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l. Introducticn

Start ing with the. works of J.P.Yvon [8] and F.Mignot [4] much interest

developped for the optirnal control problems governed by variat icinal inequali t ies,

both from theoretional and numerical point of view. See the recent survey of

V.Barbu I l i for the el l ipt ic and parabolic case, as well as the works of D.' f iba [5],

[6], [7] for the hyperbolic case.

A classical remark is that variat ional inequali t ies are, general lyu

equivalent wit l ' r  minimization problem rvit lr  constraints. In t l i is paper we prove that,

similarly, there is a close connection between constrained control problems and

problerns governed by variat ional inequali t ies. In a special case we even havc

equivaience between the two types of problems.

This gives a new interpretation of optimal control problems gcveined b1'

variat ional inequali t ies and provides a new approximation of constrained control

problems.

In or<ler to make clear ttre abr:ve ideas we study the following simpltl

model problem (P):

Let V' H, U be Fii i i :ert spaces with dense and compact imbedding

VCi{C\ / 'x  and A:  V-rVx,  B:  U+H be l inear ,  cont inuous operators"  ! i le  assume that

A is  pos i t ive and symmetr ic :

( l . l )  (Au ,  u )>  c . ) l l u  l l  
2 ,  6 )0 ,  u  €v ,

(1 .2 )  (Au ,  v )  =  (u ,Av ) ,  u , v€  V ,

rvhere ( . , . )  is  t l - re  pai r ing between V and v"( i f  ,1 ,  uz H then (v ,  vr )  is  the inner

product irr F{) and f l . l l  is the norm in V.

C*nsider the control problem

(P) &4in imize {  s t r )  +  h(u)  }
subject tr.r

(1 .3)  y '  +  Ay = Bu + f  in  [0 ,T1,
(1 .4 )  ) ' ( 0 )  =  yO

(1 .5 )  y ( r )€  C  i n  [0 ,T ] .

A i :ove CcH is  a c losed,  convex subset ,  /g€ C,  6VO€ I - i ,  f  SL2(0,T; l - l ) ,
)

g: L-(6,r. t  F'{)-r i ' l  is cc,nvex, continuous, rnajorize:d from below by a c*i istant c and

h : L'(0, ' l ' i i .J)+]-*o,+ocr] is convex, lower semicontinuous, proper, satisiyirrg



(1 .6)  l im h(u)  = *oo.
I  u i+oc

Under  the above hypothesesu equat ion (1.3) ,  (1 .4)  has a unique so lut ion

y 6C(0,T;H) ,  y 'eLZ(a,T; l { )  and (1.5)  makes sense.

If we alsc' have control constraints u 6 UO (a close, convex subset of
t '2(O,t;U)) this may be inrpl icit ly expressed by adding to h the indicator function of
t l.-0'

We assume the existence of an admlssible pair t t ,  , l  for (P). Then it  is

easy to show the existence of at leas't one optimal pair lyo, u*].

The pian of the paper is as fol lows.'section 2 contains the main resuit on
the approximation and the equivalence propert ies of the associated problems. In
the last section we give an algorithrn for the solution of (P) in the case of a more

speci f ic  example.

Throughout this paper we shall  denote by the same symbol I ' l  the norms

in H, u, t2(o,t; l- t) or L2(0,T;u) as necessary.

2. The associated problern

Let ' f  :  H+] -"n, +oc ] be the lower sernicontiuous, convex, proper

function

(2 .1 )  Y (y )  =

With (F)  we associate the approx imate problem (pE ) ,  €)0:
( P r )  t u l i n i n r i z e  t e ( v ) * h ( u )  +  t l z  l ' l  

2 ]

subject to

( 2 . 2 j  y ' +  A y  +  g  w  =  B u  +  f  , w  € a W V )

and  (1 .4 ) .

Proposit ion 2"1. There is at least one optimal pair [y, ,u, J1g5 tnu
Froof.

Let t u-l  be a minimizing sequence for (Pg ) and yn the

t :_ . i f  y € C ,

otherwise.

corresponding solutions of (2.2), ( i .4). Then

g(yn)  + h(un)  + i /z  I  wnl  25 
" r . ,  

*n6 DS( vn) .
Since g(yn))c ,  by ( t .e)  we see that  {un}  is  bounded in  LL(0,T;U) .  A lso

r 1
{-*n} is b.ounded in L'(o,T;H). Next (z.z) and' ( l . t )  give { tn !  bounded in
t* io,t;v), { rL } bounded in r2(o,t;l-l).

On a subsequence^un-nU weakly  in  LZ(O,T;U)r  yn+is t rongly  in  C(O,T;H) ,

rd+;6 aY (y) weal<ly in t-2{o,f;H) because $f is demiclosed"

Passing to the l imit we get t l iat 7 iu the solution of (2,2), (I tA)

corresponding to fand

X:,Y{*r'n) 
+ h(ueff l  * h(' [) + l l2 lWl 

2<
n) + t lz  I  *n l  2. f  = int tn,  ) "



. 'lherefore 
[7,fr.1 is an optirnal peiir for (P, ) wliich we denote [V, ,U, 1.

Rernank 2.2. I 'he idea to penalize the nonlinearterm in the cost functional

comes from tlre unstable sys'tems control theory J.L. Lions [3], J.F. Bonnans [Z],
Denote by J, J, the cost f uncticinal f  or (p), (p ) and by J*, Jf, their

min imum vaiues.

Fropositicn 2"3" Yl,el
(2.3)  uu* t
(2.4) ye * ?
(2 .5 )  J f  *  J "  n  {  {J  

* ,

[-+ 0 ryg hilyg.ol Lst&segugleg:
we-gt<iy in t2(o,r;U),

strgrrgl)r ig C((O,T;H),

where [f,t] is arr oetimal pair for(P)

Proof

For any admissible pair  [7, [1 for  (P),0e )?(!)  s ince V(t)e C, te l0,Tl  and y
may be viewed as the solution corresponding to I of (2"2), (1.+) witfr w = 0.
Therefore Jt (t,[) = J(t,u) and Ju (ye ,ug ) = Jf !J* for any €')0.

As in the proof of Proposition ?.t we get t "e ! 
boundecl in L2(0,T;u),

l;r, l  bounded in L2(0,T;H), 1 t, I br:uirded in t@io,T;v), t vi l bounded in
i'ti ,, ,nl. 

\ ' t

on a subsequence ua -. t  weakly in L2(0,T;U )t ys a

We remark that  V,  ( t )e  dom(af  )  =  C for  a l l

t6  [0 ,T] .

One may easily pass to the l imit and check tft"t  i f ,0l is an admissible pair

for  (P) .

Moreover

(2.6) r*2 ti.r'n tlt"ru (y6 ,u5 ): i(i,t) + tl2lt, I 2rr*
l + t

Th*n b'='0 anA t$$l is an optimai pair for (p).

By (2.6)  we get  that  l im Je (y 'u ,  )  =  J*"

Let y E a*nor. the s:ttqon of (1"3), (1.4) corresponding.to ut .  The pair

[y t ,ur l  is  not  necessar i ly  admiss ib le  for  (p) ,  but  vre can compute ] (y€,ug )  and

prove the fol lorving suboptimality corol lary:

Corollary 2"4" Wqhave

( 2 . 7 )  l t p  J  ( y e , u r ) = J o
(-+ n

(2.8) dist f lv ,  ( t ) ,C)( l< .E

where k depends on J*,  g,  h only.

Froof.

D e n o t e  , t =  y L  -

( 2 . 9 )  , ' L + A z ,  = € w t

z E ( 0 ) = 0

By the assutnptions on h we see that. i t  is also majorized fram below by a

constant ,  say c l .  Then,  by Q.S)  i t  y ie lds

f  st rongiy in C(O,T;H)"

r € [o,T], so ](t) * c,

yE . Then it  satisf ies

in  [o ,T] ,



Taking into account (?"1)) v./* r: lrain that I z, (t) l  Sk.f and since

ye (t)€ C, t 6 [0,T], we prove (2.8).

By (2"4) and (2.9) we inf er that on a subsequ*n." y[* ]  strongly in

C(0,T;l- l)  and f rom the continuity of g that g(ve )*>S(i).

On the other lrand g(yg )*g(' l ' )  too and by (2"6) fr(ug )+h(0).

F ina l ly ,  J(yL;ua )  = g(yr ' )  +  f r {ug )* rJ*  on the in i t ia l  sequence.

lternark 2"5, By tlre above result, it is enor"rgh to find the solution ug of
(P, ) for e suff iciently small.  Flowever (R* ) is a nondifferentiable optimization

problem and may be diff icult to i landle. In order to overcome tl" l is diff iculty v,,e

replace Df  by 7rx ,x>0,  a  smooth approx imat ion of  (a  f  )^ ,  the Yosid i r

approximate of AY This is a usual procedure in the control of variat ional

inequali t ies, Barbu [1.J" See also the last section for more detai ls in an example.
(P^ )Minimize { B(y) * tr(u) + l /2 I  Atvi  I  2 

}
subject to

(2.10) y' + Ay * L ft \  (y) = Bu +. f

and  (1 .4 ) .

Obviously, (P 
1) has at least one optinial pair which we denote [y^ ,u1 1.

Let  y  I  denote the so lut ion of  (1 .3) ,  (1 .4)  corresponding to  u a.
Coroilary 2.6. We harle:

d is t  (y ' \ ( t ) ,C)Sk  e  +  1( r ) ,  t€ [0 ,T ]

1(r  ) ->o as )-+0.

J(yx,u. ,  )51* n o-(€ ) ,  7.  >0.

o- ( t  )+0  as  g+0.

Proof.

Since y* (t) e C

admissible pair for (P^

this shows that L u *\
t2(o,r;H). By (z,ro) i t
t2(o,t ;H).

On a subsequence, we get

" u,r+ tt wealcly in L2(o,T;t*l),

Va+ V, stronglY in C(O,T;H),

f t^  (v,  )  *olV ( [  )  weat<ly in L2(o,T;H).

. Passirrg to the l imit in (2.10) rve obtain that

for (P, ), therefore 7, tt l e C for t r[o,T].
\ lVe conclude that l im sup dist(yr (thC) = 0

t+ 0 t  [0 ,T]
and we ta l<e { \ )  

=  sup d is t (y  n ( thC).
t  e  [ c ,T ]

Denote z\ * y  ̂  - y^ . By an argument simiiar to (2.6), (2.9) rve see that

I z^  ( t ) l  Sk  E ,  t 6 fO ,T ]  and  th i s  f i n i shes  the  p roo f  o f  ( z . l l ) .

,  te  [0 ,T]  we see that  4 \v*( t ]=  0 and [y* ,  u* ]  is  a .n

)  w i th  J r , ( y * ,  u * )  =^Jx .  Then  J r . ( y^ ,  u , .  XJo ,  l  ) 0  and

is bounded in L{$,T;\J), { rr^(v^ I } is bounded in

yields t Vu ) bounciecl in Le (o,T;v;, t V;. ) bounded irr

( 2 . 1  i  )
where

(2 . t2 )

where

r v u a .
[y . .  ,u .  J  is  an admiss ib le  pai r- E -  

C



5 -

As concerns (2.12)  we remar l t  that :

J(yl,u, )  = lr(y,. ,u> ) -  t lz]g,4A(y,.  )  |  
2 * g(yr) -  g(y,,"  )5J^(v^,ur. )  +

+ s(Yl) ' -  g(y,r )SJ" * S(yr) -  g(yx )"
Using oncc' morc t lre estimate for ztr and the continuity of g we f inish the

proof.

Remark ?"7" By the above result u^ is also suboptimal for problern (P). To

compute it  one may use a gradient rnetirod in (\ ).  Since the estimates for (PA )
are independent of e r we may chose € smaller than \. Then we avoid the usual

troubles in computations related to the penalization method,. Yvon [8]. Equation
(2.10)  as wei l  as the adjo in t  equat ion wi l i  be wel l  condi t igned.

Now we turn to the special case when (P) is equivalent with a problem of
type (Pg ), sl ightly modif ied.

We assume. that  [J  = Hr  B is  the ident i ty  operator  and h(u)  = lu  |  .  We

associate with (P) the problem

( P a ) M i n i m i z e { g ( r ) +  l u f  +  i * l }
( 2 " 1 3 )  y ' + A y + w = u + f  , w  € t s f  ( y ) ,

y(o) = yo.
The equivalence result is:

Proposition 2.8.

i) AgSplfnelpefllg. (P) is optirir?l for (Pa).

i i) Forjr, ly optinral paif fol (pa) ti,ff l  let t, € )v (i) be assgciated throu8h

Q,I3). Then tf iO - ft l is an optimal.pair for (p) too

Frclof "
Let [y*,uo] be optimal for- (P). We have y*(t)€ C for t6 [0,T], that is

08 DY (y*)  and [y* ,u ' * ]  is  admiss ib ie  for  (pa)  wi tn  Ju(y* ,u*)  = J(y ' * ,u*) .  I t  y ie lc ts

J*  <  J* .
a -

Since 6 e aV( ' i )  *"  have t l rat  i t r le l rdeY) = C for al t  t€[0,T]  and by
Q.t3) t i,0 - Sl is aamissible for (P).

We have:

r "5 r t f ,0 -C)  =s( i ) *  l l -01  ss t l l  *  t t l  .  i t , l  = ru t i , t l= r l  .
Therefore J* = Jx and the proof is f inishecl

3. An A'lgonithm

In this section we detai l  the application of the gradient method to (P-, ) in

the case of an example.

We take H = Lz$L\ v = ul(fl), 0 u bouncled domain in RN.

B: U*L2(n) is a t inear,.Sntinuou, operator 
"no 

^ ,  n;f tr l" l - t- l (n) is rhe
Laplace operator with Dir iclr let boundary condit ions.

We consider
( 3 . 1 )  g ( v )  =  h ( v )  =  l l 2  l v  l 2
and the constraints ser:



$ . 2 ) , C -

We

the rnaxirnai

(3 .3 )
{2f i=

y>0 a.e. 11").

the inrj icator

aph

I 0
I  f - * , 0 1
t f r

{ y e r-2(n);
define Y as

rnonctone gr

functiorr of C on LZ(f"r) an.t

r ) 0

t = 0

r ( 0 .

let 1t:R.-+R be

such that it

un. The test

value of the

Then, we have: b

0"q) a y(t,) = ! o, (,  Lz@.)t rv(x) c-73(y(x))a.e. O- ) ,  y et26z).

The smooth approxirnation ,+' ir  obtained as the realization in l2(f l) of:
tu .  .  .  f  Od :

( 3 .5 )  p^ ( r )=  J13^ t r "  + . \ -  . \  a ) y { "e }de , rGR.
Above 4x is the Yosida approximation of ,P' and .p j:r a Friedrichs

m o l l i f i e r , i . e . " p ) 0 ,  y ( - a ) = y  ( t  ) , s u p p f  c [ -  t , t ] ,  f  € C * ( R ) ,  J : g ( " ) d ' 6 =  t .
We remark that 4,4 h"r the propert ies used in Corqllary 2.[

Now, the pnoblem (Pr ) is completely defined and it  is quite standard to

obta in the opt imal i ty  condi t ions:

Prory;sition 3"1. I!,*:S_E p ̂  € w 1,2(0,'f 
;m) nr-* to,f ;Hjtn))

M Y ; \ , u > . :
y l - A y x  +  4 ^ ( y " ) = B u \ + f ,
-  p \  -  apt r  +  v  r t \  U^)p^ = y) .  +  rgo(y^1.  " i (yx) ,
Yy(t ,x)  = p\ ( t ,x)  = 0 on .b f l  x l0 ,T[n

Y\ (0,x) = YO(x)

Px ("f ,x) = o

in fI ,

inj l  r
g o p x  +  u ^ =  0 .

Proof..

Tlr is is based on the fact that the Gateaux cj i f ferential of J. .  as a

function of the control u only, exists and equals

B*p^ *  u ,  ( in  the point  u^) .

. Above 
"A 

is the usual derivative of function f\.
We are prepared to give the algorithm:

STEP l. Let uO be given and set rr = 0.

STEP 2. .Compute yn f rom the s tate equat ion.

STEP 3. Test i f  the pair [yn, u,^, i  is satisfactory.

If  YES then STOP, otherrvise GOTO step 4.

STEP 4. Compute p,.. ,  from the adjoint equation

. S'IE.P 5. Conrpute un.," i  by

un+l  = un -  crn(B*pn n un) .

STEP 6 .  n :  =  n+ l  anc l  GO TO s tep  2 .

Above yn js  the so lut ion of  (1 .3) ,  (1 .4)  corresponding to

involved in step 3 concerns the violation of the constraints and the

cost



. r l ; {  . . .
r , l

1̂,
7

. functional and may be suitable ch+osen" trn step : q is a real parameter which

may be obtained via a l ine search.
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