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THE LINEARIZED PROBLEM IN ADTABATIC MULTIDIMENSIONAL

»

GASDYNAMICS (T)

by

Liviu DINU

vastract

For systems of conservation laws Dl.l), e, sl 1)
(4.1):lone discusses the manner in which the nunber of spaée
dimensions and/or the number of gquations influences the étruc—
ture of .the set of concepts/restrictions connected with the li-
nearized well-posedness (see also [ﬁ})[3j— [8]); the points of
this‘discuSsion are gathered up in the table on page 27. Moreover
(see [4], LS]), the remarks of ¢3 show that in adiabétic gasdynaQ
mics 2D in space, it is possible to formulate,,for certain equa-
tions of state, an (exponential) criterion of linearized stabili-
ty/well-posedness,.This criterion doesn’t work (for instance) for
- equation of state (4.3). In‘such a case the possibility of linea—
rized sfability /well-posedness should be.studied by starting

directly from the solution.
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1. LINEARIZED PROBLEM FOR A SINGLE CONSERVATION LAW,
1D IN SPACE

1.1. Wording up of linearized porblem

Let us consider the Riemann problem

Glleesll) ?E + Dg(i)v =0 , «ocoxx<sw , t>0
: up tor x <0
@.2) : u(x,0) = :

.ur‘ for x>0

where up and u_ are constants, u. # up and f" # 0 on a certain
domain in which u takes values.
A discontinuous solution of (l.l) satisfies, at the points

of a discontinuity line, the relation

1.3 H:f(u):U= Dﬁ:u] -

e . e _ :
where &f(uﬂﬁ —f(ur)~f(u£),{ﬂuﬂ = u,. - up and D denotes the speed
with which the discontinuity propagates.

A discontinuous solution of Riemann problem is called

admissible if it can be regarded as a non-dissipative limit (¥-pl;

of a solitary wave solution of Burgers equation Qtu + Dxf(u) =

=ﬁ3ixu. In this case we say that the discontinuity involved in the
solution has a structure.
We can show (Sce,; for example,[3j) that a discontinuity hac

destructure iff the ‘conditions

(42) il (ur) < D < f'(up)

are fulfilled.



If dn (1.1) £">0/£f"< 0 then the conditions (&) demand, in

partigulaf,'that u_ < up/up< u, ;n L2
We shall abbreviate the admissibility conditions () by
CEL (entropy conditions of Lax) and assume that, on tbe afore -
mentioned discontinuity, these conditions are fulfilled.In fact CEL are
conditions of determinacy (through initizl data aﬁd-jump relation) imposed to the
piecewise constant solution of the Riemann probleml).
‘ In the perturbation theory we shall present hereinafter in
this paragraph, this solution plays the part.of.the "zeroth order ™,
Let £ be a parameter of the problem, small'in comparison

with the constant states adjacent to the discontinuity and also

small in comparison with the magnitude of the jump through discon-

tinuity

(1.4) 0 < E.éilud =

2

In . a perturbation theory, to the initial data

3
. u (x). For <0
5y So(x) ={ <0

£
urO(X) for x>0

the hereinbelow solution corresponds

& €
uﬂ(x,t) for x-Dt-%¥(t) < 0

E
(1.6) Wi, t) =) e
ur(x,t) for x-Dt-%(t) >0

The data-(l.S) evolve according to the eguationg

1) According to the method of characteristics.



A E E :
. au£ £ ng 3 €
s a (up) == 0 for x = x-Dt-¥(t) <0
(Choillien. o ;
ou, £ ?Gr o
kg_E——- + a (ur) '“,5"'*;{- = 0 for x>0

where we denote a(u)=f’(u), and on a line of diseontinuity the

jump relation

: € & £ . € €
@.8] £ e - l:n + ¥ () | (@ u
X = 0+ x = 0- : X = 0+ X =
obtained frem: (1.3) is satisfied. By mappiﬁg
= (= =
(1.9 oo = Ditenlise s e =
(L.7) passes into
£ [Eiieg SlDut € 2 £ e
j% Up b alllphee D Up = R0 Up for x<0
(L ) &
2 E e e € et o
— Ur + a(Ur) - D | - Ur = () — Ur ; for: >0
ot B Lon X
where
£ £
el 1) U(x,t) = ulx; )
For separating the first order in € we shall assume that
€ € € € €

Usor Urgr Upr ULy Y - depend smoothly on & , then differentiate

(1.10) and (1.8) with respect to € and take into account



€= 0 £2="0
s - -
a"g U (X,t i = U(X,t) . "Tglk'})(t.)] = \f"(t) ’
£ e ) 0 {E5 €= O
e R
%E LUO(X;! = uy (%) .
E=0

ignoring, in (1.9), the dependence of % on €. It thus resuits

o D -
ﬁ[)»€+A£’a-§ ,e-‘:O 7 x <0
(lalZ)
2 2
ﬁur+Ar’§—§Ur_O ' %0
(1:13) ArUr = ApUp + [[ul v’ for = =.O
where Aﬂ, = a(uﬁ,r) D, and
(1.12) U(X,0) = Go(i) el o w(0) =0

The equations of the following (allowed) orders are obtai-

ned similarly.

. DEFINITION 1.1. The problem (1.12)-(1.14) is called the

lipegxized problem associated with the Riemann problem.

1.2. Determinacy.

Since we have ignored - to separate the first order in €-
the dependence of Reomie in(li9)., in the solution &f the linearized
problem-depending on the nature of initial data-secular terms will appear.Therefc
re, as we shall show through the thecrem 1.1, the method descri-
bed im 1.1 "lijearigzec” - at the first order in €& - the problem

(1.7), (1.5) only for certain classes of initial data.



Let us thus consider the class of initial data

(e 15) CO ='{Gblﬁio and ﬁrb are smooth functions with compact

support}i

and, correspondingly, the class of function@ﬁXx,t) with the prope
ties
(a) for each x¢R, T is a Laplace original (abbreviated £o)
with respect to E,
- » N M ; 0 3
(b) for each t<oe, Up and Ur are smooth functions with com
pact support with respect to x.

Let us denote

P16 ¢ =w{33w’ﬁ'with the pfcperties (el Jand=(b)., ¥ s ﬁg}.

Eox “data idn CO we shall seek in C for the solution of the
 linearized problem. We shall thus suppose a certain type for time

growing of the solution, and the study of the problem will show

that this assumption is justified.

Applylng the Laplace transform to-(l.lz), (L. 13) and

putting f (%) = Lff] f fe dt, we find

x=

Al = +¢0U£ = Uy = 0 _for e )

Qe o " : Re s >0
dUr " 5 -
g +wlU - o = 0 for x >0
.

AG = A0, +ofill¥  for ® = 0

118 rUr = KUE + b for x =

The solution of the system (1.17) can be represented as



urd

* .
13.19) Uitz at) =5 ,ﬂ, (/A _)E —~(w/A )X
T r =
[ ‘Ie yoterx 20

e ] (%) e at

f{; - (W/Ap)E T - (@/Ap)% -
(U_(w) + A '{uo(?g)e d?g‘]e » for Xx<0
5
: : )
[+

e

where we have put

B bd »
= UK(O’M) . U+(w) = Ur(O,w)

c
S
|

Indvorder to divide, formally, the considerations eonecerning
the well—pos?dness of linearized problem into'parts reflecting
the extension corresponding to the passage from §i, through §2,
to §§ 3 and 4 , we shall iﬁtradﬁce hereinbelow the conéepts of
determinacy (through the initial data and jump relations), evo-
lutionary conditions and skabidity.

In the context of &1, the exposition of these concepts is
trivial and will be used only to support the analogy considéred

at~page 2§

Let us take
(1.20) ‘ A£>O A Ar<0

im (1.19) and put, correspondingly, the coefficients of

exp E"(“/A£)§j and exp E“(@VAI)§] equal to zero

. 2 ‘ s (w/Ay)E
U (o) = —Azlf ﬁb(g)e - a¥

(@) e (w/A_)¥

& » Z 2, : K
Uay=- A | T (Be * ay

9]

We shall use the two relations thus obtained, together with

* #
the relation (1.18) to determine the three unknowns o0, and
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Prom (1.18) we find, by (IT:21),

G

# - — e
el ) ~a Y(w) = A A ) -A -A NJ d
s [ul] W (w Q’LK 0( Et U r=le 1

The formal procedure described hereinabove becomes (as we
shall see immediately) effective if the data sre, for instance,
in CO.

The relations (1.21) are called relations of determinacy,

Thesconditionss (1. 20)."are. . called cpnditions of determinacy. If

these conditions are fulfilled we say that the liniarized proble

is determinate.

Carrying (L-21) into'(l.l9) we obtain

{123 Ten

and from: (1.22) it resulEs

(1.24) —ﬂ:u:ﬂ\i)(t) f@ﬂu (~Ap %) Ar'ﬁ'o(—Art)jdt.
Also, (1.24) can be put into the form , et
~AT
= ] f L
(1 525) Wit = = g —A££ ug (e)dz

{(1.23) and (1.25) we: see that for data in CO the solu

From
tion of the linearized problem does not contain secularities. On
the other hand, SEiE uo( Y)=cos kX in (1.25) then fér each t <ve we
have im: W@ - & § r)/&uﬁ} andi 56, for ki, the nonli-

k%0
1) In fact, the method of characteristics points that the deter-
minacy conalderatlons of the zeroth order are completely ana-
logue to those corresponding to the first order.



nearlty slinks even from the first order and the Drocedure of
JSOldtlnq the ‘linearized problem is not justified anv more (in the
absence of 1ts uniform validity) for Equ(a"l). Something similar
happéns wherein the data do not tend quickly enough to zero when
[%|-vee, because in that case the Laplace images Liﬁb(—Aer and/or

L[u ~-A t_l in (1.22) have a singularity dn =0,

REMARK 1.1

(i) From (1.4) we can see that the picture of fig.lb cannot
be obtained as a limit - when {urwu£1~% 0 - from the picture of
fig.la. A relation can be established only between the zeroth
orders of the two pictures\becéuée the small parameter.of the
perturbation expansion which leads to the  linearization in fig.1b
is free of restriction (1.4). .

(ii) The de£érminacy conditions (1.20) <(associated to the

first order of the perturbation theory) can be transcribed
(1.26) : a(ur)< D-:a(uﬁ)

and so they coincide with CEL (see the oo o on page 9). The
restrictions (1.26) correspond to the requirement that every cha-
‘racteristie line, extended in the direction of inﬁrésing time,
should meet the discontinuity thereby being continued through the
Latter one, Brom (1.25) ' weicsee that if‘these conditions are ful-
filled the evolution of distortion ¥ depends on the data on the
whole X axis.

1.3. Linearized stability. Linearized well-posedness

: o
DEFINITION 1,2, A solutien -~ €onsisting of U and ¥ - of

the linearized problem is called stable/unstable et kept

wa

bounded/grows boundlessly when t oo . We .say; correspondingly,



A llo—

‘that the discontinuous solution considered for the Riemann pro-

blem is (linearized) stable/unstable. The linearized problem witt

data in the class K, ig said to be well-posed in the class K if

(it attaches to each element in KO a unique and stable solution

in K, that is,) it is determined and stable in K.

THEOREM T. 1 <If theldenditions: (1. 20)Farestuliilled then

the linearized problem with data in C0 is well—poéed in the clast

C.

4 According to (1.23) and (1.25). B

REMARK 1.2. The hypotheses of the theovem 1.1 do not impose

on the values u, and u,. but the ordering restriction U, < Up.

"2. Linearized problem for a system of conservation laws,

1D iw space.

2lay Wording up..of linearized prpblgm

Let us extend now, in case of gystems of conservation laws,

the results of &1. The Riemann problem takes then the form

(251) ?«% L 2fu) _ 0 —e0<X<¢oo , t>0

o2 u(x,0)=

where u and f are vector functions with- n components and
up, ur are constant arbitrary vectors, ur#uz‘
In 2.1-2.3 we shall suppose that up,u,. are sufficiently

close in R™ and so related that the solution of Riemann problem



should contain only one discontinuity together with the constant
regions adjacent to it. We also suppose that the system (2.1)
is genuinely nonlinear with respect to (the family of characte-

ristics associated with) this discontinuity.

DEFINITION 2.1 ([7]). We say that the discontinuity-invol- -

ved in the solution of Riemann problem - is a 3j - shock and call

the afore - mentioned discontinucus solution admissible if the

conditions

‘ 7‘j (U )< D <_7\j (u,)
(4e2)

)

Aj_l(u£)< D<7xj+l( -

hold ( A are the eigenvalues of matrix,a(u)z(?fi/auj)).
o e :

These conditions should be abbreviated CEL, too. In fact,
'CEL are conditions of determinacy (through initial data and jump
relations) imposed to the piecewise constant solution of the

1)

Riemann problem . In the perturbation theory we shall present
hereinafter in this paragraph, this solution plays the part of

-“the "zeroth order'.

According to [2] and [7] we can formulate

nuity), the set of vectors u.. which can be joined (as states on
the right) with u, by a j-shock can be represented as ur=u(§),
£<0 and E sufficiently small, where particularly u(0)=up,

ﬁ(O)=R£ (R ds an eigenvector of matrix a ).

) According to the method of characteristics.



In the proof of this lemma, the fact that &< 0 results

when the restrictions (x%) work.

We shall further assume that, on the considered disconti-

nuity, CEL are fulfilled.

‘Let € be a small parameter of the problem, characterized

the same as in 1.1

>

The relation (1.3), the expressions (LS andi (1.6} and
the notations of §1 have a vectorial analogue here. In particul:

motivating as in 1.1 we find for the linearized problem the follc

wing form

D v = %

'-a"—._.EUE A AE 5—::U£ = 0 7 Xe< a0
2.:3)
' e ° -

o Ar i e L T
(2.4) | Ar,ﬁ/r = AKE/K -+ [U].Y’ for 3-{ = (
(2.5) '5(32,0)560 X}, ReR; ww) =0

with A(u)=a(u)-DI, I the unit matrix.

2ol Determinacy. Evolutionary conditions
We suppose that the matrices Az'and Ar are nonsingular
and have distinct eigenvalues, %lfih2 < e A
We shall use here the classes CO and C introduced the same
e 1e, 2.

Using the Laplace transformin (2.3) and (2.4) we :find

r dUK = o
Ap —= +alUp - T, =0 for: %<
£ ax 0
(2.6) 4 al
T * ~s e
A —= 4+ wU - u. =0 for el
= e 0




AE‘& Af%f. bt o :
= T ¢ =
f2.7) . e U, b wallgly  fer 2 — 0
The systems (2.6) can be put in the form
%* . :
(2.8) L-pb+tr , p=-wdl, £=aly
dx

Since the matrices A and P have the same eigenvectors

and the eigenvalueslx of A, the eigenvalues 3 of P and the

eigenvalues A of a  are related by
A .'w 0
(2.9) >\ el e 7 A :‘)\. =)
, 3 X1 e

it follows that the solution of (2.8) can be (formally) repre-
sented by

AN A
<Ak A

e X 5
(2.10) R{L.U(0) +f L.£1¥)e * atfe
o

where R,L are right/left eigenvectors of A. Then, by (2.9) we get

wg w3X
(n v : X AU, )=b < A 07D
_ ﬁg i@ U + ig.Aﬂ.fﬁO(g)e.l £ d§}e Lot , %<0
o i=1 4
2] Utk = = Tk SR
R s = A, (a_)=D il =D
> Rr{LrU+ + L, A lflu0(§)e o dg}e g LR>0
=1 . |
* X -
{212 wB =0 Trolalle for X =0

Let us extend now the formal procedure introduced in 1.2

(see (1.20)-(1.25)) . When Ri(u€)> D/A; (u ) < D we shall annul the

coefficient of exp {—[kjiﬂqi(ut)wDﬂ} /exp{wfwﬁ/(ki(ur)~Dﬂ}' in

li=d =n, a velation of determi=

(2.11) obEaining for @ given i ,

nacy ..



DEFINITION 2.2. We:'say that the linearized problem is dos

: _ 3
termined if the number of linear algebraic equations - having ¥

T

* *
and the components of U_ , U as unknowns - of the system which

consists of determinacy relations and Jjump rela%ions 2120 g

equal to 2miEl,;

If the system (2.1) is genuinely nonlinear with respect

to a given label j, 1<£j<n, then we have

THEOREM 2.1. The linearized problem is determined iff the

conditions
Aj(ur)< D<:Aj(u£)
(2.13)
Aj_l(u£)< D<Aj+l(ur)
are fulfilled.
4 when S

7\j (u£)<‘D«-<>\ (up)
(2.14) : £ o
%jr(ur)<l?<%

j£+l
jr+l(ur)

then we obtain n—j£+jr determinacy relations. Since (2.12) @ffoh ¢
: - x® n *

n relations for:2n+l unknowns U_, U, and ¥ we have to impose

that n—jg—jr=n+l. Denoting ir=j , we find j£=j—l and (2.14) can

be re-arranged as (2.13). P

We call (2.13) determinacy conditions.,

REMARK 2.1. The determinacy conditions (associated to the

e —r—————c———

first order) coincide with. €EL (whieh correspond to the zeroth
order of the perturbation theory); see, again, the foot note on

page 9. Also, see [l]¢



Using the notations (2.9) We can re-write (2.13) as

A D
Aj(ur)>(T>Aj\ue/
(2.15) 5 ~

Nea ot 1 s 073Nj+l(ur)

Ehe "ecnditions (2:.13) extend (1.26):

If (2.13) are satisfied then we have to pose see (2.11)

: ' w§
[ 1 . A TETD
LK.U__=-L£A£“qu(§)e ds
0 : $
S e e
s e kﬁ(u£)~D
Lp-U_=-Lyp.A," |0, (¥)e as
(2.16) < 0 a5
Q2 £
:IL, g =—IlJ Ay ”:)e;\l(ur) - d%
+ Sy :
0
............... .
J lw'v 2j(ur)“D
| o A fuome JEi
0

The velations (2.12) and (2.16) make up a linear algebraic
system of 2n+l1l equations for 2n+l unknowns, 6_, §+ and ﬁ', After
an easy re-arrangement, taking into account that (A-D)L=LA, we
can give weo (2.16), (2.12) thé form

K 3 3 <o
%ES— = iz'-f,{l}(){"[?\] (uﬂ)"D]T}'e—wth
% :

Il
Q
o]

29 J r§+: r-[ﬁo{~[hl(ur)—D]r}é"cdt dr=gr
0




LEMMA 2.2. If in the problem (Z,i), (2.2) u, and u_ dre
linked by a j-shock and are conveniently.closel), fhen for the
system (2.17) there exist a unique solution.

4§By expressing, from the last n relations (2.17),.66+ with
*

* * ) *
respect to U_and ¥ we can find U and ¥ from the system of

n+l eqguations

kot : -
LZ.U_=g£ S G e R
(2.18) i sy L -1 i . :
LA AzU—J”"“”LrAr Oile. Lol

The proof comes to-.an end if, denoting by A the discriminant of
the system (2.19), we show that A#0 when [u] # 0 and up, U
are close enough.

According to lemma 2.1 we write

€
and
(2.19) : A =€Al
where
j j j
L,@l L£2 ® o o L,Kn 0
n' n n
Loy Lo e g
it 1 1 1 =
- =, -1 =1 4—1 u(e)~-u(0)
(2.20) Al_ L Ar A£)1 (LrAr Ak)z"' (LrAr A,C)n LrAr =
e L
A A (LA "Ap) e (LAA,) LAy ———

B

1) Fdr,example, gidc cmall enough in ‘the parametrization of lemma
e 3



Let us denote by’A2 the determinant obtained from zﬁl by

deleting the last row and the last column. From“ir:ﬁ[ﬁ(éf]=ig +
L n -2
+ 0(e) it appears, since LZ""’LK are independent, that lim‘Az#O
£+0

and therefore
®

2.21) .AZ # 0 : for upand u close enough

Lécoerding to lemma 2.1,

w(B)-u(0) _ 3

: =il
TimaA o n. () = Ryp
0y € -
ik
and, when LR =Sik 5
k u(g)-u(0)
T -1 -

(2.22) lljn[Aj hlr)mlﬂiLrAr, e = —Skj'

€0

Prem (2:21) and (2.22) we_fihd that for a j-shock we have

(2.23) lim [A,(u )-D]A; = lim A,#0
€0 e T £E»0 °

The Fact that - for Uy and u.. conveniently close - we have

A 20, resuilte from (2.19) and (2.23). P

REMARK 2.2
. (1) It is easy to formulate an analoque'of

remark 1.1 (i). When fflu_-u,ll-0, the matrices A, and A, become
Singular and in (2.4) we have [uJ]-+0-though, usually, %!l does
not tend to zero - and lfﬁé“-ﬁ g Gr’}* 0. The linearized pro-
Bilem (2.3 =2 5) tends, ;< in this case, 'to the zdroth order af the
problem which corresponds to the circumstance u,.=u,. This fact
shows that a relation can only be established between the zeroth
orders of the problems which correspond to ur# ) and u =u, res-

pectively (see remark 1.1 (i) ).



(ii) Generally, the requirement that Ui be closed
(as imposed by lemma 2.2) must be added, when the first order
is considered, to the similar restriction imposed by lemma 2.1.

This fact does not appear in the context of &1 (see remark 1.2)

'DEFINITION 2.3. The requirements which guarantee the exis-

tence of a unique solution for the system (2.17) are called EVo-

lutionary conditions.

In the context of &2 the set of evoiutionary conditions
contains the determinacy conditions.together with the (possible)
demand that u, and u,. should be close (see lemma 2.2). From (1.2
and (1.25) it appears that in case of a single conservation law
1D in space, the evolutionary conditions come down to determina—

cy conditions.

20 Linearized stability, Llnearlzed well-posedness

According to lemma 2.2 we can express

oo
n

Wy = K.j’ 0{ [ﬂ (up) - ] }e_w z+...+hy ﬁb{—ﬂhﬁ(u[)»ﬁﬂt}eww
(2.24) 1 oo e :
+ brfﬁO{-[Al(ur)-n]t}e"“’ir+...+br
0 ;

0_\-—\8

Upd=[p tu,)-Dlefe

and thus find

t %
k
Gios @)= % b» J uO{ [?\ uz D]Z’} dz+ i r J’ﬁ' {_[7\}{ (ur)—D]t} dz
k:::] :_ 6

It is easy to formulate an analogue of definition 1.2

We shall now extend the theorem 1.1 by

THEOREM 2.2. 1f the evolutionary condiftiens are fulfilled

then the linearized problem with data in Cp is well-posed in the



class C.

égAccording to (2.25) and Haar estimates (see appendix) .

REMARK 2.3. With the notations (and according to assumptions)

of lemma 2.1, from lemmas 2.1 and 2.2 it dppedrs (see remark
2.2 (ii)) that we can find a convenient neighbourhood in R_ of €
so that the solution - which contains only a j-shock - of Riemann

problem should be (linearized) stable.

In the proof of theorem 2.1 we have denoted jﬁ/jr the num-
ber of eigenvalues of matfix a for which we have. A~ D/A<D in

the left handed/right handed region of discontinuity.

In the context of §3, any of these (integer) labels can

be taken as an index (according to the theorem 3.2). For example,

DEFINITION 2.4 The (integer) label jr will be called the

index of discontinuity (see remark 2.1).

In case of a j-shock we have jr =

3. LINEARIZED PROBLEM FOR A SYSTEM OF CONSERVATION LAWS,

2D IN SDACE

3.1. Wording up of linearized problem

Let us now extend, in case of two space dimensions, the
considerations of & 2.

Instead of the problem (2.1), (2.2) we have here

ou 2f (u) 2
I X R

up for  x <0

: 2 - 0):
(392) u(}\IYI ur o X}O



e e

where u , £ and g are vector functions with .n components and
Up, U, are constant arbitrary vectors, uﬁ#ur.

In 3.1 - 3.3 we shall assume that Up, u_ are conveniently
close in %n and so related that the solution of the problem shoul
contain only one shock together with the constant regions adja-

cent to it. On the shock line the jump conditions

>

? . -
(3.3) Cull é‘% + £ ] géié + ﬁ:g(u)j]%%; =

are: tulfilled.

REMARK 3.1. In case of steady and normal shock discontinui-
ty, the possibility of such a solufion/the nature of demands for-
mulated above is similar to that presented ins62 alet us consider,
indeed, the system

? 2

’ vt
Bl Q%u + %

rs

glul-=0

{

~ 2
£(a) 4—_i;§?

and denote by D . the speed, in ¥ direetion, of a plane disconti-
nuity normal to that direction,. Im the frame of mentioned discon-

B d

B e = X - D%, o=V, b=k e (8,1) i becomes (3.1) with

,f(u)=?(u)—Du, g=§ and on a steady discontinuity the Juup. condi=

tions have the form 0 = [f (w]=[F@]- plul.

The small parameter € of the problem has to be characte=
rized the same as in § 2.
Proceeding as in 1.1 and 2.1 but using instead of (1.9) e

mapping

(3.4) DNt o e ULy



we find for the linearized problem the following fofm

(‘

D~ 29~
U, + A, —U, + b(uy) == U,=0 , %<0
e £ 5L 4 2

(.50 < :
2~ 2 o~ P o
':PM"E(I o Ar :a*:- Ul oF b(ur) ,‘?5; UJ" =0 e e i)

X
(3.6) A A,U0, + [ul ~?~~~‘~V—L L (U)ﬂj«v for X = 0
o r o 3% -9 3%
(3.7) U(%,y,0) :?1'0(3‘;,§), ¥(7,0)=0

with notations similar to those of §§1,2.

2.2. Determinacy. Evolutionary conditions

We assume that the system (3.1) is strictly hyperbolic with
t time-like which means, in 2D, imposing = in efther ad facent
region of diseomtinuity - the conditien that for every A, veR we

are able te find n real distinot roots @A +) of the equation
(3.8) det [wI +24A + by]= 0

Since the discontinuity is normal, we shall consider solu-

tiens of the form

(3.9) [%’(&,yﬁ), wy,‘ﬁ)] =e"i“?[’ﬁ<s‘<,£) e -

Carrying (3.9) anto (3.5) 'and (3.6) we obtain

~

?)‘N D ~s ; .’V & —
5—% UK ot AE :a"'_}:_; UK =2 lO(bEUl@ =0 ’ asiaai()
(3.10) 4
e P e o0
sy G A e rr
Lat X




H
N
W

(3.11) Ar%’r:Az?fﬁ + [ v’ (t)-ix[g (WY fom 30

Using the Laplace transform we find, as in (2.8), for eithe

system «(S.10) the Torm

: d #* ¥ -
(310 ) — = POt
ax
where
..l : 3 "‘lN
(213 P=-A"" [0l - iab] , £ = A

to which we add, according to (3.11), the jump relations

. ¥
(3.14) A=A Uy +{oul- i«[g @]}$ for X = 0

) : ; :
As in 2.2, we denote by A the eigenvalues of matrix P. Usinxs

the remark 3.1, we can prove an analogue of the theorem 2.l

THEOREM 3.1. The linearized problem is determined iff the

conditions

A 2 : A\
Re- X, (u ) >0 >Re Aj(u@)

J r)
(3 15

A 2 '
Be A s ing) 20 uRe e i)

are fulfilled [see (2,15)].
; : -
Let us consider the number jr of the eigenvalues A for
: ~ ’
which we have ReA>0 in the right-handed region of discontinuity.

A
Since the eigenvalues A ‘depend on w and « , jr might depen

on ¢« and «
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THEOREM 3.2 ([6]). The number j_ is independent on ¢ and o,

€ If the number jr depends on «w and « , we can find (ab,qb)
: A : . A : '
so that Re A(wo,«o)zo, The eingevalues A can be determined, accor-

ding to (5013}, by
(3.16) Ga: for t 00~ 5

with the restriction Re w> 0 imposed by the Laplace transform. In

(o sa ), (8.06) Gives
07 %0

o )
detf-iwI + (ImA)A - «bl= 0

1

and, since the system is hyperbolic, we have (according to>(3.8ﬂ

Im(iw)=Rew=0 for every Imae R and «e R, P

We can now give

DEFINITION 3.1. We call the (integer) label_jr the index of

discontinuity.

Sl

(i) An analogue) edsy to formulate, of remark 2.2 works.

(1i) In case of a steady and normal shock lemma 2.1 keeps
valid (according to the remark 3.1; the formulation of the analogue
of lemma 2.1 depends only on the nature of £ in'(B,I))_and lemma
2.2. can be easily extended (however its formulation depends on
the nature of g in (3.1)). The remark 2.3 keeps valid: too.

(iii) When = 0, the definition 3.1 comes down - in view of

theorem: 3.0 te the Gefinition 2.4. This circumstance gathers up

definition 2.1, vemark 2,1, definition 2.4 and definition 3.1.
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“(iv) The index of a discontinuity is.related ko the  facts
of determinacy and (according to «(iii)) it dees not depend on the
order (of the perturbation theory) considered. This assertion is
trivial in 1D but requires a proof (given by theorem '3.2) in 2D.

(v) The conditions (3.15) are determinacy conditions; these

conditions, together with the (possible) restriction (mentioned ir

(i) that Up, u. are close, constitute the set of evolutionary

conditions.

Siioe Ligearizedmstability.7Linearized well-posedness

DEFINITION 3.2. We say that the discontinuous solution con-

sidered is unstable if we can find, at least foe a value of xe R,
assolution (359 ) = éonsisting-of U and ¥ - of linearized problem
which érows boundlessly when t -»eo. The discontinﬁous solution is
. called stablg if the solutién (B.9) -of tﬂe linearized problem is

kept bounded, for every xeR, when t —eo.

To prove the well-posedness of linearized problem we have

to show again that this problem is evolutionary and stable.

From theorems 3.1 and 3.2 it appears that the passing from
1D to 2D keeps unchangeduthe form/the nature of evolutionary con-
ditiens.

On the other hand, the stability result of theorem 2,2 can-

not be obtained any more whithout a npew restriction. .Indeed, the

Haar estimates (see appendix) show that the stability of solution
of linearized problem depends on the stability of Y . In 2D the
distributioﬁ of singuiarities of ¥ depends on «. Betiw=Td (w0, «)/
/L(w,x)] be the expression obtained according to the analogue of
lemma 2.2, The funetion. g (seé (3.1)) contributes by a(abi) (see

(3.13)) to the eveolutienary conditions and by L{w,«) to the stabi-



SO

lit& conditions. When o« = 0 this contribution vanishes (icgether
with the dependence on v i according to (3@9i}. L(w,0) has only
one zero in w = 0. However, when o # 0, it is pos ssible - %apend~
ing on the form of L ’and g dm (3,1] - that some oL the Zeras
of L(w,o) be placed in the region Re w > 0 thus implying insta-
bliltyuevpn for data in CO

For each a¢e R \{0} the solution of the llnearnzei Dro=

blem is. (exponentially) stable when the zeros of L, a) aec all

placed in koW =0,

REMARK 3.3

(i) In 2D we require stability for allit e R, pParti=
cularly for o = 04 Then-we shall take d;ta Lo CO,

(ii) When o # 0 we have to find the conditions for which
the zeros of L(w,a) are all plaéed iR Rehe <=0 This ig the new

restriction we mentioned hereinabove,

In the context of gasdynamics it can be shown that these
conditioné do not depend on o and are related, as we have already
mentioned, only on the form of £ and g i (3.1). Thasotorm
depends in its turn on the equatlon of state considered. Such
(exponentlaL) conditions/criteria of stablllty or instability

are given in [4] and [8] (See [5] for magnetodynamics). A sta-

bility criterion removes the exponentially unstable evolutions.
We should also remark that L(w,o0) 1s an even function of o,

(idi) For certaln’eguations of state, the condition
Re w <'0'cannot be fulfilled strictly under stabiiity requirements,
by the set of zeros of Ti(w,0). In such o cose; when (a part of)
zeros of L(w,0) are placed on the line Re w = O;we have explicitly
to study the possibility of Ynonexponential) stability . Such a

study is presented in 4.

The table on page 27 compares the facts of b6 1,23,
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1D, one equation

determinacy
gt conditions
= (120} sor(l .20
{
1
evolutionary| 5 5 ;
conditions 5 2 = data in C,
stability
i
well-posedness
a
4
§2 1D, systems
£ determinacy conditions =
B (2.13) or (2.15) ‘
(possible)new restriction
¢ the requirement of con- 7
venient nearness of u_,up
evolutionarjy = :
condi EleRs [F < geldare n C0
: Y
[ggavgzlity [
¥
$ well-posedness
: N
&3 2D, systems
> determinacy conditions (3.15)
: : date in C
Sk the requirement of convenient . ‘
7 nearness of u.,uy |
\
rnew restriction
: ; the singularities of
evolutionary] $——eé— ¥ should be in Rew<0
conditions X
[ stability |
Y
{well'—posedness
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' 2D ];'N SPACE , OF ADIABATIC GASDYNAMICS.

4.1. Wording up of linearized problem

Let us now remake the considerations of §3 starting, in adia-

batic gasdynamics (with the usual notations), from the prgblem

b
/

<

Lodlen) . oi(d
ot 02 S5y

= 0

Z

8

9 (eu) i ?(Qu2) 4 2uv) _9p .

(4.1) e . TE
2l aleuy) ?(5v2)+§£ =0
9 X Y Y

L iole + St b+ 2 foufi+3 i ]}* '”"{@V l+l(u2+V2):J§}—" .

: (Pl:‘ulf Vl, Sl) For- el

(4.2) pu, v, 8) o = '
t=0

(p2f u2i sz 52) for x>0

together with the equation of state e = c = g%%'— which we
shall write in the form

p 5-5,.
(4.3) p = =29 gyex { -O}
S v

The jump relations on discontinuity line have the form

2y
g _ [su] g’f—i [p - QHZJ gi *ES”JJ
' [QV] -g% +[§'uVﬂ 5% [P ey .ﬂ 2 =9
[sB + 32T She ool + 32| 3 v v 2] 2

~and, in the adjacent reglonSof dlscontlnulty, we shall use - in
place of (4.1)4 = the concave extension of (4.1)
' d

where s% €oie the entropy.

8 =0

Given (pl,ul,vl,sl)_as a state before discontinuity, we can

find (pz,u2,v2,sz) on the curve of states which can be related

withv(pl;ul,vl,sl) by a steady disceoncinuity. Tn case of o normal
discontinuity for this curve the lemma 2.1 is wvalid.

We shall write the problem in a dimensionless from by'replacing



b st e o
t - T - X_?'[y_) r Y ! G =» e !
Ti W Dios e oSSl "ﬂ'ﬁ%
BEEE EE. e %]
where
i : 5
[t]: E"" 14 [X] =B i [S/]: §2 ’ [u] e C2 7
= 2 - 2
B
and "taking
it} U g
2 = 2k v — 1
Moo= e S e T e
[u] 14 I‘/l [u] 7 My _ELIJ 4 g Eg]
' e s o
4.5 =t cRa i E sl oL
ol b s s Bam a0 e
i A Fn o e e B e e

(furthermore we shall ignore ‘the labels of perturbations which
correspond to the region after discemkinud sy
The zeroth order of the jump relations gives

aE o aEe T ety e D)
(4.6) M—gM, P=P=M(H-M), M M, — (R-HE) (T My,

From (4.6) we can obtain, in particular,

ms (v=1)M2

- (Y+1)MM + 2 = 0
For a normal discontinuity we have My=0 and, - for-a. 3shoelk;
0<M<l,

In this context, the system (3.10) may be written



- i
M}_(v?__. + M i)"; 4 i.l,l,." T e
I ox P17 3% Ly =Y
- - 5 oy
e el et
§3g + M550 5
[d.8) 9 £ s - for x <0
See il =2iv, = dap, = 0 :
? =
B e o
(2 - ?x)sl :
&
where
o _—2"-’ —--—ZN
(4.9) Py e RcC s,
and
(‘ £
2 e -
(5€ e M §§)p doee s ian s 0
2 2w 9%
—— e Pl
. s e s 0 :
(410 { ' for x>0
P 9\~ o
(5E + M 5§)v - ilxp=
2 D
NG
where
@ P=F+7%

Also, the relations (3.11) become

NS et r\f_ N‘ s ~ ‘,",
f S, = alls_Falzp“kalsu“+al4v_+blw leCyy

(4.12) < p+=a2l§_+a22§;+a23ﬁw+a24v_+b2w’—iqc2W
for x = 0

Cavd

u+:a3ls_+a32p_+a33u“+a34vm+b3w’—luc3v

ENSo R

VyTagSota, b tagqu ta, v o4b,vi-ixe,y

where +/- labels the after/front side of discontinuity and we have



o Lol

8.123 - “j‘(‘f ”“1) MM . 5 - - > =
: : E(T""l)M"Jr‘ZJ [ZYM = (\ﬁ'“‘"l)J

'1 = _b a. ’_"O a TS e ,___,___2,4__* D/HT/].

L P 2l V1

_(r4l)=2 (v-1) ¥

2.2 ZYMZ—(Y~1) 2.3 24 42
(4.13)
S -y X=1 1 o M
fgrnlbamm B 2, 2o e
S e AL
cl=Mybl, Cy M b2, c3=Myb3, c4=M—M
= 2 My e
bl__ ﬁ(l ﬁ)(l MM) , b2 = M,
3-¥ M
b S e e 7 b =)
3 Vel 7 4
The.initial condikions are oo
(81/Py /Uy V )iy =619 &)y Pyg(X), Uy (x) V&), x<0
(4.14) (S,ﬁ,ﬁ’,?r’)t:(f(’s?o (x) , By (%), Uy(x), Vox)), x>0
¥(0) =0
4.2, The‘expyession of distortien of Jthe discontinuity
line
Taking
(4.15) . B=2, ¢@=[M2%+? (10?2

-

we find for the four eivenvalues of matrix P (see (3.13)), which

correspond to the region after discontinuity, the following



(4.16) A= 182 T wB+ 6@, By= 182 "L % g3 Ayhy= -3

(%1,%2,k3- are §i§§iggi eigenvalues of reduced ﬁatrix obtained
from: P by deleﬁing the row and the column eorresponding to s .,
Furthermore we shall not write - in order to simplify the nota-
tion —~ the bar on .

In ie easy to verify that the discontinuity is a 3-shock

because, for M<41 it appears from (4.16) that
(4.17) 7\l>0,7\2§0,?\3<0

(see (3.15)).
According to the remark 3.1 we can obtain, in the context

of this paragraph, without the restriction that u., up should be

close:
d. (w)+4, (w)
G oyl ] 2
(4 A 18) : L}’ (w) = 5 M L (Z,.:)
where

_ 6 (w) N oY o - ‘-a:' o e e e
(4J9)dﬁaﬁm ~&rf¢}219_%d22p_+d23un] uﬂ%3ls_+a32p_+a33u_] lecay 4v_

&
"dz(”"):%%ﬂ)‘[ﬁo = ]*

o Mz“l M “‘l
(4.20) - . - =2, (W)F .
twp, == - U mwm]-lmv -}e d¥
s 0 TH

2 2

(4.21)  L(ew)=2M% [ 6(w) + e+ (1-M) (= Fu?)

For the considerationswhich follew it ‘is convenient to put

(4.22)

e ot i

. L
| Tlw) = N, (w



where
Nl(w) = 2 [ZM - o(l- N? ZM _1+ uz(l M2) 2M w [0 (w) = ij
‘ Dan?) %
N, () = {LZM-*p(lM )] -am®y + 202a? (1-M7).
[?M S v 2M4] L (1-M {J
Singe: 1< y'< % , for M < 1 we obtain easily from (4.7)
) I 5(1-M2) o N -

By seeking for -the roots of Nz(w), we shall remark that

the discriminant A -is sErictiy positive

>
Il

il

[az (1-M2 )]vz‘ { [2M,Zu 5(1“~M2)~2M4]2~= Bzmz~ 5(1-142))2-»4346]}

2 ar Beee o 3 -
(2M202) (1-M%) (5-M%) = p(2M%e®) (1-M%) (1~Mi) =

il

= = 2 7
[by (4.7]= 4 235 b [om(1-M )] <0

Then we héve

1 (w2+m§) - kzw[o(w) - Mw]

(4.24) —
R | (w2+m§)(w2 . wg)

where

=1 ‘ /2

[ se=[2u? -5 (1-w?)s2m®] k=" {20?/[21%-5 (1-4%)-21° ]}

(4.25) « = - >

172

T =1, "s1/2,0

- a2(l~M2) : (2MM 1)12(Y+l p e Ly/2
Ly Z 0 (2MM=1) = M

1/2
0y =1 [az(l-—MZ)]/[ZMZ‘ 5 (1-M%)-21° ]}

-

\
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and, according e (4.23), dn (4.25) fhe expreSsiQns under the

radical are positive.

REMARK 4.1 The gasdynamic context related to (4.3) has

the following peculiarities
»
= weido hot restrict U and Up to be close
%
- for every o € R the singularities of { are placed on

the line Re w = 0.

LEMMA 4.1 T F ols. o and Blo)t=_| [f] then

1+M 1EM

. 1/2 o =k e
(hi26) =R [ﬁ@+(w2+l) 1 = 0f o o L 6 & )=
0

e

w—..SZ
L =3/2 t Jl{gsw“f )

1=M sS=Mt

=(l=M ) S (s=Mt) f(——=)ds }  dt
Mo lec2y 2 (1»M2)
{g Since
2 e—z = 1/2 "=z
J Gz s ————r R (z) = (=) e
1 (2ﬂz)£72 Lk -
we can calcuiate L
l' -wv ~V(w2fl)l/2 1 ‘ 5 1/2
(4.27) 2 ie -e o Il/Z{EV‘Bw e
—ou(uz+v2)l/2
1 2 1/2 - e d
‘Kl/z{i.v[}w L) <l i o e 2 -
5 12
o Jl ftea=v ) -wt
= [ - e dt
. (242172

1) Y.S.Gradstein, Y:M.Rijik = Fables of integrals, summs,
series and products. 5 1 edition, Moscow, Nauka,
197 i Russian) ; pag. 7133, 6.637:



and further

5 9 142
© o J1 (t™=v") ~ (t+MV) £ T“MS' >S“M'
R s dt}dv={t=s ——,v= =
0 A\ (£9=v")" 1-M 1 =M
T [ﬁ:ﬁi)l/zj
e 2 “3/.2 ® i 1 leZ
“\lwr { f 2 2 1/2 (S"-.&T)‘
0 Mr it =5 ) -
\ o (2 ‘“g)ds } dr
1-M

However, let us remark, according to (4.27), that

5 iy
5 177 © 37 [Mw+ (w+1) :l
F[}w+(w +1) ] = L Ty ) e : av =
: 0

. , 12|

© -yMw = =V o J 1 [-(tz—vz') J
=i Rieie {e - v S é 5173 s
0 \% (t eV )

‘emwt dt}dV. %

By lemma 4.1 it follows easily that

-1 ® A . (w)t j}
= 1 = 1=N 1-M
(4..28) Ff(t) =t [g f(t) e | de = = f(~ﬁ~ )

lo|t o

The expression of ¢ then comes, using the tables, from

(4,18), (4.24), (4.19), (4,20) and (4.28).



4.3. Linearized stability. Linearized well-posedness

_ : . ®
THEOREM 4.1 The linearized problem (4.8) - (4.13) with

data from CO is well-posed in the class C.
4§From (4.8) it appears, using (4.28), that for data in

CO y and Y’ are bounded. The theorem then follows by the Haar

. estimates. P
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APPENDIX. The Haar estimates (see, for example, E9])

Let us consider the system

P Ei

ety -+ s R 2 =
o Pt i =g b 0
with A and B, constant matrices [see (2.3)/(3.10)/(4,8), i)
The eigenvalues Rl,..,,Xn of matrix .A are real and distinct.
Let P be a matrix which diagonalizes A :

oy P diag{XJJoe.,Xn}

= ; s : p
and put v=P lq. Maleiplyving (1) by P tosthe deft we £ind

2 ? s |
(3) - 5 . T BV By o o,’, B=p "B,P

1 .
Let us take the point (¥,7), n>0, By inteqgrating (3) along

the characteristics we obtain

: ; Sl
.lBijvj(Xi’t)dt7 s ceny o-p 9

n
=

7
(4) Vi(g.,'yz)zgi[}(i(o 7‘{3,72)]‘j
; 0

where the points ®(%,%) and &, X,(0;%,9),0] are in corresponden-
i [x 0%, . |

ce as belonging to the characteristic x=Xi(t;§,Q).

Let now [kl,xz] be a compact interval of the real axis.
We denote by D%lthe closure of the interséction of the determina-

cy domain of this interval with the Strlp 0 =t <9 and put

H = max {v(Q)| , lvi< max fve |
QGDQ £1<n

" Let R(XR, tR)ED% besa pointiat whideh |wi(Q) ] redeches the



value H . Denoting

gl e ey Jg; )] , K = max lB.-Lj
[xl,x2j 1<i4n x€fx;,x,] 1.3 :

|

we obtain from (4)

lv(P)| € Iv(R) = H £ max ]Vi(R)]:—
1€ién
‘ e ‘
= max|g, (R,)- | o Biﬁvj)dtlg gl +14KH
i - [y, %5]
and further
Hc'é’( | ' c = L
= ?)lg“ S ’ C("Z) = "f__*’r;i? for Q_<H~K

When %>(1/nK) the procedure has to.be repeated. Let us ad-
vance, in this case, by strips of breadth 1/2nK and parallel to

axis £=0. Tn such ‘a strip 6(1)52 se that

(5) Hg 2 lig <2 lgll
[xl,xzj

where the constant lgll majorizes the initial data (on a given in-

terval).

The mentioned procedure can be applieﬁ dissectly to fhe pPro-
blem (4.8), (4.14)l because the determinacy domain of the interve
x <0, t =0 is the whole région <0, & >0, TEathe dnditial daea
are bounded, then from (5) the solution (corresponding to them,

in the domain of determinacy) is bounded.

To study the mixed problem (4.10), (4.12), (4.14), 5 we
e | D
need, moreover, the expression of ¥. In fig.2 we depict, in such

a case, the curve which carries the initial (ﬁo) or boundary (¥)
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‘data and its domain of determinacy. The procedure expounded abo-

ve keeps valid if one makes certain minor and dbvious modifica-
tions related to the estimates corresponding to the: points of dis
continuity. The boundedness of solution depends now, moreover, on

\éi‘
the boundedness of ¥ andy’,

The estimate (5), and the analogue estimates which corres-

pond to the mixed problem, have to be regarded as Haar estimates
because they allow to evaluate the solution by means of initial

and boundary data.

V{‘i



