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A CHARACTERIZATION OF SPECTRAL FUNCTIONS

OF DEFINITIZABLE OPERATORS

A.Gheondea and P.Jonas .

INTRODUCTTION

Let (¥, [.,.]) be a Krein space and let A be a definiti-
zable bounded selfadjoint operator in ¥ , i.e. a bounded self-
adjoint operator such that there exists a polynomial p with
[p(A)x,x]1 >0, x€¥ . Such a polynomial is called a definitizing
polynomial for A. Fix a definitizing polynomial p’ for A and
let %' denote the Boolean algebra of subsets of R generated by
the intervals whose endpoints are different from the zeros of
p’. The operator A has a gpectral functien (see [78, (81, [ol,
[4]). This is a certain homomorphism E of ®' into a Boolean
algebra of selfadjoint projections in ¥ . The projections E (A)
corresponding to intervals A lying between two neighbouring
zeros of p’ are nonnegative or nonpositive, i.e., it holds
(E()x,x1> 0 for all x¢H or [E(A)x,x]1< 0 for all xe¥. A real
point t, isiealled critiecal point of E if E(A) is indefinite
for every open A€ %’ with t €4,

In [8] H.Langer considered the problem whether a given

homomorphism of the above kind is the spectral function of a



definitizable operator. This problem was solved in (8] for the
 subclass of homomorphisms E with the property that every criti-
cal point to of E satisfies one of the following conditions:

(i) The integral St@E(t) over some neighbourhooa oFf tO

- converges in theistrong:.sense.r gjwr@;
(1i) There is an open interval A containing ts sueh that
E(A) is a Pontrjagin space.

For a fixed spectral function E of this type H.Langer also
described the set of all definitizable operators whose spectral
functions coincide with E. A

- In this note the characterization of spectral functions
is extended to a greater class of homomorphism (sections 2.1
and 2.2). The corresponding class of definitizable operators
contains those whosé root spaces belonging to the critical points
are pseudo—-Krein spaces but not all definitiZable operators. We
remark that the example given in connection with the latter fact
(section 3) shows that even if the root space belonging to a
critical point is non-degenerate the spectrél function can have
an arbitrary finite order of growth near this critical peint.

In this note we make use of the main tool from [81 that
is to say of a certain decomposition of ¥ associated with the
spectral function. We charaéterize those definitizable operators
whose spectral functions generate a fixed decomposition of ¥ .
This can be useful for the construction of definitizable opera-
tors with special properties (section 2.3).

Throughout this paper we shall confine ourselves to
bounded definitizable selfadjoint operators such that
[a"x,x] ¥ 0, xe¥, where n is same nonnegative integer. This is
no restriction. The class of these operators is denoted by

;@(O,n). We set ‘2}(0):11 ;D(O,n). The spectrum of an operator
néeN



belonging to D (0) is real (see [9] AR A

For basic facts on Krein spaces and operators in these
spaces we refer to [1] ana [6]l.

We would like to thank Professor H.Langer for reading the

manuscript and several valuable comments.

1. NOTATION AND PRELIMINARY RESULTS

l.1. In the following all topological notions are under-
stoéd with respect to some Hilbert nerm .|l “enithe Krein
space £ such that [.,.] is .l -continuous. For every subspace
Lof e put &""L:={x{-%:(x,§f] —loil and £ 20 9 g
called the isotropic part of £ . A subspace Mof ¥ is called

a pseudo-Krein subspace if it is the direct sum of its isotropic

part A° and a Krein subspace of ¥.
Let X be a fixed closed neutral subspace of ¥ (i.e. < =IO) 5
A closed neutral subspace #Hof # such that =Ll holds (di.e;

H# is the direct sum of £ and #4') is called a closed neutral dual

- ST T an arbitrary fundamental symmetry of ¥ then,
for exemple, J¥ ds a ¢c.n.d.c. of £ . In what feollews, for a
bounded operator T either in ¥ or between subspaces of ¥ the
adjoint with respect to the duality [.,.] is denoted by T'. In
this connection for a closed neutral subspace £ a certain
c.n.d.c. of L (which results from the context) is regarded as
the dual space of J’iv.

Let P be the projection on & along 4 . Then P’ is the
projection on «# along ZC'L . Since by the heutrality of XL and
Al we have P p=ppT=0 the operator P:=T1-P-p' is a selfédjoint

L il
projection. Hence its range &£ N is a Krein subspace of I



and we have the following direct decomposition of # :

(i1 SaEe e e T

It is called the (£,#)-decomposition of ¥ . A decomposition of
this form with aEbitrary c.n.d.c. Mof £ is called an L -decom-

position. Obviously, we have
- ictiaal .

1.2. 4(0)~-homomorphisms. Let ‘;&'(O) denote the Boolean al-

gebra of subsets of R generated by the intervals Ac R whose
endpoints are different from 0. A homomorphism E of o‘éf(o) into
a Boolean algebra of selfadjoint projections in ¥ is called a
d (0) ~homomorphism if the following holds:
(1) There exist a,bé R, a<0<b, such that E([a,bl)=I.
(ii) E(4) is nonnegative for every real interval A with
A (0, . E(A) is either nonnegative or‘nonpositive
for every real interval A with A c (-09,0).

(iii) There exists kéN such that the operators StkdE(t) -
A
AEZ(S-(O) , 04 A, are uniformly bounded.

We remark that by (ii) the homomorphism E can be extended
to an operator.measure (generally unbounded) on .(R\{Oﬁ . BhEs
measure will also be denoted by E. In the case when E(A) is
nonnegative for every interval AEQ&(O) ; Oﬂﬂ , we shall say
that E ds @f even type. Otherwise E is said to be of odd type.

Now fo‘r a fixed d(O)-—thomorphism E we define the following

linear ‘spdces (cf. -{5]1):

Loy~ VEWH: Aed ) og Al



L= TILEW@K Ae&é’t(o) J0rehe)
e
Lo b Qfo

It folilows that

I
LI?O: I('O) 00

By S tdE (t) we denote the linear mapping of XQO)+¢IO in ¢
(0) - ' ' :

which maps x’(o)+x0 ; X’(O)G E@)¥H , Aéo@(o) e OEN x5€ L g

into ZEtdE(t)x’(O).

Let-lig fix a oin.d.c. il orf ;tOO' We consider the (&%O,oﬂ)—
-decomposition of ¥ :

=X, iR+, where H:i=dL  nold’

(e]0)

il

Denote the corresponding projections by P, B ana p* as in sec-

A

tion 1.1. We consider the mapping EPHJEO) —~>1Xﬁ) defined by
A~ A A
E(A):=PEM)]H , A€k, .

Let

£0)=U{EQK: dek, , 0£A],

Loi=T {E@ : Ae,, 0eA].

Demma 1.1, 8 is a d(0)-homomorphism on the Krein space # .
The subspaces j’(O) and QEO of ¥ are non-degenerate.

Proof.Using the relation

(1.2) E(A)B(A,)=E(A))BE(A,)



for Al v Az GS(’;(O) ; Ojéﬂl-u A,, one eiasily verifies that £ is

a d(0)-homemorphism. To iprove: that 'Z,(O) and (;Co are non-dege-

nerate we first .observe that for every A €o§u(0) ; O%A., we have
A E (A)E{(:,C. E(A)¥ =E (4)PE (A)¥Hc E (A)?}Z

hence

(1.3) E(A) =E ()X

)

s : A ~ o N
This implies P X(O)C X(O) and PIOC ‘IO' Then we have

A5
(6]6)

H =P L =p( Z(O)+ Z(O)c: p Z(O)+P Iocx(0)+xoc3{ :
Hence f(O) and Qfo are non-degenerate.

As a consequence of Lemma 1.1 we find

H = BC(O) 3. JCO

it 5 . _
Lemma 1.2. Let x belong to ’Jf\&foo . Then there exists no

N
y€ ¥ such that

(1.4) BE (4) x=DE (d)y

V4
for all A€y od A

Proof. Suppose that there exists such an y. Then the

relationsil(L.4) and (1.18) imply fx-y,2z1=0 for all Ze"‘\C,(O) <t

T
follows x € y+ ‘:‘CO ~a ‘contradiction to x& N ‘xOO : a



~1.3. A class of definitizable operators. Let E be the spec-

tral function of an operator A€D). Obviously, the spaces
‘x(O)"fO and ;fOO defined abéve starting from the spectral
function E are invariant for A and éfo is thefgggggjof A corres-
ponding to 0.
Let some éioo~decomposition be giveni° Then it is easy to
. See that E is the spectral function of the operator A defined

by
A:=§A\éé)

which belongs to JD(O), and A can be written in the matrix

form
: =
b oy
a + P by
A= 0 B A w.n.t, 2{—2:’00+35+od :

+
0 0 Al
! J

_where AZ—A, A4—A4 3

In the following proposition we complete a result from

[8] (see also [4, §3.3]).

Propogition 1.3. lLet B be the spectral functien of an ope-

rator AEJD(O) and let Mibe a c.ni.d.c. of Sfoo. Then the following

assertions (with respect to the (& ) -decomposition) are

00"

equivalent:
: - =
(cy;) The operator 5 tdE(t), which is defined on ‘x20)+10 ;
(0 s
is: eontinuous in K.

(02) There is a nilpotent selfadjoint operator N in ¥
with the properties:
(1) N commutes with A.

(2) Qxﬁ)c;ij.

(3) The root space of A-N corresponding to 0 is equal



to the kernel of A~ﬁ.
If, moreover, A.QJNO,n) for some odd n& N, then these assertions
are also equivalent to the following:
(c3) The integrals étdﬁ(t), Aéc@(o) , 04, aré uniform-
ly bounded.
If one of the assertions (cl), (c2), (c3) holds with respect
te the (cfoo,di)—decomposition, it is also true for any other

i:oo—decomposition.

Proof. (cl) =3 (CZ)' Assume that (cl) holds. Let A be

e (0)

the ‘extension by continuity of S tdﬁ(t) to 3. A(O)'is self-
. (0)

A A% is positive. Obviously, the

adjoint and either A(O) or A 0) >

operators A(O) and A commute and coincide on ‘X(O)‘ Hence
-~ ~ ~ AL A

A(O) commutes -with A and we have 3} (N)CHN) e Eé“,, = J’O

2 A - A
There is an integer k such that Ak‘;ﬁo=0. Therefore if x'(O)EJCm,

-~

N:=A-

A

\,0 .
Xoe<wo we find

T o

20)+x0)

hence, ﬁk=0.

Making use of the fact that the spectral functions of
bounded definitizable operators can be approximated in the
strong sense by poiynomialé of the operators one easily verifies
that the speétral functions of A agd A(O) coincide. Hence the
relation A(O)SEOZ 0 implies (3) and the ¢ondition (c,) holds.

(CZ) => (cl). Assume that (CZ) holds. Let m be an in-

teger such -that the relations Aml2i0=0 and N'=0 hold. Then using

(1) and (2) we find



)Ar—m+lﬁm—lzir :

r >2m-1

Hence A-N belongs to D (0) and, by the same argument as above,
the spectral functions of A and A-N coincide. Consequently,
the algebraic eigenspace of A-N is cf By (3) the operator A-N

+$5 coincides with S tdE (t) .
(0)

(cl) => (c3) . Now we assume that AC-O.J(O,n) for some odd

restricted to CA

(0)

né& Nl. Then we have

[5 tdE (t x,xl StdE(t fxo 2,
0) A

for every Ae“\g’(O) = O?(A o and evexry xef’(0)+c}f0 s Thuls (cl)

implies (03) .

(c3) =y (c T (c3) holds then the strong limit of the

)
integrals Stdfz(t) ; AGJ_@O , 04, where A tends monotonically
AN

A

to RN { O} exists. This limit restricted to "‘f(O) ,,7: coincides
with S tdE (t) . Hence (Cl) holds.

(0) :

To prove the last assertion assume that c/«(,l diss s cnnsidLic .

of IOO different from of‘u(, and Pl 7 131 and D; are the projections

corresponding to the 0\,00,(/(( )-decomposition and dﬂl —Plﬁf’, gt ic

~

easy to see that Py ¥ is an isometric isomorphism of the Krein

space ’;{ onto the Krein space gx:'{ and (131t'37¢ )_l=13\ }ﬁl. We have

ey \,()J‘ x n‘l' P Pt s 1 o) B =
P pl o0 Pl] ‘loo and PP l;f’oo Plioo This implies P E(A)P,

=5 © 3% . : £ 7 >
=P E(A)PP,. Hence the above isomorphism maps ;‘f'(O) . 1(0) : ‘Z’O
onto the corresponding spaces with respect to the (JCOO,(,L{l)—

-decomposition. This facts imply the last assertion.



In what follows we shall say that a d(0)-homomorphism

E satisfies condition (cl) or has the property (c 1L B Fal-

1)

fils the condition (cl) from the preceding proposition for

some (or, equivalently, for every) cf00~decomposition. In the
v

same way an operator A€ JJ(0) is called to fulfil condition

(cz).

2. A CHARACTERIZATION OF SPECTRAL FUNCTIONS

OF DEFINITIZABLE OPERATORS

2.1, In what follows we restrict ourselves to d(0)=-homo-

morphisms with property (c,). Theorem 2.1 below characterizes

|
the spectral functions of operators from i)(O) within the class
of these d(0)-homomorphisms. Obviously the condition (i) (see

Introduction) from [81 impliés (c At the end of this sec-

L
tion we shall show how the corresponding result from [8] is
connected wifh our more general considerations.

In the following section 2.2 we shall deal with a more
restricted class of d(0)-homomorphisms. The results from [8]
concerning the case of a Pontrjagin space are contained in the
results. efifcection 2.2,

For.a given d(0)-homomorphism E we use the notation
fxo"xOO"" firom* scetion <. If some ¢.n.d.c. dl of ;tOO is
fixed we also use the notation for the spaces and the projec-

tions corresponding to the (;fOO,JL)~decomposition of 3 from

section 1.



Theorem 2.1. Let E be a d(0)-homomorphism with property

(cl) . Then E is the spectral function of an operator belonging
to  D0) if and only if the following condition holds for some

or, equivalently, for every c.n.d.c. M of Lot

(%) Eot every x €l there exists ve i sueh that for all

Aec};(o) 5 Of{A, we have

P S tdE (t) x=DE (A)y
A

Proof. (1) Assume first that E is the spectral function
of anioperator ReJ (0}l T is o Ffixed e.ndd.c. of ‘;COO and

x e then we set y=(I-P)Ax. Since
138 tdE (t) x=PE (A) Ax=DE (4) (I-P)Ax ,
Fi\

for every AE:Z%J(O) - O,éi\ , the condition (%) follows.

(2) Let us assume now that (%) holds for some c.n.d.c. 4
of xOO‘ We first note that this condition can be equivalently

formuliated thus:;

For every xoet,l/b there exist x €.l and yéé?i (= I;Om,{,(f‘ )

such that for all A€ - 0¢ 4 , we have

PN

p S tdE (t)xowﬁE ()
a

}~PE (@) .

~ 2 ~
Moreover, if } denotes the quotient space ¥/X, then by means
of Lemma 1.2 it follows that the vectors x,€d and y+ JCO(: * are

uniquely determined by = hence one can define the linear

mappings C,: o 3x > xleué(, and '53:olff.axo%~M> v+ id&}‘fﬁ- We



(m)

claim that C, and C, are bounded. Indeed, let (x ) be a
Il 8 o me N
sequence of vectors from f such that lim x(m)zx e Clx(m)=
(Tl) e m-+ oo m-=00 o
:Xleugt and lim C3x01 =E€H . Then for every ﬁejy,(o) ; O?—{A -

m-> 09
we have

el = =
P BtdE(t)xo—PE(A)xl:PE(A)y 3

A
where E =y+ L-I’O. By the closed graph theorem the claim is proved.

~ ~ A A ~
c?fl be a elosed subspace of # such that W= o\f0+ xl
and j the continuous linear mapping of Z}é onto SZlC ¥ such that

J(y+ (Dfo)=y for all ve szl. Define C3:=j536 SZf(dfc‘,}%). Set A1:=C41- >

Let

A

A, :=Ct ana A, the continuous extension of S taE(t) ton ¢

3 3 0)
(which exists due to the condition (cl)). Defining

=5 :
Al A3 0
- + e
L0 A B WLt b, }C—WOO+}C+¢!{, :
+
0 0 Al

a straightforward calculation proves that A is a selfadjoint
operator in i .

We claim that

(2. 15) Ax= XtdE (&), X€ ‘:6’(0) .
Assume that x € EQ)Y , AE:;E,(O) S Offﬂ ot uéxoo then
(2.2) [Ax,ul=[x,Aul=0= [gtdE(t)x,u} :

15 vej\{ we get

(2.3) [Ax,v]=[(B+P)E (A) x,APv]=[x, {tdE () v]=
A

= Stdf«](t)f)x,v]r {StdE Bz v,
A I}



Let W€ . Then

(2.4) [Bx,wl=[E(A)x, C3w+Clw}:§x,§E(&)C3w+§E(A)Clw}:

=Ex,§§ tdE (t)w]= S (t) Px,wl= [Std (s el
15} Y A

The relations: (2.2)=(2.3) inply (2.1) .
By assumption there exists an integerbkz’l such that the
operators BtkdE(t) A é"’@(O) ; Oﬁ/l.\ , are uniformly bounded.
A . 5

We assert that
2.5) A]l‘:o

: : : ) n ;
Indeed, let woeﬁd. Setting wn:=Al wO=Clwoewﬁ, neNl, it follows

that for every:n=0,1,...,;k=1 there exists xn€§€ such that for

all Ak , og’A it holds

P StdE(t)wn~PE(A)w

=§E(A)xn '
A

n+1

and applying S k = 1 (t) on both sides of these equality

we obtain

P StkdE(t)wO«§ Stk_ldE(t)wl=§E(A)S tk—ldﬁ(t)xo ;
A A

égtk“l E(t)w.-P j £%724E (t)w,=PE (4) 3 & zdh(t)x ,
A A

p &tdE(t)wk_l—ﬁE(A)wk=§E(A)x =

4

By summing these equalities term by term we get

=k - - J
PX t dE (t)w _-PE (A)w, =PE (A (2:2 St aE (t) x k—l—j) ’
Vi

whence applying E(A), Aejﬁxo) , 0¢A, AcA, to this equality

andi taking dccount of (1.2) and that StkdE(t)wO converges

A



for A—RN{0}, we get
ﬁE(A)wkzﬁE(A)x’ 5

for some X’e;% and all 4‘365@(0) ’ O§iA . Then Lemma 1.2 implies

wk=0. This proves A;}{:O hence A]izo.

Now let x Géﬁo. Since A};Px——“o and Azlgx:O we have Ak+lx=0.

Pt fact amd (2 1) imply

- i

i &:.tr.d}.i (Ehx xel,  +&L

for r»k+1, and moreover

(2.6) Al ko §trdE(t)Akx=1im § trag ) akx
n->6°[.l(n)
=lim 3 £ T R am (1) %= St“‘kdE(t)x, xe R,

n->0co A(m
(also for r¥»k+1l) where A(n) :=R\(~1/n, 1/n), neN.
If E is of odd type this relation implies

CA2k+lx,x] >0, xeH.

If E is of w«ven type then

A2k+2

particularly in both cases: A is definitizable. Also by‘ (2:26))

it follows that for every polyncmial p we have

2k+1 Al

= ot laswrx,  xel,
(0)

p(A)A

whence taking account of the fact that the spectral projections
of A can be approximated in the strong operator topology by

operators of the form p(A)A2k+l (see e.g. [4, Theorem 4]) it

follows that the spectral function of A coincides with E. @



Remark. By means of (1.2) it can be easily proved, a priori

to the preceding theorem, that the condition (%) is equivalent

to the following

1
For every x €l there exists y€¢dl such that for all

[lé ‘;ZJ;:(O) I3 Oﬁlﬂ ; We have

StdE(t)x=E Ay -
A

Corollary 2.2, 1let B be @ d(O)—homomorphism and let

. = v
be acn.dic, of "goo' e Pé;tdE(t), AGW(O), , 044, converges
strongly in ¥l for A ~>R\{0} then E has property (cl), (%) holds

and,. hence, E is the spectral function of dnsoperator aed(0).

Remark. Under the assumptions of Corollary 2.2 the

operators Al and A3 defined in the proof of Theorem 2.1 fulfil
: ' = ( L e
the welations A, =0, QJYAB)DCMO and RAA3)C I%O) .

Along the lines of the proof. of Theorem 2.1 one easily
verifies the followiﬁg description of all operators having

a given d(0)-homomorphism as its spectral function.

Theorem 2.3. Let B be the Specenral function with property

(c,) of an operator belonging to Doy et llbe s con.dac.
e :
g 4 |
Then E is the spectral function of an operator BéJD(O)

ifiand only 1£f.B has:a matrix fermnm

T
Al B3 B4
+ : -y ;’E
B= 0 A, +N B, w.r.L.2€—~Oo+ i,
0 0 A*l"
L 2l

where



(1) Ay and A, are the operators defined by E as in part
(7)) of the proeofi of Theowem 2. 1.
(ii) N is an arbitrary nilpotent selfadjoint operator in
# commuting with A, such that‘ﬁ(N)CEEO{
(111) By g ﬂ,doo) is an arbitrary operator satisfying

the relations

IE(A)B§=E(A)A§ for all A€&y,, » 04,

where A3 is defind by E as in part (2) of the proof

of . Theorem 2..1-

(iv) B4€5jmﬁnxoo) is an arbitrary operator with B4=BZ

Corollary 2.4. Let E be as in Corollary 2.2. Fix.  some

c.n.d.c. M of yOO Then among the operators belonging to D(0
with spectral function E there is a "51molest" one with respect

to the (£ OO,cw) decomposition:

0 A3 0
+
14 —
0 0 0

where Az_and 33 are defined in the proof of Theorem 2.1 (see
the remark after Corollary 2.2). Moreover, the following
assertions are equivalent:
(i) Bed(0) has E as its spectral function.
(ii) B=A’+N’ , where N’ is a nilpotent selfadjoint operator
commuting with A’ such that Rwe L.
(111) 1f A e LWL, ) is an arbitrary operator with A4=AZ

and



0 A3 A4
0 +
(2:7) A= 0 _AZ A3 ;
0 0 0

then B=A"+N" , where N" is a nilpotent selfadjoint operator

commuting with A" such that '%(N")Ccfo :

One of the results of {81 (which has a simple direct

proof) is econtained . .in the Cerollaries 2.2 and 2.4:-IFf

;f'dE(t) L AeB

then the assumptions of these corcllaries are fulfilled and

; O¢£&, converges strongly in ¥ for A —sR\{0},

s-lim - tdB(E) ic of the: form (2. 7).
A-RN {0 A
Hence in this case an operator B€J(0) has E as its spec-

tral function if and only if

B=g~-1im tdE (t) +N
a-RN {0§ 2

where N is a nilpotent selfadjoint operator with NE (A)=E (4)N=0

for every AEQ%O) , OFA .

2.2. Now we assume additionally that for the given d(0)-
~homomorphism E the space <§O is a pseudo-Krein épace. Then for

an arbitrary <Ioo-decomposition of ® as above we have2~‘:’,’~‘07-BJr J&O) /

~

where X o and oz are Krein subspaces (see [2]). The corres-

(0)
ponding selfadjoint projections (in¥) are denoted by PO and

-~

P ;, respectively. Thus the following decomposition of ¥ holds:

(0)

If, in addition, E is of even type the.conditien (cl) is .aute—

matically fulfilled. Indeed, in this case I(O) is a Hilbert |
spacé and we have NE (Al o Clforall Shel 0¢A. This
) -

implies that E has the property (Cl)' Consequently; if for
e e ey o A )



some &'6;£10) - Veply the ‘eestiictionior E to E(AY)H tsiof

’
even type then also (¢ s fulfilled.

)
If E 1g an arbitrary d (0) ~homomorphism with values in
LX) and ¥ is a Pontrjagin space, or, more generally, E(a’YM
is a Pontrjagin space for Some interval ﬁ’65§W0) - OezAL;
then éﬁo is a pseudo-Krein space and, according to the above

considerations, E has the propéerty (c The same holds for the

i

pseudo-regular d(0)-homomorphisms considered in [3].

Proposition 2.5. Let E be a d (0) ~homomorphism such that

XO is a pseudo-Krein space. Then the condition (cl) is neces-
sary for the fact that E is the spectral function.of an operator

belonging toiﬁ(O).

Fioof o ik E be the spectral function of A eQ(0). If E

is of even type then by the preceding observations (c holds.

1)

If E is of odd type the operator ﬁ(o)iﬁ is non-negative and

(0)
this fact implies (c;) (e.g. by [5, Theorem 2]). _

If‘ib is a pseudo-Krein space then, on account of Propo-
sition 2.5, we can restrict ourselves to d(0)-homomorphisms

with property (c Erom Theorems 2.1 and 2.3 we obtain the

e

following results

Theorem 2.1'. Assume, in addition to the conditions of

Theoren 2517 chat L is a pseudo-Krein space. Then E is the
spectral function of an operator belonging to QNO) ifand only
if the following condition holds for some or, equivalently,

for evervie.n.d.c. ot ‘£OO:



~

For every x e J{ there exists ved+ L

(0) such that
() fFor all Aﬁgﬁxo) , 044, we have
2.8 P aE (t)x=P  B(
( _ ) P(O)ét Ei(t) x P(O)L(A)y

Remark. If the d(0)-homomorphism E is pseudo~regular in
the sense of [3] (e.g. if E is of .even type or ¥ is a Pontrjagin
space) tb@nﬁE is bounded (cf. [3, Lemma 3.4]) and the condition

(%%) can be replaced by the following one (which appears in {81):

For every xoeuﬁthere exists xleu% such that there

exists

Tdm (5
n->ot

(

S bABE) % =P oy ELA

) )Xl) r
ﬁ(n)

(0)

(n)

where AT :=RN(=-1/n,1/n),:n €N.

Theorem 2.3'. Assume, in addition to the conditions of

Theorem 2.3 that‘io is a pseudo-Krein space. Then BedJ)(0) has

the spectral function E i f andionly if it hes a matrix form

S P e
+
0 B 0 B ~
B= %2 12 e Gar bl ol S e
0 0 A - BIe" =0 (0]
33 1.3 :
. +
0 0 All
where
(1) A;l coincides with the operator X b xy defined by
(2.8,
+

(idi) Al3 coincides with the operator Sy defined by

(2:8) .



i Stdﬁ E (£)P

(0) (0)

(iv) B22 is an arbitrary nilpotent bounded selfadjoint

. 7
operator in o

(v) B12€EX(Jb,£bO) s arbltrary .

: 2 i : s e
(vi) Bl4E“I(W&¥OO) is albiuhaly L Eh By B,

Remag&. Theorem 2.3’ shows that if XO

space then among the operators which have the same spectral

is a pseudo-Krein

function there is a "simplest" one with respect to the given

160~decomposition, namely

Al 0 A §
0 b oot
e
+
0 0 r s 2
-
0 b0 a

: 4
(compare Corollary 2.4).

As an application of the preceding results we consider a
d (0)~-homomorphism E with the following properties: (i) There is
an intefval 5'€‘£x0) .0 e\ euch that E restricted to
E(A ) 1is of even type. (ii) xo is a pseudo—~Krein space.

(i) s—1im StZdE(t) exists. Such a d(O)mhomomorphism was

8 >RN{0) A ;
also considered in.[8] (in the case of aPontrjagin space ¥ ,
where (1) and (11) are fulfiltled automatically).
We fix some éfoomdecomposition. E has property (cl) and

by the relation

5= -~

o 2
£ (o) étdE(t)x, B gtdE(t)x]— [§t aE (t)x,x7] ,

Aé%(o) ’ Ogﬁclﬁ’, xe¥,

the strong limit of ﬁ(O) StdE(t) for A—=>RN{0} exists. Then,



according to Corollary 2.2 E is the spectral function of an
operator belonging to &(0). By Corollary 2.4 and Theorem 2.3/
E is the spectral function of the operator A’ defined by

A’ =s~-1im (P+p ) tdE(t)§ +s=1im 5 tdEﬁjP+
0 (0) (0)
LIRS {O; & ﬁ ~PIR N {05 A ;

An operator BE€(0) has E as its spectral function if and only
if B=A'+N’, where N’ is a nilpotent selfadjoint operator with
E(ﬁ)N’zN’E(&) for every &égﬁYO) - A;#O. This result contains

that from [8].

2.3. In this sectien let & be a slosed neutral subspace
of . and d a c.n.d.c. of L. Assume that in the (£,dl)-decompo-
. . 4p ‘ v w h L o
~sition of { the intersection o« A M is the direct sum of two

Krein subspaces ﬁ{z and §€3:

(2.9) 2€=&”4§~52+2ﬁ3+&& -

We shall say that an operator A&i@(O) is associated with the

decomposition (2.9) if for the spectral function E of A we have

~ ~ »~

v = ;’f’ = ,{n —? = AP N P 3
4 0 &, 0 &2 ; <m(0) chB , where g and *(0) are defined

with respect to the (&£ ,¢)-decomposition.

Let the operator A,&iNO) be associated with the decompo-
sition (2.9). Assume that “%1 is a c.n.d.c. of I different

/!

= : v \PL f L :
from cd . Denote by P, the projection on & ﬂui, corresponding

i
to.-the (Jf,oﬁl)—decomposition. Then as in the proof of Proposi-
tion 1.3 one can show that A is also associated with the de-

composition



We shall find necessary and sufficient conditions in
terms of the elements of the matrix representation of A w.r.t.

(29) for the fact that A is associated with the decomposition

(29)%
Propesiition 2.6.. Let A6 J0) have the matrix form
A A A A 1
lalle e o) 3 14
+
Ok A 0 A
A= . 22 - iZ Winti e = (2059
0 0 A33 A13
+
LO 0 0 All
With A =B A A o nilpotent A nd A 'aﬁé
vl s e L e e op
( = : :
A (B g3) {0j .

Then A is associated with the decomposition (2.9) if and

only if there is a k€& N such that the relation%A§l=O ;

=hl:

k
D — Y _+ + k = ‘x’
(2.20) §L(A N R (VZ_:,A?’BAI:))(AI =10
y=0
and
k-1
¥ + k-1-¥, _
hold.
 proof. Let A be associated with the decomposition (2.9).
Then
" ]
A, 0 Ay, 0
0 g0 0
il
+
0 0 Ay3 BAyg
+
0 G 0 Ayq




is also associated with the decomposition (2.9). We choose an

arbitrary ke N such that»Ak.zO. Then

11
] Sl iy o9 ]
00 S 7 £
;E@ ;1 135
. 6 0 0 0
o k =l oy o0t k~1-9
e £ D)
¥=0
0% 0 0
L. 21

Suppose that at least one of the relations (20 iand: (2. 11)
does not hold. Then we find an xe;£3+uﬁ, x#0, such that
A’kxe;f, This contradicts the fact that A’ is associated with
(2299

Conversely, assume that the conditidhs A§l=o, (2.10) -and
(2:11) hold for 'some k& N. It is easy to see that the rool space
of A' corresponding to 0 is ;f%é{z . Hence A’ is associated .
wien (2.9). By Theorem 2.2 also A is associated with the decom-

pos i thion. (2.9) ., : &l

Corollary 2.7. If under the assumptions of Proposition 2.6

we have
. ,
R (30 0 R @l =40}

then A is associated with the decomposition (2.9).



3. B DEFINITIZABLE OPERATOR WHICH DOES NOT SATISFY

CONDITION <C}L

In thié section we give Qn example of a compact operator
B€JD(0) in a Rrein space } with  ¢(B)c [0,400), which does not
satisfy the condition (CZ)' More precisely, for an integer
X >2 the operator B will have . the following properties

Gl e i . Ren

tZE“

(ii) The integrals S 2dEB(t), Ml o2 o e

[i1/n, =)
not uniformly bounded. Here EB is the spectral

function ehi e
(1ii): The root space of B corresponding to 0 is non~degene-~

rate and not orthocomplemented.

Let # be a Pontrjagin space of index X, let & be a

#-dimensional neutral subspace of ¥ and let ol be a c.n.d.c. of

-t 7 4 L i ,
L . We set :£2:={0€, XB:=$f N~ and consider the decompos i-
tion
(3.1) W1l o0 ol

a 2 .«_3

éﬁ3 is a Hilbert space. Further, we:consider an operator

- :
S 0
= i g
= |0 B Ao wor.too § Zf+a53 Fedl,
-
uO 0 All

with the following properties: A32 is a compact positive operator
i the Hilbert space 363 with 0 6GE(A33). Ay, is a.bounded ope-

. \,} oy
rator in L with



X . -1
£3.2) A11~O and All # 0
13 ?(<k3,( ) satisfies the condition
i a1 0] =
R g NR @]y = {o}

Then,sby Corellary 2.7, B is asseciated with fhe decomposition
(3v1). Tt is easy to see that (&) is contained in {0, o)

and all eigenvalues A#0 of A are algebraically simple. Since &£
is an A-invariant maximal nonpositive subspace of ¥ we find (see

o, 1.3 )]

5 e :
e %l . sl

Let %1> %2> <.+ be the eigenvalues of A. By Ei oa=l00

we denote the selfadjoint projection on the eigenspace corres-
ponding to %i' X’=$€O coincides with the root space of A
corresponding to 0. Then the relation All # 0 implies that

the operators

e
1 M
4
4
[ 2)
A
¥
N
=
955
I
bt
N

are not: undifornly bounded (F71, 15, Theorem 51) - Tet (€;) and
(Ji) be two monotonically decreasing sequences converging to 0

with the following properties:

(1) The intervals (%i—ﬁi s %i+6i) i e S
wise disjoint.
i) Thes relatitons 1%£— kil‘<ei co=l 2. o5 and

e~ < Ji , =10 . hewe )

] are positive

projections of rank 1, imply that the operators

QJ’\ 23 2

_ 4NfA’ i J=1,2,..., are not uniformly bounded.
i=1



For all /? >0 we set

Now we define a sequence (Aj) of selfadjoint operators in W,

We set
2 0
AL:= 0 e s
9 Te 2 13
+
_o 0 B

where Q is chosen small enough such that

i%i(Aj)”‘ }\i‘ <E‘i r HEi (Aj)"EJ“ < dfi r j—:'ll""lj ’

where %i(Aj) is the i-th eigenvalue of Aj and Ei(Aj) is the

corresponding spectral projection. As above we find

(3.3 : {A?ﬁx,x] 0, ><6§5.

Since 0 is an isolated eigenvalge of Aj gl 2 o EhedEeet
space of Aj corresponding to 0 is non-degenerate. We have
G (Aj) O, o0

Now we choose a compatible Hilbert norm f.| Anal

a

“Obviously, the linear space
JC:z{(Xj). : ijQ{ ' '>m. ijﬂ 2<< QO}

provided with the indefinite form t"°]j{ defined by



S e e o e e ¢

: > L
r(;/}/j L/%;Xry:ﬂf Ke=(x.), Y=o,
J

1s a Krein space., By Pj r J=1,2,..., we denote the projections

defined by Pj((x )

l:i)r:x. . Let B denote the bounded selfadjoint

L J

operator in X defined by

PjBszAj - PlBPj=O el 20 i 145 =

By (3.3) we have
(3.4) [p¥s a0 vnelll

The relations U(Aj)c. oo, =12, .., imply  W(B)C [0, 20),

Since the root spaces of Aj corresponding to 0 are non-degene-
Fate ‘the root space of B corresponding to 0 is alsovnon~dege—
nerate. Let'E be the spectral functien of B, Frem. (3.4) we

2%

Timd Ehat & dE(t)- converges. We eclaim that S 2% 2dE (t)

does not converge. Indeed, choose zé& Y so that the sequence

i =
(3.5) om0 ZEi(Aj)z,z]), e

is not bounded. Define elements % GLJ{ cog=l, 2 pin v, by

PjZ(j)“z and Pl%( J) =0, 1#j. The sequence (3.5) coincides
with
(L e e o
EA Ej,mﬂ

Since the sequence (\\%kjhl Vo=l o, s Beoumded iyl

t2%—2

the operators dEg (), j=i}2,..., are not

LA.- €., 00)
J J
uniformly bounded. This fact, the relations (3.4) and
¢ (B)G [0,9) imply that the root cpace of B corresponding to

QFti's not orthocomplemented.
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