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1. Introduction

Starting with the works: of J.P.Yvon [8] and F.Mignot [#] much interest
developped for the optimal control problems governed by variatidnal inequalities,
both from theoretional and numerical point of view. See the recent survey of
V.Barbu [1] for the elliptic and parabolic case, as well as the works of D.Tiba (51,
[6], [7] for the hyperbolic case.

A classical remark is that variational inequalities are, generally,
equivalent with minimization problem with constraints. In this paper we prove that,
similarly, there is a close connection between constrained control problems and
problems governed by variational inequalities. In a special case we even have
equivalence between the two types of problems. ‘

This gives a new interpretation of optimal control problems governed by
variational inequalities and provides a new approximation of constrained contro!
problems.

In order to make clear the above ideas we study the following simple
model problem (P): A

Let V, H, U be Hiibert spaces with dense and compact imbedding
VCHCV* and A : V-V*, B: U=+H be linear, continuous operators. We assume that
A is positive and symmetric:

(L.1) (Au, u)> ewliuf 2, w>0, ué€yv,

(1.2)  (Auy, v) = (u,Av), u,veéeV, :

where (>, +} is the pairing between V and V*‘L(i‘f Vs Vo H then (v19 \72} is the inner
product in H) and fi+li is the norm in V.

Consider the control problem

(P) Minimize { gly) + h(u) }
subject to
(1.3) y'+ Ay = Bu + f in [0,T],
(1.4) y{0) = Yo
(1.5) y{t)e C in[0,T],
Above CCH is a closed, convex subéet, Y€ Cs Ayy€ H, féLZ(O,T;H},
D Lz(Ofi'; H)-»R is convex, continuous, majorized from below by a canstant ¢ and

h : L70,TiU) = ]-00,+eq] is convex, lower semicontinuous, proper, satisfying



(1.6) lim h{u) = +o0.,
fUj>es

Under ’L'he above hypotheses, equation (1.3), (1.4) has a unique solution
¥ e T, viel” (U T;H) and (1.5) makes sense.

If we also have control constraints UGUO (a close, convex subset of

2(O T;U)) this may be implicitly expressed by adding to h the indicator function of
UO.

We assume the existence of an admissible pair [y, u] for (P). Then it is
easy to show the existence of at least one optimal pair [y*, u*].

The plan of the paper is as follows. Section 2 contains the main result on
the approximation and the equivalence properties of the associated problems. In
the last section we give an algorithm for the solution of (P) in the case of a more
specific example. .

Throughout this paper we shall denote by the same symbol }-} the norms
inH: U, LZ(O,T;H) or LZ(O,T;U) as necessary. \

2. The associated pmbiém

Let ¥:H=>] -, +e0] be the lower semicontiuous, convex, proper

function _ :
(2.1 P (y) = { 0 : LfyéCl,
+ oo otherwise.
With (P) we associate the approximate problem (P bk o0
(PE) Minimize { gly) + h(u) + 1/2 Jwl 2 } .
subject to :

2.2) y'+ Ay + g w=DBu+f,w ¢3Ry)

and (1.4). :

Proposition 2.1. There is at least one optimal pair [yE sug Jfor (P, ).
Proof.

leet { un} be a minimizing sequence for (PE ) and Y- the

corresponding solutions of (2.2), (1. 4) Then

g(y)+h(u)+l/2iw§ <C‘t, wéa‘,‘?(yn

Since g( 2 by (1.6) we see that {un} is bounded in L (0 Ll Also
{ ‘] is boundcd in L (OTH) Next (Z 2) and’ (1.1) give 'ynly bounded in
= (O,T ¥, sy } bounded in L (O Tt i

On a subsequcnce u -».>u weakly in L° (O Tl —éy strongly in C(0,T;H),
w ->w € ¥ (¥) weakly in L (O T;H) because 9¥ is demiclosed.

 Passing to the limit we get that ¥ is the solution of (2.2), (I:%)

corresponding to U and

g(¥) + h(@) + 1/2 [Cv"f < lim 11\.1%5(y )+ hlu)+1/2 [w | 2 }: inf(P

n —2eo

¢ )



Therefore [¥,1] is an optimal pair for (P¢ ) which we denote [y, U I&

Remark 2.2. The idea to penalize the nonlinear term in the cost functiona!
comes from the unstable systems control theory J.L. Lions [3], J.F. Bonnans [2].

Denote by 7, ng the cost functional for (P), (P ) and by J*, 3:‘ their
minimum values.

Pr cpfa sition 2.3. W When ¢-»0 we have on a subsequence:

(2:3) Uy & weakly in LZ(O,T;U),
(2.4) Ye mw? strongly in C((0,T;H),

o 1= ker, |
where [¥,4] is an optimal pair for(P)
Proof
For any admissible pair [y,u] for (P), 0& 3¥ (y) since y(t)¢C, t¢[0,T]and ¥

may be viewed as the solution corresponding to U of (2.2), (1.4) with w = 0.
Therefore J¢ (y,u) = I(y,u) and J ¢ by )= I5 <3 ferany €20,

As in the ptoof of Propcmmcm 2.1 we get {u 9 bounded in L (O s U)
{ng}‘ bounded in L (O TH) {yg 9 bounded in L% (0,T;V), {yi} bounded in
L0, TsH). :

- On a subsequence u, -0 weakly in LZ(O,T’;U), Ve -7 ?strohgly in C(0,T;:H).
We remark that ¥ (t)edom(@?)=C for all t€¢[0,T], so /}\;(t)é c,
t&[0,T]

One may easily pass to the limit and check that [¥,0] is an admissible pair
for (P).

Moreover
(2.6) 3% hm)10m e O sy 22 IY,0) + 1/2 hv) s

Then & = 0 and [$,4] is an optimal pair for (P).

By (2.6) we get that lim J¢ (y, ,u, )= 3

Let y & denote the solutlon of (1.3), (1.4) corresponding to ug . The pair
[yt ,ué] is not necessarily admissible for (P), but we can compute J(y€ g ) and
prove the following suboptimality corollary:

Coroiiaz‘y 2.4. We have
(2.7) hm 1 5 ue )=
(2.8) dmf(y, (1), C)<k °E
where k depends on 3%, g, h only.

Proof.
Denote z; = yi - Yg - Then it satisfies
(o) Z"E, - AZE = € Wg in £0, 71,
Z ¢ (O'\- =0 ‘
By the assumptions on h we see that.it is also majorized from below by a

constant, say c,. Then, by (2.6) it yields



I/thgl 25_3* o=

Taking into account (2.9} we abtain that (ze (t)f_<_l<»€ and since
Ye (t)¢€ C, t¢€[0,T], we prove (2.3). '

By (2.4) and (2.9) we infer that on a subsequence yE«r,)\? strongly in
C(0,T;H) and from the continuity of g that gly€ )-»g(y). .

On the other hand gly, )«ag(?/) too and by (2.6) hlug )= h(3).

Finally, J(y & U ) =gly® )+ hiu ¢ -3 on the initial sequence.

Remark 2.5. By the above result, it is enough to find the solution ug of
(PE ) for ¢ sufficiently small. However (P; ) is a nondifferentiable optimization
problem and may be difficult to handle. In order to overcome this difficulty we
replace &f by _/},?‘ » 420, a smooth approximation of (3¥),, the Yosida
approximate of &Y . This is a usual procedure in the control of variational
inequalities, Barbu [1]. See also the last section for more details in an example.
(P, Winimize { g(y) + htw + 1/2 | )| 2}
subject to
(2.10) - Ve fys c,/f“(y) =Bu+f
and (1.4).

Obviously, (P4 ) has at least one optimal pair which we denote [/\ Uy Je
Let y * denote the solution of (1. 3), (1.4) corresponding to u 5

Corollary 2.6. We have:
(2.11)  dist (y* (1),C)ik € +n (A), te[0,T]
where 1(%)->0as »-0.
@2:.12) =gy uo il o e (0], 300,

where ¢(¢ )-»0as ¢-0.

Proof. ‘

Since y*()¢ C , t€[0,T] we see that /@;\(y*(t))s Oiamd iy, wSl is an
admissible pair for (Py ) with b -0 Then ] G us K35, X >0 and
tth shows that | u xll is bounded in LZ(O,T;U), { _/?,’\(y;\)} is bounded in
L (O T;H). By (2.10) it yields {yk\] bou‘nded in L”"'(O,T;V), {yl\ } bounded in
& (O TsH).

On a oubsequenco, we get

uy - U‘& weakly in L (O e

yy.;. yE strongly in C(0,T;H),

/A {y, ) —2a¢ (yg ) weakly in L (0 T:H).

. Passing to the limit in (2.10) we obtain that [y ’UE ] is an admissible pair
for \P ), therefore y (t)€C for te[0,T]

We conclude that lim sup dlst(y (EhC)=

A0t [OT]
and we take n{\) = sup dist(y (t);C).
te [o T]
Denote z, = b o Y, « By an argument similar to (2.6), (2.9) we see that

|z, (t)| <k¢, 1¢[0,T]and this finishes the proof of (2.11).
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As concerns (2.12) we remark that:

I juy ) = 3, Oy s ) - 12 420 | 24 gly™) - gly, )<3 (v ouy )+

+ gly?) - gly, KI* + g(‘y’f‘> - gy, ).

Using once more the estimate for zy and the continuity of g we finish the
prooi.

Remark 2.7. By the above result Ug, is also suboptimal for problém (B).I5
compute it one may use a gradient method in (P, ). Since the estimates for (P, )
are independent of £ , we may chose £¢ smaller than )\ . Then we avoid the usual
troubles in computations related to the penalization method, Yvon [8]. Equation
-(2.10) as well as the adjoint equation will be well éon.ditipned.

Now we turn to the special case when (P) is equivalént with a problem of
type (Pg ), slightly modified. . '

We assume. that U =H, B is the identity operator and h(u = ful. We
associate with (P) the problem
(Pa) Minimize gyl + luf + | wl}

(2.13) y' +Ay+w=u+f,w £39(y),

y(0) = y

The équivalence result is:

Proposition 2.8. :

i) Any optimal pair for (P) is optimal for (Pa)

i1) For any optimal pair for (Pa) [y,0] let e (y) be associated through

(2.13). Then [y, u - Wlis an optimal pair for (P) t00 .

Proof.

Let [y*,u*] be optimal for (P). We have y*(t)e C for t& [0,T], that is
0& 3% (vy*) and [y*,u*] is admissible for (Pa) with Ja(y*,u*) = J(y* ,u*). It yields
U , | | ,
Since W ¢ 9‘(’(9) we have that /)\/(t)é dom(3¥) = C for all t ¢[0,T] and by
(2.13) [¥,0 - W] is admissible for (P).

We have:

7% <3350 -

Therefore J* = 3 ‘and the proof is finished.

3. An Algorithm

W =g+ 10- 0] g®+ 101« lwl~J(y,u):J;.

In this section we detail the application of the gradient method to (P’\ ) in
the case of an example. :
We Lalxe Hi=L (Q) V = HO(.Q) {1 a bounded domain in RN

Laysn ) is the

- B:U=L (ﬁ) is a linear, continuous operator and A : HO(

Laplace operator with Dirichlet boundary conditions.
We consider :
) gv) =h(v) = 1/2 |v

and the constraints set:

l 2



(3.2).  C={yeLXayy>0 ae 0.
We define ‘¢ as the indicator function of C on Lz(ﬂ) and let /@.:R@R be

the maximal monotone graph

0 >0
.2) ()= 1 = 0] = 0
0 B,

Then, we have:
G4 300y = hwerXay \V(Y)c/g(y(x})ae ol

The smooth approximation A is obtained as the reahzatlon in L7(ﬁ) of:
(3.5 PO= [plrex- A8)ple)ds, reR.

Above /3:\0015 the Yosida approximation of /3. and P 13 a Friedrichs
mollifier, x.e.,f 20, p(-2)=p (T) suppf:s(.‘: Pl L f e Co(R), S f (¢)de = 1.

We remark that /.;}' has the properties used in Corollary 2. 6.

Now, the problem (P4 ) is completely defined and it is quite standard to
obtain the optimality conditions:

Propesition 3.1. There is p, € WI’Z(O,T;H)H I (O,T;Hé(.ﬂ_)) such that it
satisfies together with Yo U x :

Yi-Ays + AMya)=Buy +4 .

= p'h —bpy Vﬂ)‘ (yx)p/\ =Yy + (Q?\(y)\) . ‘;r‘/f,/'(y;\),

¥ ltw) = p .,\(“t,x) = Den 0L %1011,

Vs (0,x) = yO(x) inQy,

sl X =0 inf,
ey
B Py +Uy= 0.

Proof.

This is based on the fact that the Gateaux differential of J\, as a
functlon of the control u only, exists and equals

B* By (in the point u)\). . .

Above V/f‘ is the usual derivative of function /3 ¢

We are prepared to give the algorithm:

STER 1. Let U, be given and set n = 0.

STEP 2.-Compute 0 from the state equation.

STEP 3. Test if the pair [y", un] is satisfactory.

If YES then STOP, otherwise GOTO step 4.

STERY, Comput¢ Ph from.the adjoint equation.
. STEE PR 5: Compute S by

Yl s Grn(B% Bt Un)'

STEP 6. n: =n+l and GO TO step 2,

Above y" is the solution of (1.3), (1.4) corresponding to u_. The test
involved in step 3 concerns the violation of the constraints and the value of the

cost
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functional and may be suitable choosen. In step 5 g is a real parameter which

may be obtained via a line search.
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