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In the present ?pﬁr we inve

of certain groups acting on function fields of surfaces and

ahbelian

between
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stigate the field of invariant

.y)

varieties..This allows us to prove the equivalence

-

Kolchin's weak and strong normality }}l] in the case

of curves, non-ruled surfaces and abelian varieties.
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Throughout the paper we adopt the conventions in U}] Chape~

€3 ) ; . -
namely Fe 9 will be a finitely generated differen-

tial field extension of finite trans scendence degree such that

in =7

: and 9 have

he same field of constants L@ ; ~@ is

t

(6

o

~aically closed and #F is relatively algebraically closed

we denote by n,n ,.q  the transcendence degree, the Ko-

v'.v . . . s ; .. o §
daira dimension and the irregularity of %/ (»wend q are

defined
4 ';:“

is

Ther

1t e Reoall that ?E:%f is called weakly normal (cf, !l{J

via a nen-singular projective model. of F9 /7 F _where

an algebraic closure of 4= ,508‘12;] po.. b8 and  1I4).

e are two fundamental concepts of normality in Kolchin's

theory of dif rﬂremtxﬂi fields called weak and strang

) f’ (: f?" ~ ~ /7 L/ -
if G = % where G=G(%/F ) is the group of all
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strongly normal (cf, 11|p.756 or 270583 3¢ fer any

b

d E e (e > = 7 1 e
F - disomorphism 0 of H inteo an extension of %; the exten-

, ¢ @ e ; ¢ 2 G : ‘ :
sions tc %7  anp cr9 c 4§ are generated by cons-

e e .
tants, By Kolchin's theory Ll%},LiZJ if F=4 is strongly

normal then it is also weakly normal (and in fact a series of
remarkable properties hold strarting with the fact that G{(¥%/F)

is in a natural way an algebraic group of dimension n over~67).
An important question is.when are weak anc strong normality

equival&nt? We shall prove:

THEOQREM .~ Weak and strong normality are equivalent in each
of the following cases:

e
=%

g
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B) rm2,%¥mw.

e n::q,%rfé~09,

Case A) was wrav&d'by Kolchin [}1] p.B09 under the ad-
diticnal assumption that either F is algebraicallylclosed 6r
i =-co ; we shall prove it here in geperal,. Since A} for
M #-00 clearly reduces to C), the only things to 5rove are
B) “and C). Note alse that one cannot drop the assumption W -0
in 8); indeed one carn’'check, using comnutafions in l};j'pp.
792-795 -

that the purely transcendental extension

¥

e e e e R
T Tt e
(with derivation d/dx) is weakly normal but not strongly normal.
Finally let's make the following remark: if ng'%§ is. weakly

b} ~ - 2 Tl f f:;’ L Y o e A e |
normal then M< 0. Indeed rCF5 3 will be also weakly normal

and now apply:
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he an algebraically closed field of charac-
AE )

teristic zerco-and o8 1 tely generated extension ef L. Sup-
‘I"\ o
¥ e ~ SRETA o yeS P e o = =

pose that L =K where G is the group of all hmauiO*OQDﬂlﬁi

B

of L. Then - L/K hags Kodeira dimensien <

7 . “

Proof. Let X be a non-sinqular projective model of L/K

and suppose X has Kodaira dimensien 2 1. Then for some m > 1.

Re)

g oy e A G S 17 =3 2
the pluricanonical map X -------=> IP(H bxﬁCQv(mﬁy))mI} will have
5 PN N

an image Y of dimension 1. By a result of Deligne-Namikawa-

Ueno |21]p.182 G acts on IP via some finite group .o we

get
. e = =
Ke K)o e Kx)7=K and K(¥):k(¥)° | <
hence K(Y)=K, contr radiction. The lemma is proved,.

o
Veases - B) apc. C)F  din-

Now the above discussioen shows‘th@i
our Theorem we may suppose ¥ =0; in particular by Eh{] case C)
refers eésentia}ly to abelian varieties,.

.dients in the proof of our ﬁeérem will be:

1) the investigation of the group of automorphisms of a sur-
face (or abelian variety) globally invariating & divisor (see
Propositions 1 and 3),

2)a  reduction - criterion fcrvGalois ncyc}vs with wvalues
in-the auiommrp%ism group of an abelian variety {ece=Pro rC“!t on
3} our previous work on movable blnou13r1 1C°[j]Ef L (see

Proposition 4)

4) an argument of Burhs and Wahl [7] “roposition 5),

N
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2, Automerphisms of sur
=

fhis section is devoted to the proof of the following:

PROPOSITION 1.- Let X be a smooth projective non-ruled

iy
{65
G
®

minimal sur sver an algebraically closed field K .of

ic zero. Let D . he a divisor en X and put

L5/

characteris

Assume that K(X)7=K. Then either D=0 or the support of D

Recall from [1]p,74 ¥hot o A-D-E  eufve e & surfece is
a connected effective divisor all of whose irreducible components
Bl,.;..ﬁp are non-sinqgular rational curves with self~intersec-
tien ~2 _and for which the intersection matrix n(ﬁ..D.}ﬂ
is negative definite.

\

S /[ : =
Remark. The case t)ffO may really occur in Proposition 1l:

1

take X to be the Kummer surface associated to EXxE where

E 1is an elliptic curve and taeke D  te be the sum of the 16

distinguished (-2)-curves on X (ﬁea{ljp.ZSl), One can easily
G

check that K(X)° =K, where G is defined as in the Froposition

above,

~



We start by recalling some well known facts about automor-

x > . : ot o
phisms of projective varieties cf.[9].

Given a smooth projective K-varijety X(Kaig@braically
closed of characteristic zerc) its automorphism group Aut(X/K)
(or simply Aut(X)) is a group scheme locally of finite type
over K having at most countably many components; the connec-

= o . . : .
ted compenent Aut (X) of the identity is an algebraic group

over K, Furthermere Aut (X) is an abelian variety provided

w

X is non-ruled [i?[e If D is a diviser en X the greup

[}\Ut(X‘D)Z

by

. . el = -
g€ Aut(X); g D=D3J is a closed subgroup of Aut(X)

£

8o - e .
(X,D) its component of the identity,

and we denote by Aut
Now if A &€ NS(X)=Neron-Severi group of X, put Aut(x, })=
= §g é;Aut(X); gx:B:ZQ}; then Aut(X,) ) clearly contains
Aute(x}o Moreover the quotient ﬁut(x,:k)/ﬂuto(X) is finite
provided A ois ample.

Now @@ shall prove a series of lemmas. In what follows X
will be a surface (smooth, projective over an algebraically
closed field K of characteristic zere; te simplify proofs
we shall sometimes tacitly assume that K is the complex

field but results hold without this assumption).

LEMMA 1.- Let Ae€NS(X) with ().} )> 0. Then the quo-

tient Aut(X}‘A)/Autg(X) is finite.

v

Proet., Let usAut(x, A v)/"f““UtG

(%) —=—> OS] 0 ) be the



natural homomorphism, the second group being the group of all
orthogonal automorphisms of the lattice (NS(X),( . )) keeping
A fixed. Now Ker(u) o Aut(xﬁh)jﬂutﬁ{X) - for some (in fact

for any) ample h e NS(K), henmce Ker{u} is finite. Finally

by the Hedge Index Theorem,K ( .,) is negative definite en the

o

orthogonal complement of A in NS (KX)o hence O(NS(X), 2)

must alse be finite and we are done.

<

LEMMA 2,- Let D= 0 be\a diyiaor gl - X, SUPD(D)xgng,.\/Dp’

. g : e e e e
Ui integral curves. Suppose Aut(X,D)/Aut (X,D) . is infinite.

Then the intersection matrix ef the divisors: G15'°”Dp is

negative semi-definite,

Proef. Suppese there exist ml*"‘ﬁmp e such that
(2.2)>0 where J is the image of myOq+c..tm D in
. _ pp
NS(X) and leoek for a contradiction. Each ¢ & Aut(X,0) in-
duces a permutation of D},,,.,Dp so we have a natutal group.
homomorphism usAut(X,D) PG where S is the icorrespon~ .

P
: P
ding symmetric group. Now Ker(u)= gjz\ﬂut(x’Di)c: AUt A

since Aut(X,D) meets infinitely many components of Aut(X)
the same will hold for Ker(u) and hence for Aut(X, N)sicons=

tradicting Lemma 1.

LEMMA 3,- Suppose X is minimal,» =— O U e
a connected effective divisor on X, Supp(D):Dlx/...usz, Di

integral curves., Suppose the intersectien matrix of the divisors

Dl,n.an is negative semi-definite. Then either D is an

p
: < I P o = : e
‘A-D-E  curve or there exists an elliptic flbratzon(tijp‘lég)

i



e

f:X——> B such thet Supp{D) is (set-theoretically) a fibre

Proo% . It is an easy conseguence of [1] p.16,
that D is either an A-D-E curve or Supn(D)

I

s the supeort of an ellipfic cornfiguratien (see [1Jp.¢?3 for

A

the definition of elliptic configurations),. By classification
3 5 o ' JRE T ey k- 3 G
of surfaces with y@mu({}Jp,i&&) we get feur cases:

Case 1: X is hyperelliptic., Let ui:X e Bi’ il 2 be twg

distinct elliptivec fibrations and  F.Fo fibressf-—u, U res-
= Resrstie o
pactively ({?},FQ};z 1)s-0bince 82(X)x2 (cf.~[1J p.148), we get
b S = 12 s =3 S4 e e 7 A 3 T o ™ =~ £
D ﬁlslwaz?zﬁ a,e ) . Since (D.0D) € 0O we get a,2,=0 hence

say alxo. We get (D.Fz)zo hence u, contracts D and we

Case2: X 1s Enrigues, By Ll]p,??E/ if" Supptbl=SuppltE)
with E - an elliptic configuratien ‘thepm sither fEf or }at‘
is an elliptiv pencil and we are done,

Case 3: X is K3, Again if SupplD)=Supp{f) "with - E “an

0}

e
L3
o0

elliptic configuration then by Riemann-Roch hO(CQ(E));¢ 2
and lEi will give (via & possible Stein facforisation) an
elliptic fibration with the desired property.

Case 4: X  is -abelian, Thgﬂ O must be & smooth elliptic
curve (which may be assumed to pass through the origin of X)

and the dquotient map X —2X/D is the desired elliptic fibration



LEMMA 4.- Suppose X is minimal = 0O and let Dﬁé O

Naae
fote
(¢8)
fala
23
iy
-

1

be a connected effective divisor such that Aut(X D

nite. Then either U  is an A=DiE curve or there i1s an ellip=

67}
o)
(s
!
=
s
]
=2
—
f¢¥]
i

-5 8  such that Supp(l) is

Proef. L Autu(xsﬁ):l we are dope by Lemmas 2 and 3, If

—— : : : . - e .
A=Aut”(X,D)# 1 then by LB] or [l@} A is an abelian variety
L «{)I : ‘3 e :
of dimension 1° and X has a structure of gE=lzawhy

s Frecn fvif’ii}: on fho frhres

s s cesinscma e

Ve are cone again,

b . o1 o : : o=
LEMMA Siealet X ——9 IP be an elliptic fibration. Sup-
pose f ‘has at most two degenerste fibres and there exists an
S - 1 ; e ' - et
infinite e S P and an elliptic curve E with f

e all R e, ToEn X is ruled,

Proof, Let X & Pic(X) be ample relative to f -and put

baf—l(b) (scheme-theoretically) for all b.g B:IPlg Let B =

mv{b & B Fh is 8m00th15 and onfaf(ﬂo), We claim there is

/ . : X % ; £ K

an etale surjective map B —> 8 such that X'=X.><, B —>8
: o

is a projective abelian scheme, Indeed it is sufficient te find

a diviser B on XO which is étale over BO; We shall give
here a quick but semewhat rough argument for the existence of
VBK; one can of course make the argument precise by making a
syatematic use of QJ. Choose any diviser C on Xg which is
integral and dominates 80, Put-n\:[ﬁ(C):K(B)] and let Cr\Fb

be the corresponding O-cycle of degree m . on FﬁQb =8 ) eiel
5 L

=4

0]

B be'the setief 811 x & F_ - -for which mX«Cr\F5 ig linearly

orox
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. = = e P = b Lo o 2 3 ; = 3
equivalent to Zero on F.. Clearly ;ﬁadbmm does not depent

T3
5 Kt ias Lo (LY e Bl G ok | e £ * - e . i
on .- b. New the “"lecus of all cycles 3% as b runs through
: s s X S ; : ' Gy .
Bu ig g divisor B an ég which will be etale over ﬁgv
e o : / =
Now by Libilcczure 10, there is an etale finite map

i

struectiure
by base change from the universal femily U-——">M of projec-

tive abelian varieties of dimension 1 with polarisation of some

5

fixed degree and with level n structure, via a unique classifying
morphism B >M. Since each elliptic curve carries fi-

nitely many level n structures, e(5) is a finite set so e

, ' KX = KX : chels :
nust be ceonstant hepce X o E>c 87 & being an-ellipric

3

Baned

curve, We shall be done if we prove that B is & rationa

01

curve, But B_ is gither =0 —or ﬁ\\{ﬂﬁ hence 7, (B_ ) is

; = e = e
either 0 or /Z hence any etale finite co

v
either the -identity of B, or the map d:\{OH -*~7(£-\§O§

ke : — o KK -
> Z e e dy == Conseguently 3= >-B and we are done,

Z 5

O
Proof of Propositien 1. By the Lemma in section 1 we
have %0 =0 . .Supoese: D=0 anddet D D_ be

the integral components of D. As in Lemma 2 we have a group

Y,

: . e = ety el
homomorphism u:Aut(X,D) ) Sp‘ Clearly {K(k) ( ):K(A) ;}<GO
: Ker{u) . . : : v

MW e A particular if C is a connected com-

hence K({X} ;
Aut(X,C}

oonent of Supp(D) {(with the reduced structure) then K(X)

P

=K, Suppose C 1is not an A-D-E curve and look for a contre-

g

diction. By Lemma 4 there exists an elliptic fibration f:X—>8

such thet . Cs(E

~1

b)rcﬁ for ~some b e B-(where as Wsuel F de-

(x). x & By Lot b}?"“qu & B be the set of sll



points in B at which f has a degenerate fibre, We clainm

that for any g & Ker{(u)} we have 2 cow:iutative diagram

(‘ g 4
N -4 4
A b e A
f {

@g

N D5, W - . f 554 l. PR
with g & Aut{B), Since f%(j&x C% sdt-ds spvficient e Ehpck

the existence of the above diagram set-theoretically, Take

Vi

x‘a B and let's show that g(Fx} is contracted by f., We have
{ &~ denoting the algebraic equivalence) hence

}xﬁb hence ~(Q{Fx),Fh)¥O and we are éon@. Now we
got a homomorphism Ker{u) —> Aut(B) whose image H is
contained in Aut(B,b) N Aut(B +‘G'+bq}}'ég in Lemma 2 we get

a homomorphism VviH — SG so Ker(v)c AUt(Q,b)K\AUt(gbbl)m el

,@r\ﬁii{ngﬁ)e Mow
’1,3

{-
K K(Ez)‘i &KX

80 Ker(v) muwst be infinite, Consequently  B=TP ° and if

e = = P 3 vy - $ vl e
QJ}Ulbl,ce.ia % then 15 j?w@ < 2, in particular f has

at most two degenerate fibres, To find a2 contradiction it is

<

sufficient . Uy lisnge 5, te Pind an infiniteset S IP and

o

an elli ptlc grve £ such that F &E for all xé& s,
TF gﬁ B =1, take a sequence {gngnof distinct elements in
Ker(v) and choose an affine coordinate z ' suchi:that Bﬂ:{z:oogand
<2
*

g (z)=a_z+b s e K, bn € K, Supposing K is the complex

-

A



Sl

Field there exists z < K not belonging to the field gene-

-ated by all  a (z ) is a sequence

Gf distinct & o~ FZ for-all n (we

(9}

suppose that gimzﬂen11FVEa

- 5 1 g 3 S . gy o4 = g o foy 5 < e )

St ’/hL 3i‘ﬂzi cCnoese (:?n ana rad E}UCh that Bsnizﬂj ,;.0:7} and

o : - -
gﬁ(z)xanzq 8 £ K and conclude in the same way. This closes
the proof of Proposition 1. el R
3. Automorphisms of ebelian varieties

First we shall discuss a"reduction” problem for Calois co-

cycles with values in the automorphism group of an abelian

variety. For background and notations we send to [20].

et € be an al

jebraically clesed field of characteristic
sere K an extensiohiefi s C - and K':- @ finite Calois extension
of K. Let A be an abelian C-variety and identify A with
the component Aut’(A/C) of the identity in Autga/C) o Let

c & . UK, Aut(A/C)) be a = “cocyele (8o c s

a map OG(K'/K) = Aut(ﬁ(@CK“/K‘) satisfying the cocycle cile),

Define as usual a group homomorphism g:G{K‘/K)~4>Aut(Aé@CK°/K‘f
n/ 2 . A : T o =

by c(g)=c(g)e(l®g) anc put CA:A(&CK'/(G(K‘/K)bc). Then

A is a [Ke-variety such that CﬁJ@CK' jg - K ~feomarphic to

A® . K', We shall view K(CA) ~as a subfield of the function fField

Ki(A) of A®@.K: via the quotient map p:ﬁJ&CK‘ 7CA. Note

that p is faithfully flat., Finally note that foe each C-point
ol ALY, the right translation £ :A ———> A fndices a

; ¥ | $ . - i i bl ; :
iK'~automorphism f? K (A) ———> K'(A). Our reduction result i
ok



PROPOSITION 2,.- Let S be the set of all & A(C) such

e e P e e S ,
that - > (K{_ A)) = V(Ca;. 1f S  is Zariski dense in A(C)
1 : il

then ¢ & Im{Z

Proof. Suppese there exists g & G(K'/K) such that Teclg)
P g e e e s aled
¢;Aut (A @ JEAe) we shell preve that ' S is not Zariski
s
fense in A(C).

First we claim that for any &S there is a factorisation

>
&
@
I

|

y
>
8
o

SESSRS

» &
|
b
>

: , -

T oo o\ 2 5 - £ -7 - 5o 0 el % AN

Indeed by faithful flatness ok o, ﬁZAm c;écﬂK*/\!‘(d"
e

Ko . -
_hgﬁce j; (CjiA)C: C;;A' Now take Spec(K)  as a base scheme,

e

put T=5Spec(K) (Kbeing an algebraic closure of K) and B=Spec(K').
Taking -the functor of T=-points in the above diagram (and
writing A(T) instead of (A®K)(T)) we get:

(L@ 1)(T)

A(T)A B(T) ——————

> A(T)>< 8(T)
‘ \

p(T) e p(T)

N/
A e e T > ,4'.'5‘
ALY ) , 1)

where p(T) dis the quotient of the set A(T)>< B(T) by the

-y



4 {5 R { frg 4 .
group - G(K'/K} acting via c(T). Note that B(1) is 8 prin-

K'/K)., New for any o« & S de-

nete the corresponding poeint in A(T) also by of; then
L@ LJ(T) tekes (o, b)) dnte (@eol,b) Terall (a . biec

€ A(T)X B(T). On the other hand c(g) being an element in

Aut(A(ﬁhK‘jK') may be written ass c(q)s= At Cyé where %t
g g

is the left translatien with some element L A(K') and
J

O?jaé 1 is a group automorphism of A/C. Clearly U@ induces
i b

a group autamorphigm' A(T)—> A(T) denoted.also by <Téﬁ

Moreover if we wview tg 25 & morphism B —> A, it wiil&inm

duce a map. B(T)—> A(T} alsoc denoted by tq“ The map

« b} frem A[LTIC B(T) inte dteelf carries (& b}  into
,b}. Conseguently the map e{g){T) frem A(T)>= B(T)
into itself carries (& b} —inte | fp(a)+tﬁ(b)5b}, Finally

o b :

~ 2
the map c{(g)(T) frem A(T)><B(T) inteo itself carries ({(a,b

s

s

inte Og(a)+tq(eb} gb). Now by commutativity of the above

diagram of T-points we get that for any (@jb)eg 2 T) < B

the pairs (a+« ;b} and ( Uh(a}+tp(gb)+cx,gb) must be in the
i S I

same G{K'/K)~orbit hence there exists h & G(K'/K) such that

( Uh(a)+ ol

h<°<)+fh(hb);hb3:(CTé(a)+tm(gb}+o<,gb)

By hb=gb we get h=g hence U%ﬁcxjxcx. Since Ub.# 1 the
closed subgroup {o(@ ALC) ; O‘Q(O<)n<x}' is different from

A(C) and we are done,

We close this section by proving an analeg of Propesition 1

abelian varieties:



o= § 6}

CPROPOSITION 3.~ tet X he an abelian K-variety (K alge~
braically clesed of characteristic zero) and D a diviser eon it

= et O
such that  K(X} A( 17/ =K, Then D=0,

: = . - T : ; ;
Froof. Suppose ﬁ:# 0. Considering permutations induced by

/

D) on the irreducible components of Supp(D) we may &

suppose that D 1is an integral effective divisor, Identify

A with Auts(k}, Then me;ﬂ\ﬁut(xgﬁ}4 is & closed subgroup &
of X distimet from - X. Put A=X/Y . and let piX-—"A be
the natural projection and E=p(D0)., Sirnce Y is a normal sub-
group in Aut{X D), AUt (6, 0) - will still éct’cn A via some
subgroup of Aut(A,E). Note there is no a &A, a3 0 such
that  E+a=E hence by [}éfpg;&? and 94 Bl ﬁmplef Since

@ o RIAT OB z»:(x;"““.t(x’mmz<
we shall be done if we prove that ﬁut(A,E) is finite “Now
_ampleness 0? Edmplies that Aut(A,E) has finitely many
components, On the other hand -its connected component is con-
tained in A/*\Aut{AﬁE) which is finite by [}3}p,96 and we
are done,

4. Movable singularities. Conclusion.

This section is devoted to the proof of the Theorem stated
in the first section. Conventions and notations from the

first section remain in force in the present section.
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LEMMA 6.~ Let 'V be a normal model of % /3 . Thepn the

&

0
m

=T
o

g

0

o3

¥
b

s}

- ;
e e e e
Ll nae e )p\’ 3o R

(-, s ~ = /, = ) E -
o | GQ = 4 Tor some d& is the support af some Weil
% A‘/’ ’h -f v/ p (3437
s V oy F

i e =S 5 13 !
divisor=gn V [the recucec

iviser D whose support equals
5 will be called the divisor of movable singularities - see
e = 5 e = =

iqspsg* for a motivatioen of this terminology).

b 9

Proof, It is eaay fo ses that VN8 15 open (see for ins-
=

tance [bj}, The fact that S has pure codimension 1 is a tri-

vial consequence of normality of -\,

g
g
L]
@D
Em-}
}-...5
i
=
O
=
ey
UL,__J
(e
W
J I
4
2y
&2
Py
Q}.?
0
&)

R

is called @ Fuchs extension

it 27 atmits a non-singular projective model for whch
the -divisor of movable singularities is zero (i.e, S is empty
in Lemma 6). We will need the following corollary of }5]:
PROPUSITION 4.- Suppose . F is algebraically closed, If
[ ¢ s ~ : - s
= is a Fuchs weakly normal extension then Fe 9 ‘is

strongly normal,

his is en immediate consequence of Theorem 4 in LSJ

-
and of ]“j pp.400 and 419,

Remark. One can prove that the converse of Proposition 4
also holds i,e, that any strongly normal extension is & Fuchs

extension., We shall not need this fact h

@

Ee.

Here is one more ingredient for the proof of our Theorem;

* 3 e g T ] P - [ SR Tt R
it is essentially due to Burns and Wahl [7]:
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and V - is 3 men-singular project: Lo g
: oy i~ A Sy g F . T N S . AP
ne connected component of the d singular &5

can be contracted in the categery of projective surfaces. 1In

particular no such compenent is an A-D=E curve.

: = s = . i ;
Proof. Same arguments as 1n [{j; however,. since derivations

£ s i
¥ one will have to use

under can%ideraticnrww not vanish on .

%

-

Seidenberg's theorems in Matsumura's form [;6]°

JWe may suppose =0 ;we

s,

Now we start proving our Theorem, As we already noticed

only have to prove statements B) and C), First we prove them

o

: s y

under the assumption that & is algebraic cally closed, If n=2
MF - 00, take the minimal non-singular projective mocdel V of
(é)f’?’ o ! 4 I = 4 T 2 ,F ' % o e

oy and let D be the divisor of movable singularities, Then
124

-

sition 1 either D=0 or all connected c;mmonents ef D are

<
(..}?

)
e}

o e :
G(Ef/;?}c: Aut(V, D}, ¥ weakly normal then by Propo-
A-D-E curves. The latter possibility contradicts Proposition 5
se D=0 ‘and we conclude by Proposition &, If n=qg }by LIO]

et

C = 5 — ; = =
§ is the function field of some abelian J svariety ¥, 11T D
is the divisor of movable singularities we get exactly as above
- [nd Ay & B : B 2

e(%?/g-)c: mJt(V}b) and we conclude by Fro&gﬁltlon e

Now suppose g 1is not necessarily algebraically closed

and let F be an algebraic closure of F o ﬁote that the compo-
sitam 9%9 has a natural otructur@ et ity erwntla} field and

. 7 . ; -
its field of constants equals “U ,,Let s prove first the sta-
tement C). Start with W a non-singular projective mocdel of
& s a B el o e srohism W —> ‘ﬁ.lhl(’f}/ )
9 /F and consider the natural o ~morphism W AlbT(W/F

: ; o - i =
(notations being as in lﬁj ). By compatibility of Alb™ with




ot

T b1rnt1e:u~&1}:, the original morphism is birationsl; hence

wjm}zy‘r’*(wgg‘ﬁ} is a model of %/F , Since %=¢ is weakly
normal so is %« 3;5_{} =function field of lr‘s’ﬁéeﬁff: so by the-
first part ef our proof, Fe 53‘3 is strongly normal, In

particular if ﬁ»:::G(?%’j";’S;} then by E,EZ]@.&Q% sethe functien
field of AQT identifies with T ; 80 Wl@f is ?L
is;méorphic to AQF . Choose a finite Galois extension 2’

& = foeis o :
of ¥ such that W ®F is F -isomorphic te A®Z’ and

! /
(o~ N T 3 g ¢ . “ .
such that #c ¥9 is strongly normal with differential Galois

group A. The above isomorphism induces by [‘O-},P cocycle

Ce ot s 5,:3ut{,f&/cg )). Ve shall he done if we prove that

1,

cicomes fren" Z (F /3 4A). Indeed in this case Wo/ F  will

be a principal homogenous space for A; since. A=G(T% / I") we

get Ac G(%/% ) and we are done by a criterion of Bialynicki-

Birula !j’]

Now to see that ¢ comes from Z'}'(gt'/gt’}.ﬁ\)we apply Propo-
sition 2,so we have to check that the set of all x& A(H) such
that ﬁ{“’g‘}c@ - "3s Zariski dense in A{cg). But the Zmrﬁ.ski

1

be the injection induced by base

a closed subgroup A ef A. Let.

change and Hmim(i):}ﬁ normality of % /% and G‘}]ppadﬂﬁm

e

406 give 4= : ‘

! /i 1 = /\./i o >
hence 3 =(79 ) so by the Galois correspondence for Fec §@
we get A.=A and we are done,

eéi.q/z,e%L3

=



field of G(

We close by preving B). If Fc 9 1is weakly nermal, so

~ . Fu Cohr T A e
be #< 39 hence by the first part of our proef Fc 579
3 = e~ e e
be strongly normal. Now ?V{:r} 426, 79 is the function

& and since 3¢=0 5 G(¥4 /%3 ) 1is
hej¢ar surface, In particular y@:&5 n=¢ WwWe SO0 may Cconwe

by statement C). Our Theorem is proved,
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