5% or ye &
Hélézz)l@ Assume that (Xgﬁ)éqgo If (X,H) is a Del Pezzo three-
fold, it follows that H is a Del Pezzo surface. But, as it is
well-known, the Ogly geometrically ruled Del Pezzo surfaces are
EAXE& and the projective plane blown-up at a point, denoted Fl‘

Using the clessification of Del Pezzo threefolds, see.fii) or

)



8], it follows that the case HsF, is impossible, while for
P 5Pl wo get X@Eﬁg Hel0(2)| . Next we prove that (X,H) can r
be a hyperquadric  fibration. Iﬁ&e@ﬁg in this case, as in
Bidescu's original approsch, by Lefschetz's theorem on hyperry
ne sections we would have Piec(X)=Pic(H) via restriction. Ther
fore, if @ denotes a general fibre of the hyperquadric fibrat
ﬁiﬂ F=:QNH, we may find an invertible sheaf on X aay'@ g?)
such that (D] oFi=1, This leads to a contradiction, since we

heve:

lagn‘iﬂafb }d““{ﬁ Ei@-@,}v’ (D!Q&MEQ}Q

and the last integer has to be even.

Assume now thet (X,H)} is a scroll over a surface. We
shall first prove that this ia‘pmsaible only if H=TF,. Indeed
recall that s geometrically ruled surface is a minimal model
unless it is isomorphie ﬁé Fyo How, if £:1X—>8 is a morphism |
king X a scroll over the surface S, the restriction of f to H
birational,hence an isomorphism, unless HxF, end 32@2, when
it is the blowing-up of a point. As before, we muet have
Pl@(?}“?1c(h) PieG) AT HTFEQ But this is clearly absurd sin
X is alt-bundle over S. Assume now that £ex—? gives the
scroll structure and f restricted to H is the blowing-up of &
point. Denote by CcH the aycaptional divisor of the blewing»ng
In this case we shall see that X Py 2, Hél®{1 1), so X ie
scroll everﬁ? » too. If F denotes a fibre of the rulling of H,

aé(C} and @E(F) form a basis for Pic(H), see [ 9] Ch.V, §2,

Write H|,~aC+bF, with a>0, bya, see [ 9] loc.cit. If P=Pl i

a fibre of £, we may write:

o £5F T we fTF ~:»;,.r”,,,«‘ 2 % o Y e
‘“2"" (Ixxﬂg)xmél.\x\}ieg)iz \.E&I_E zigzz&C)Ig a b 13



K;p/~20-3F, see [}%]lme;citm It follows b=e+l. If E denotes the

2¥ g
p2

inverse imeage by £ of a line ink ", we get:

e

x ot
(B”)=alat2), (H®.E)=e+l, (M.E%)=1, (87)=0,

Sinece Pic(X)2Pic(H), we mey find an invertible sheal on X,

h that D|..=F. We get easily D~H-aE,

Frus®
»
i
£
)

aay OZ(E
-8

oneider now the exact gequence:

0—>0; (-em) — Q(vz —Gm—o.

Since we have H- (? cwk”uw)) =H - ( ?Qgﬁfma}}mﬂ we get that | DI

is a penci1¢ Since two distinct members of |D| can meet only
outside H, their inter%%ctlén is finite, hence empty. It fol-
lows ﬁb t=(H= éﬁ)m 0 and this gives a=l, Now it is very easy
to see that ?Iwn?g HelO(1,1) ).

Asswee now that we have a reduction (X',H! 1650, We shall
prove that this is impossible. Since H ia minimal unless HaPy

2

it follows that either ¥X=X' or ﬁ 2 .This last case is absurd
gince (as it is wellmknowng gsee for instance C?]; Corollary
3610), we would have X?zfﬁ, H*&{@(i}\ and this forces X=X°.
Therefore, we have C“ﬁﬁzéggo The cases XA?E,AHeﬂﬁlﬁ}f and
'xﬁ@ﬁ, He|G(2)] are not possible since H is geometrically ruled.

It remains to exclude the case when X is a ﬁ?gobundle and H in-

Q/ « : o o : S ® '
duces U(2) on each fibre, This is done by the same kind of argu-

ment as in the case of hyperquadric fibrations. The praaf of

Corollary 2 is complete,

The next application is the main result from [24}»

(Sommese)., Lot (X,H) be & polarized pair

Corollary 3

such that H is a smooth non=-ruled surfece, Then, either (X,H)

&

is a soroll over a surface, or there is a reduction (X'.H')

> ey



&

such that H® ig a minimal model,

Proof, Assume H to be naﬁwm;nmmal. Since (K +H){HA/KH§
hat K +H is not nef. By (1.7), either (X,H)ehudu’
is & reduction (X',H') such that QXﬁsﬂﬁ)ﬁiyor H* is
minimal. Since we assumed H te be non-ruled, (Xﬁ},i’lié_—;(/%u‘%u({é
is poseible only if (X,H) is a scroll over a surface, FPinally

%

(X*,H*)EN 18 impossible since H* is non-ruled.

Our main spplication in dimension three is the followir
result, which cupled with Corellary 1 describes completely the
threefolds supporting a smooth surface which is not of general

type as an ample divisor.

Corollary 4. Iot (X,H) be a polarized pair such thet H

5 o smooth surface rsnd denote by K (H) its Kodairs d1w2r31ana

ic
X K(H)=0, (X,H) is either a scroll over a surface, or there i

a reduction (X',H') such that H' is a K3 surface and, consegue

Ay, X' is a Fano manifold with H'=-K', If K (H)=1, either (X,H)

i8_a scroll over a surface, or there is a reduction (X',H') =n

a_morphism g:X'— C onto some smooth curve G, which is a Del

Pezzo fibration, i.e. H? [ g7 ~Ep Lor any smooth fibre F of g.

Proof, Ass ame that (X,H} is not a scroll over a surface,

If K{H)=0, by Corollary 3,'Wa may find a reduction (X‘,H?) suek
that H' is minimal. By classification of minimal surfaces of Ko
daira dimension zero, H' may be abelian, K3, Enriques or hyper-
elliptic. But one may prove (see for instance[2)) using
Lefschetz®s theorem that en abelian, Enriques or hyperelliptic
surface cannot be an ample diviaar on a Smooth threefold,

Thus we are left with the case when H' is K3. 1t follows

H'4+K'0 by Lefschetz’s theorem. Assume that K(H)=1, Using (1.7)



Let g be the nap ass aelatcd to %m(f*+ﬁ )| for my»O0.Since H' is
an elliptic surface, the restriction of g to H* gives a (plu-

ricanonical) map onto some curve and the rest is clear,

To put the preceding corollary into perspective, we men:

tion the following rather general (and not difficult) fact.

&

proposition 5. Let (X,H) be a polarized pair with dim X=

onems e

=r72. Assume that H is smooth end k(H}r-l. Ihen K (X)==20,

Proof. Assume that Imhql?ﬁ for gome 30 and det
BE|mKy| . Write E=al+B’, with 870 end H¢ supp(E*). Since nH is
very ample for n»7 0, we may £ind n>»0 and DEUnh oUCh that
H¢supp(D). Since we have (D+nmH) | omKy, it follows thét
\nmﬁH\ is very ample ocutside H Nsupp(D), so K{H)=r-l. This

contradiction proves the propos sitione

In the sequel, we consider polarlzed pairs (X,H) with

dim X=ryl. Write the Hilbert pelyncmial of the'pair (X,H) as:

n+1m&\,
%&UX(nH)) 1~0 ( 3 ),

we define the sectional genma g of the pair (X,B) by:

g5 =i8plye

Tt is not difficult to prove that the following relation is

true:
(27) 2{;«2=(Kx-f(rml)ﬁ,,zir"l) :

lemma 6. Assume that (X,H) is a scroll over a curyve (555

N2 o

Then the sectional genus of (X,H) equals the genus of C.
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As it is well-known, we Bay find a very ample divisor H on X
53{1¥l for any fibre F of f£. It follows easily
that the sectional genus of the pair
he genus of C. Therefore, it will be enou

‘*":

(X 3 g{} i L] X 4%
the followi ings

r=1JH. B 1y = (Rt (=1L E 1y,

(28) (K,+(x
SincelﬁiF J@(i)@ pné H| CtC(i | for any fibre F of £
» U on C such that:

there ia some divisor

£2(D) .

da

(29) HEH +
Moreover, by a well-known formula, we have:

divisor E on C.

g8

(30) Kk«JwrF‘+ fﬁég)s for some diviso

(29) and (30) we get after some computations:

Using
L E %wcﬁz“ww“f‘“l £(8)) = (K (r=1)EHD)

@4l

Thus (28) is proved and we are done.
The next results were proved by %élﬁrameutleall@sahl i

case of threefolds, see [}]a Using theix-ldea, we extepd them

to arbitrary dimension (see also {10], [11] for the case where

H is very ample).
nal

For eny polarized pair CX H),the sec

Lempa T,
genus g is non-negative,
By (1.%) we may assume that either (KX+




p - -

when the previous lemma applies.

Corollary 8 (compare with [ﬁjg‘PrepasitiQn 3.1 and [10]

Proposition 2.3} Let (X,H) be a ﬁ&l srized pair with g=0. Then

wensanaa

one {)3’“ H"m following holda:

%
(ol nelf) y Gr 5

53

* melbq)l, or %£2, HelO(2)l , or

Proof. We argue as in the proof of Lemma 7, using also

Lemma 6,

Corollary 9 (compare with [{]; Proposition 3.2 and [10]

Proposition 2.6).

let (X,H) be a polarized psir with g=l. Then (X,H) is

either a Del Pezzo manifold cr & seroll aver an elliplic curve,

Proof, If Ky+(r-1)H is not nef, as in the proof of the

preceding Corollary, it i@llows that (X,H) ia a seroll over

. en elliptic curve. 1T KF+Q?W1)H is nef, it has to be trivial
since (K +(p~1)H Hr Ly=g (weév[}sj Ch.I, §4, Proposition 7 and
(0s6)) e e

Corcllary 10 (compare with [4], Theorem 3.3 and (1),
Theorem 1) .

1et (X, H) be 8 polarized pair with £y2 end 2g-2<(H5).

Then (X,H) 1s oP one of the inlicwwn typess

-(2@1) r=2 and either %X is birationally ruled or Ky%0j

ry3 and either:

(2.2} (X,H) is a scroll over a curve or @ surfaces;

(2.3) (X,H) is g byperquadric fibration;

(2.4) There is a reduction (ﬁ' H*) such that (X', H’)A%

(2 05) K}{ﬁ’ (I“”Z)HNQe

&)

5 ¢



s

E

A L7,

Proof, Aa ume that r=2. Sinee'ZngmCRg§%(ﬁaKz}$ the hy

pothesis gives: (H.E,)&C, Thus, either |mKg|=f for any url en

X is ruled by Enriques® criterion, or, if |nK.|#8, for some m

X
it follows Ky¥0. Assume rpJ.
Using (1.7) we deduce that either (X,H) is as stated in (2.2)
(2.4), or K*+(r-2)H* is nef. On the other hand, by direct com

tation, we find that (X,H) end (%°,H*) have the same sectiona

(
» b ol LY - 3 @ ” o <
14(H°" ), with equality only if X=X', Usgin

genus; moreover,
this and the hypotihesis ggwai{a "y we . get:.
(31) 2g=2=(K'+(r~-D)H' T L) <D L@ET) .
This implies: .
K +(r-2)H* B T HK0,
Assuming now K'+(r-2)H* to be nef, by [15] Cuemg §4, Proposi-
tion % and (0.6}, we gets

K+ (r=2)H% 0.

‘Using (31) if fellows (H)=(H'"), s o X=X' and we are in case

The Tinsal &ppllc&tLﬂﬂ is due to LﬁﬂterlmP&ll&uChlg

Corollary 11 (compare fltth]ke let f: X—>QF be & fini

morphism from a manifoeld X t@ the umoeth rwﬁlmmnsxandl h&ﬁﬂrw

quadric. Suppose that £ is not sn isomorphism. Then, the ramj

ficetion divisor R is ample, unlesa r=2, X is & scroll and R

ig a sum of fibres,

ide

Proof. Let H be a divisor in }fﬁieail)il and assume th
R is not ample. Since R€iKX+rH{, it follows by (1l.4) that
.8 ek U, since (H5)= u@dwg £, we may assume that (X,H} is
a scroll over a curve., The restriction of £ to a fibre ﬁf the
scroll gives aP’ =1 embedded in @ as a linear space. This

. s . > s o o e
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