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0. INTRQDUCTION

T this paper-We continue .the analysis concerning
third order and third grade fluids which has been started

dem [l] by some considerations on thermodynamics restrictions

and on the existence of the free eneray. This problem has

been already. considered by Fosdick and Rajagonal (2} bt i
their paper they have exmployed a particular hypothesis which
finally leads to some different conclusions. This hypothesis
relative to the existence of an absolute minimum for the free
energy on equilibrium states plays, ﬁaciteiy,the role of g sta=
bility cwiterion. in EZX . In our considerations we shall

employ a different and more general stability criterion.

1. STABILITY CRITERIONMANDHCOREESDQNDING

CONSTITUTIVE RESTRICTIONS

The previous mentioned criterion (see for example I.Miller
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for all3< {1, wherefLis the fluid domain and ~¥ is the res-
ponse function of the free energy.

Generally the notations are the same as in L] . Employinq
the balance equation of linear momentum and restricting the
analysis to the casevof isothermic processes we see that (1,1
is eguivalent to the Clausius-Duhem inequality written on ho-
mogeneous and isothermic processes. That is, we can write this

condition in the local form:
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Now we shall consider the particular case of the rela-
tion. (4.18) from {1} which gives the free energy for a third
grade fluid, namely when the function g from (4.20) is

jdentically nul:
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where as we have denoted in Yi], :'\JO:R+ ZR = R is the free

energy on viscometric motions.
An elementary calculus shows us that 4f (1.2) is true
then:
(1.4) I T e
' Bl gt Pt B G0 Tl
on isothermic processes and where we have emploied the relation

(3.1) and the constitutive restriction (3.19), from it



The inequality (l.4) must be valid for all Al,Azé SLin (97V) .
So by a classical way, denoting Alz,bY, Az?alx, with 5,1l R and
Y,X € SLin (¥,%¥%) and employing the constitutivé restrictions

319 From (11 we arrive to the following:

>

THEOREM 1.1. In order that a third grade fluid obays the
restriction (l1.2) on isothermic processes it is necessary

that;

a5y Bt + B0 g

REMARK 1.1. The restrictions (1.5} and (3.19)l 5 from
i /4
(1} with the relation (1,3) are alsoc sufficient conditions for
the validity of Clausius-Duhem inequality (B.5) - from [1]

written on isothermic and homogeneous pProcesses gy

REMARK,;'%' From the above results we see that the

stress response function for a third grade fluid is given

with necessity by the following .relation:
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2. ASSYMPTOTIC STABILITY FOR A THIRD GRADE FLUID
v @

The fact that the nul flow must bé asymptotically stable
seems to be a nécessiﬁy for the mechanical behaviour of a fluid
body. In the following of this section we try to give the con-
ditions in which a third grade fluid, as it has been described
only from the constitutive point of wview, realizes this Behaw
viour. As we have mentioned in the introduction the subject
first has been discussed for third grade fluids in.the papet
{2] and for second grade fluids in the paper of Dunn and Fosdick
[41. The mathematical technics which we employ is fas din the
above cited papérs) a classical one.

We consider a domainJﬂmwiﬁh fixed boundary occupied by
the fluid, the boéy being mechanically isolated and insulated
which implies that the balance equation of linear momentum
multiplied by the velocity % and integrated over{l can be

written in the following manner:

o

3} ¢" 5t
(2.0 -§g g v-vdv } S T+LAV = 0

G A

Employing the‘constitutive relation (1.6), some lengthy
but straighiforward computation gives us, from (21}
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- where we have used the incompressibility.condition and the
adherence of the fluid to the boundary.

We shall denote
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and we want to think the function E as some energetic measure
of the fluid. We shall see at the end of this section the
conditions in which this function can be thought as above.

For the moment we obserye that due to the constitutive restric-

tions Pvzo and P 2+ @3:ro we have:

(2.4) E(t) &

for all t €0, 1t Foldlows thab Filt) lsua decreasihg func-~
tion and .that E(t) < E(0) for all ¢ < (0,02).

If we suppose that the iﬂitial perturbation has been
created with a viscometric motion and that the motion in
continuation remains Viscometric, than trAi=O and A -Al:O

2

and so
o 2 2
(2.5) E _(t)= Shv} = g {Al\

which is an energetic measure (and is similar with those ob-

tained in {2}). Therefore:

(2.:6) Ev(t)$;0

Tl v
for all &:€10, 59
We consider a viscometric motion in the presence of

a conservative body forces field in a fixed rigid domain

‘ilf(v{ =0), and we want to investigate if there exists

DS
£ < R+ so-that



For this we remark first that for all & € R,
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Since v\w(1_=0 there result (Friedrics inequality) that
(...:o

there is a constant c(&R+ such that
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and from (2.7) we have:
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Taking into account the constitutive restrictions it
results that the necessary and sufficlent condition for the

right hand side of the inequality (2.8) be nonpositive is:
L 4
(2.9 o 1+?C)“2F

Therefore we have proved the following theorem:

THEOR“M ? 1. Tiet the cannister viscometric flow of a

third grade fluid be mechanically isolated for ad bkt 20, Tthen

o

there exists 'ae.R+'such thiat
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(2..10) Ev(t) e Ev(t)f: 0

where & is determined by (2.9),

0

We shall prove that this theorem tells us that the éanniSM
ter viscometric floWs of a third grade fluid, with o> 0 (which
is an usual hypotheéis based on the experimental data given
. for example in {5 5 61 are asymptoticaliy at sresik (that is
the null flow is asymptotically stable). For this we observe
Ehat (2.10) inmplies:
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and if oy > O, the deffinition (2.5) gives beth
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As in YZ] we can obtain, by means of the same known
technique, the lower bound of the positive definite function
E(t). For this we consider a positive function A (t) and

we evaluate:
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Oon the other hand we observe that on viscometric flows
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and so we have
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Now, we choose
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where Vv :R_ ~—~:>R+ is defined by
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xﬁ which appears in (2.17) is a point in £ whose existence
is guaranted by the virtue of the mean value theorem for

i 3 5 3 5 = = , -
integrals, and J &R, is such that W (Rt f 12 0.

Now we are ready to state the following:

THEOREM 2.2, Let the cannister viscometric flow of a

third grade fluid with « ;>0 be mechanically isolated for gl |

£ 2005 Then
2518 Ev(t)#O

for all t and there exists M (t) € R such that:
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Proof. With the preceding remarks the proof is immediate
because (2.19) results from (2.15), (2.16), o) ang khe

chelgefor: . ~ o From (2.19) by integration we have
(2.20) E (tl2E (0)e o
If we observe that from (2.17), and (2.13) we have
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a simple calculus led us to the following conclusion
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for gl f(E(O,OO), which in particular, gives (2:18)

el

REMARK 2.1. Using the Friedrics inequality we have
(2270 B _(c+-~—§—) &\Al\

and so from (2.22) and the Theorem 2.2 we can obtain the

following appriori bounds for v and Ayt
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These results allow us to conclude that initial distur-
bances cannot disapear at any finite instant of time in such
£1oWS ¢
: 5]

Now we start the analysis of the general case of interest,
which means that we shall consider the general exbre sion (2.3

for E(t) and for &> 0 we shall evaluate:

@

Eilt) +&5 E(t)

Without the use of the restriction (1.5) but takina into
account the constitutive restrictions (3.19) from [lx after

some straightforward computation we obtain:
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and where we have also used the Friedrics inequality. We shall
rearrange the terms in (2.24) and we shall introduce the new

function
2.25) . P(t)=E(t) - L \J\ML
28

in terms of which (2.24) becomes:
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If we restrict the analysis to the class of third grade
fluids for which 3 P +232= (which is a sufficiently general
one) we see that a necessalv and sufficient condition for the

existance of an upper nul bound for the first term in (? Z26) ise

(2 A ] ) E\ e (Q \“cgc—“:"w\ wa%(‘\ }'\L )
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with this choiée for. & the‘followinq inequality holds:
'(2.28)‘ F(t)fg;F(tjs 0
and so, it is an evidence that:
=
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and we have established the following:

THEOREM 2,3. Let the cannister flow of a third grade

fluid be mechanically isolated for all t20. If the constitu-

tive moduli , . e satisfy the relatioun 3§§l+2'§2=0,

then there exists E<5R+ , satisfying (2.27) suen that:

a0 F(t)+&F(t) &

L

On the other hand we observe that if g(t) S AKXN5\V %
: £
e ety s then



the following Lemma is true:

LEMMA 2.1. If the third grade fluid under consideration

sy R O

is such that 3i7 +2 \?—O 8 >AO and g is a decreasing function
of = fep large .t then F is non-negative for squLCLently large

t and:

.30 fae) S'\V\2 +.2§ S\Al\z B
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REMARK 2.2. The hypothesis concerning the monotonicity

of the function g is quite general. For example if S\ A
is a periodic function of t, this condition Oannot be true.
We shall consider the inequality (2.29) which can be explicitely

written.
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for all t>0. However \\Al\z being a periodic function of t,

G i
it results that \\Al\2e_ & has a periodically decreasing maxima
and periodically increasing minima. So if we denote by [.the

period and if we'integraﬁe (2.32) on a period we shall have:
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where for the third term on the left we have used a mean value



theorem for integrals, t; & (to+kT,tO+(k+l)T). Now if we
opserve the third term of the deft part of (2,.33) we shall seceo

that
Lol T :
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due to the fact that the maxima of the furiction S\A (00 e o

1
Qe

are decreasing valuesof t. So (2.33) implieé with necessity

that the following inequality must hold:
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for all k>0. Then taking into account that the intervals of
integration are of equal length and that for k-sco the left hand

side converges to zero the following relation must holds:

(2.35) Lim \\a, (x,£)| 2ax=0

Lo

whichh is not true due to the fact that the function
T g &Al(x,tﬂ 2dx have been supposed to berberiodic.

Mgﬁhen it results that no globally periodicafly motion can
appear in a third grade fluid under above mentioned conditions

(which means esSentially that we have adherence condition on

the boundary for the velocity).



Finally we see that in the conditions of the Lemma 2.1

we have the following: : : e

COROLIARY 2.1. The cannister flows of a third grade fluid

=0 are asymptotically at rest.

with &jl>0 and BF]jQ F2‘

Proof. The proof is immediate because of the relatlon

a—————e

(2.29) which dmplies, if d.l> 0, 3§sl+2§32= , the deffinitions

(a3 ) 2325) and the -relation (2.31)’that

(2.36) Oﬂ;g\v(x,t)\zdxsl"‘(O)e_gt
s
O 0¢ X\Al<x,t)\zaxgi&mme‘?t
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for t sufficlently large.
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