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CP - ESTIMATES FOR CERTAIN KERNELS: THE CASE 0<{p<1

l. The purpose of this work is to show that the results obtained in [15]
concerning certain quite general Hankel-like kernels also hold in the more refined
settihg of non-locally convex Schétten-«-van Neumann classes CP 5 U< p<il, This
extends the one-dimensional results for Hankel operators of [10] and [14]. Our
methods are closer to those of Peller [10]

4 RY usually A will be

Let A be a bounded measurable function on R
= ;
supposed C  outside the origin (but see remark 1). Also, we have the homogeneity

condition
Algx,gy) = Alx,y) for any xy€ Rd and geG (1)

where G is a fixed discrete multiplicative subgroup of R+, We shall assume in the
sequel that G is generated by gg” 1.

We denote, as in [15], by T(A) the operator (on LZ(Rd)) with kernel A(x,y)
and with T(A,$) the operator with kernel A(x,y) ?‘p(x - y), where ’<¥> is the Fourier
transform of ¢. Our main purpose is to obtain, under some suitable supplementary
. conditions on A, a precise criterion for the belonging of the operator T(A,9) to the
Schattenwvoh Neumann classes Cp’ for 0<p< 1l (the i)e&t reference for the results
we need about these classes is [6]). The typical result is: T(A,$) € Cp if and only if
be Bg{)p (homogeneous Besov space; see [7] for reference). This result has been
obtained for 1<{p<2 in [15], where the necesity of condition @E@éép is also
obtained for 2<{p< ®,

More recently, Janson and Peetre [4] have further extended this by
reiaxing the homogeneity condition (1) and proving also the sufficiency of ¢ € Ugl/jp
for 2<p< ®. (The "Fourier transform" of operators of type T(A,$) are called in [4]
paracommutators). For the history of the subject, which starts with the work of
Peller on Hankel operators (see [8], [9]).

The author thanks Dan Voiculescu for many useful discussions.



Z. The main tool which allows us to adapt to our case the methods of [10]

is the following (almost classical) theorem of Plancherel and Polya [12].

)

THEOREM A. Let pa>0. For any a'>a/w there exist two universal
constants C, (,“ e (a.‘,p)>(), such that for any entire function F of exponential

type a we have

Note that in the sequel we always use the formula 3’7(5):

~2niE -

X
f(x)e dX for the Fourier transform.

L

We have to say a few words about the definition of the operator T(AS).
We will always suppose that ¢ is locally integrable on RIN{ . 19 happens to be
locally integrable on all Rd, it is clear how to define the operator with kernel

~ { ;
Al,yh x - y) on Cm(R(‘); when it is bounded it may be extended to all Lz(ﬁd} and

0
we denote the extension by T(A,4). In the general case, take a c” - function 8,
supported in the unit ball of Rd and equal to | in a neighbourhood of the origin;
then ¢ (s)(1 - 8(s/e)) is locally integrable on Rd, and we denote the corresponding
operator Te' 1 all "f'€ are bounded, éﬂd tend to a limit when € =+ 0. we denote this
limit by T(A$) (it can then be seen that the definition does not depend on the
choice of 8). This discussion will be tacitly assumed in the seqml

We shall repeatedly use the fact (see [6]) | that for 0<p<l
(S,T) + ||s~ Tl g is a distance invariant under translations on the quasi-Banach

space Cp; that is
1Ty« Tl P IbT D+ Tyl P (3)

Finally, the letter C will denote a constant that may not be the same in
different inequalities.

We may state now an analogue of lemma | of [15].
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LEMMA 1. Let 0<p<l, and EL’I’RQK Rd be such that, for some a>0,
-1 : i -
ES{ ()] gy a< | x - y| ggoaf s and denote by y(x,y) the characteristic function of

E. Then

ITAO L CITOMN o1l sarp,
PP

PROOF. Lety g s®RY) be such that supp@c{g‘;lag | %] 8.3} and
- d ~ wipmleeds o
E by = LonRN{ 0}, where, (x) = (g, :~<)ij Since
me Z
mg Z
we have, using (3),
5 p g : P p s | 3 P )
T oL L T = w5 = T [ Tobm = iyl e
ke Z ke Z

: -k -k
where 'Xk(x,y) = X(go X80 - y)

Now, suppose 7 Is some smooth function with support in

{xe Rd L | %] _{RJ< R}. We may write
A = URY T pm/R)e 2TV (5)
mg £ ; :
and
BlGYR (¢ - 1) = (IRY § n(m/R)B_(x,) ()
me Z ; :
where

-2rix - Mgy .)82'{[1)’ °m

Bmx,y) = e X

and it is obvious that || T(Bm)” o H T(B)H b’

Applying these remarks to the terms appearing in (4), we have

; ; k+2\d, -
& kﬁ\)(ﬁx';y)(&a WJx - y) = - [l/go' v

k+2
1] d%} < k)(m’/go dxXkA)m(X’y)

y
mZX : L]



and therefore

[l Toc0 5 ¥, ;Hi)\a,m/;«“d”) Z [ % ‘m/a”kéa)‘l “liTogmll-

c A.,.u

By (2), and noting that, by homogeneity, || T( ,L; A)i = ggd HT(}{A)HP we

obtain
IRCZEER ] S godff¢e<~1i’k”g'HT(XA)Hi-
Therefore, by (&),

Frea®liPcet T ggtllo « IR [ITom] 2
ke Z ,
and the proof is finished.
Using the preceeding lemma and arguments similar to those in [15], we

can now prove the following theorem.

THEOREM 1. Suppose A is C . on p2d {0}, satisfies (1), and, together
with its derivatives of order <N - 1, vanishes on the diagonal A = {x,y)e ‘RZd§ %=yh
Suppose alse N >d/p, 0<p< 1. Then there is a constant Cé, depending on A, such
that for any ¢ we have

Tl j<c el arp
“op

PROOF. Since A vanishes of order N on the diagonal it may be written as

a sum of terms of the form

[ty - v 0 =y W70 1yl A2 Ty
: N I\

where A is G and satisties (1). Also, by polarization, we may consider only kernels
of the form
2.-N/2~ A ;
u(x,y)N(i x| 2+ 1yl?) MZA(x,yXb x ~y)

. 2N e
where p is a linear function on R ', vanishing on A.
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If we denote by fi (x,y) = plx,yX{]| x| . y| %) / , then A = fiA Ttis &
~homogeneous (therefore G-homogeneous) and

4 S 7 2 2/2
[Hbap)| €C-[1x~-y| /el eyl 2} 7] )
d
= : ; e ; 24—
We denote, for meZ, Q_ﬂp = Il {mi? m; o+ 11 and E.‘c’:.gdx ,ﬁ;d, o=
el

die ' T :
{(mn)eZ xZ | 2d? < |m - n] S(Bgo + Dd?} ~ and we choose
o Q % Qs Fhent fu the cmthxon in Lemma L, with-a = BngO, we

(m,nke 2
must therefore seek to estimate HT(‘xA)f}D. Denote by PQ the orthogonal
: i
o o 2yl =
projection {in L“(R ™)) onto L(Q).

We have, by (3)

ITa)[|P< T J|Ps TiXAIP ; b ()

1 X fhs L X0/

p \m n}.‘t Q’ Q

Now, P TKA)P. , considered as an operator.from L40 ) to LQ(Q )
Q.- O n m

co " T . 0.
has a C ket‘nei; moreover, for ]0[ <N - 1, using (7) and the G - homogeneity of A

and T we obt ain that | D A({,y;{ is majorized by a'sum of terms of he form

Clx-y] NG x| 24 y] D YANE ] =)

& 5}
Since, for (x,y)e E, |x - y| is bounded, while |x| 25 ly| © is bounded
7 7=
from below and, moreover, of the same order as | m|“ + |n| © if (x,y) e Qpx Qs

we obtain:

| DYAlx,y)] < C(] m| - | n| 2)"N/2

for 0<|a| <N~ Land (x,y)e Q_x Q..
The estimate is actually valid for all o, since for |a| >N it is an.

immediate consequence of the homogeneity of A. It follows, by [2.X1.9], th

P T(X/\)PQ is in CP, and

m n

Q

IPg "r<fA>PQ [B2e (P ) Hr002



"

whence, by (8),

Np/2
IR el ) (!m]2+‘n|2}"mf-’/3
P™ (mnEE

and, therefore, || T(A)|| = is finite (Np>d). Then lemma I yields the result of the

1. PR
theorems.

3. The reverse problem may be treated in a slightly more general from.

Before stating the theorem, let us remark the following multiplier-type property:
e / =

suppose T is an operator on L°(R") with kernel kix,y) and || E}! finite; ax,y) is a

function in CO d,e Then the operator S with kernel (Asy)k{x,y) is also of clas s(_jp,

o where C depends only ona. This is easily proved by using (5)

3

745 e ' y i) -
) then a(x,y)k{x,y} may be developed similarly to formula (6) and

we have again to apply (3) to obtain the desired result.

. 76 i
HEOREM 2. Suppose Ais C inR { O, satisfies (1) as well as the
following property:
7 e 5 d = iy o d P o /
(9) for every ue R, there is xe R, such that Alx + u,x) £ 0.

Then there is a constant C P’ depending only on A, such that for any 9,

with ¢ locally integrable on Rd\ { &, we have

=d/p .<.CPH T D
pPp

PROOF. The proof is rather intricate, but the main idea (similar to that in
[10]) is simpler: certain "parts" of T(A$) are used to estimate operators unitarily
equivalent to periodic convolutions (on ’K'”d); the Cp»norms of such convolution
5perators are easily calculated, since the exponentials form a complete set of
eigenvectors. Then theorem A is called again to estimate the LP-norm of
truncations of ¢ .

Let us pass now to the details. Consider the set F ={ ue Rd | l_<_u_<:go'}.

3



The condition (6) allows us to find a real number € >0 as well as Myyeee My s

%

Beeler ) : : . e
M. M€ Z, with properties a), b} listed below. In order to state them (and for
4 1
SRR B ~ ¢ - L £ 3 £ AL T i e * o o g d =
further use) we make first the following notations: for any m€ Z, Qm - Qm ; Rm’
1

Rm will denote the cubes with center €m amd having the length of the side

i 1
respectively equal to €, €/2, (4d? + 1, (4d? + 2E. Then we may assume that the

following assertions are valid:

<m ot Cover B
N N

b) The origin does rot belong to any R, R , 3 moreover, A(x,y) £ 0 on
g PR
- 2 ) J

, . B i e O S - :
We choose then functions ﬁj € SR "), such that Bj is positive, with support

equal to Q

o Also, for any cube Q, P will be the orthogonal projection on
Y.~ e e ) :
i ) :

2 : =
L(Q) (as in the proof of Theorem 1).
: : . S
Now, for-any j="1, . os;N; let O«j be a function in C, R\ O}), supperied

0
on }:?;h_] % Rm' , and identically 1 on Rm X Rm' . By the remark preceeding the

j j : j j
theorem, since@:i’(xyy) = (l/f\(x,y)))'»i(x,yt}ﬁj{x ~ylisaC

o~

(o]
0 function on Rds we have

: ” o T(i’gj%@}pﬁm

= I 58> I P Tl 1 o (10)
j

! m. m'
J

J J
Consider now the functions ¢>(J) =0 Bj; define @2}) by $§33(x) = ¢(J)(x + €m),

and \“(}) by ‘EJ(D(X) = 5 s x) (the sum is locally finite). Obviously, QJ(J) is € Z*‘Z'.d -

»¢

e airaiil p
e ru P o fRe AER. - Ta . B (1)
s Qm‘: P~ |m|<2d? Q. e
J J = J J
X oS (!) o~ [P oo ey (!} gt
= b de g s looc CillE. TR G R
]mISZdZ Qm}-;‘m : Qm’j P ’ ij km'j, P



e A}
Now, by the periodicity of U )

y 3
o T m\gf:}} B = Bloan gQ}'h -
”‘Qm:“‘” )‘ézm}f‘p HEQO‘U’} ’ZQO”P
i

O O is casily seen to have the complete set
\O \O i
f \ q
W2m/ ek e
of eigenvectors {e" /=) } k € Z7; the corresponding eigenvalues are
5 Digyami@n/elk - s () Na-i@T/ Ok~ 5
A= f ﬁ"i};is):} i(2n/e) e oo f ( .l<’,(5 i (27%/e) :

" i\’. e : ,:‘;?O 2
: o Q. meZ

. T e
z f4$(J){S el al i(2w/ ek S Jomik (m.-m )(
D

b o# Bj)(k/s:)
Therefore

P (}"‘(3)}» Qo|ig~§z‘j1<fb, B/ e)|P (12)
But, since the support of

Z'ﬁig(m:on‘;' }, :
J O *

the Fourier transform of the function
e

6 ) is obtained in Q , this function is of ex punemmi type ¢/2; we
may apply theorem A to deduce that

.

ke Z° -

L

(13)

Combining (10), (11), (12} and {13) we obtain the basic estimate

D _;p<' B PN b P
th szip__ H an-i( ,{,)) p\n‘],.hp
J J

If o= )ij , we get

N
il ¢ % @”ggc-l Pz TP Jig' | (14)
: = mj mj

k) - . N . g . 13 .
Note that condition a) guarani‘ees that ¢ is a positive function supported
. o, d ; . : . e
S i CO(R \{0}), which is strictly positive on F. Its dilations are therefore
A
convenient for the calculation of the Besov norms; we define G)ke:S(R ) by

é‘;k(x) == @(gmkx), and apply the preceeding result to the
(x) a\d(

'*)O (0] uO “)

function



S

(Note that the whole construction above dipends only on A, and not on ¢.) The ho-

mogenity of A yields

4:4\, o gG e ” P”' k T{/\p(‘})\“” K ” p

::1 m’
\I _ J

e it
where k- ~=p R =R
gl

.
S
3

.

N Summing for ke Z, we c,)t‘um

m

17

X % E[Sbw H Lee )

le &

” l,i‘)!\ T(A,(r)] ~\,

EAS

| psc- I T@anll P

! L

< = k-
large, ij and Rm

k
rr
[ m'

J

=1 :
the la,S'n. inequality following from :.d("i Lhut, tor k- » R
j

}_(;”:»

and Rm‘ re disjoint. The theorem is thus proved.
bl
J

£ g ey | - i . A D T 0 Ty 2d
t. Final remarks. 1. In both theorems | and 2 the hypothesis Ae C (R
N{ @) is a convenient one, but not necessary. First, it is obvious that only a fixed

finite number of derivatives are necessary. What is more important from the point

o

of view of applications, we may allow some lower-dimensional sets of non

diferentiability.

Thus, we may prove, by similar methods, the following two statements,

which extend some previous work {31, B0, L3l [ 1ulk

S e el
PROPOSITION L. jf N>d/p, gnd ¢ ¢ E}); then the N-times iterated

commutator [-«-[M@,Ki]s Kolooo Kl is in Cop (M¢ is multiplication by ¢;

K Pl QKN are singular Calderon-Zygmund transforms - see [31) The converse also
N
holds, under the nondegeneracy condition (9) applied to Al,y) = H!( K Ax) - ﬁj(}’»-
=
PROPOSITION 2.5 s,t>-d/2, and AC4Y) satisfies the hypothesis of
_j p+S+1t
PP

S iy o
Aboy)| x|yl 9k - yisinc p' The converse also holds, if A(X’Y)satisfies (9).

thoerem 1, with N>s + t + d/p,then, if ¢ & s then the operator with kernel

For the case p > 1, more general conditions on A are given in [4].
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2. The fact that condition N>d/p in the statement of theorem 1 (or

N>s + 1+ d/p in proposition 2} is sharp can be proved similarly to theorem 3 of [3],

;

3. Certain types of para-products (see, for instance, [11]) are also covered
by theorems | and 2. : :

t. Since it is known (interpolation theory: see [1]) that (¢ Lo o
- _ 5 Bb “p0ig Spg

>\ e

i [l -9}/3 M+ fﬁ',/p},:_' = 1/p, it follows that, in the hypothesis of theorem 1, if

sl d," p :
= ( . O > F; > ! Qara B i & = £ Y n s /»'
ORE: in()pQ .Apjp {}e’ﬂ where 0< Py <p g p; » and 6 = (l/pﬁ l/pf/(i/yo ¥ ‘31)’
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