INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

EXTENSIONS OF THE (BCP) - TECHNIQUES

by

Andrei HALANAY

PREPRINT SERIES IN MATHEMATICS
No.58/1985

Mea 23680

EXTENSIONS OF THE (BCP) - TECHNIQUE

bу

Andrei HALANAY*)

September 1985

^{*)} Mathematical Chair 1, Polytechnical Institute, Splaiul Independentei 313 79590 Bucharest, Romania.

Andrei HALANAY

§ 1

In [2] it is proved that, for a completely nonunitary contraction of the class C_0 , whose left essential spectrum dominates the unit circle, every element in the predual of \mathcal{A}_A , the weak*-closed algebra generated by A in $\mathcal{L}(\mathcal{X})$, is of the form $[x \otimes y]$ with x and y in \mathcal{X} . In subsequent works Apostol, Bercovici, Chevreau, Foiaş, Pearcy, Robel, Sz.Nagy generalized this result in several directions (see [1] for a full bibliographical account).

So, it is proved that for an absolutely continuous contraction A ([1] Ch.IV) of the class C_0 , whose essential spectrum dominates the unit circle, for every infinite matrix $\begin{bmatrix} L_{ij} \end{bmatrix}_{i,j \geqslant 1}$, of elements in the predual of A_A there exist sequences $\{x_i\}_{i \geqslant 1}$, $\{y_j\}_{j \geqslant 1}$ in A such that

$$\left[L_{ij}\right] = \left[x_i \otimes y_j\right]$$
 for every i, j 1 1.

In this paper we observe that the same result is true for some weak*-closed subspaces of \mathcal{A}_A using only the presence in the left essential spectrum of A of an interpolating sequence for H $^{\infty}$ (see [6], [7]). Such contractions can be produced by an obvious modification of the construction in [5]. The proof

relies on a theorem of a general nature which is what we need from the generalizations of the (BCP)-technique.

The Hilbert space is assumed to be separable and the notations and definitions will be those from [1].

The author expresses his gratitude to Dan Voiculescu and Dan Timotin for valuable conversations.

§ 2

Definition 2.1. Let $\mathcal{MCL}(\mathbb{K})$ be a weak*-closed subspace and let n be any cardinal number such that $1(n \in \mathbb{N}_0)$. \mathbb{M} will be said to have property (A_n) provided every n x n system of simultaneous equations of the form

$$[x_i \otimes y_j] = [L_{ij}], \quad 0 \leq i, j \leq n$$

with L_{ij} arbitrary, fixed elements from $Q_{\mathcal{M}}$, the predual of \mathcal{M} , has a solution $\left\{x_{i}\right\}_{0\leqslant i\leqslant n}$, $\left\{y_{j}\right\}_{0\leqslant j\leqslant n}$ consisting of a pair of sequences of vectors from \mathbb{R} .

Theorem 2.2. Let A be an absolutely continuous contractions in $\mathcal{L}(\mathbb{K})$, $\nabla(A) = \nabla_{\mathrm{le}}(A)$, $\nabla(A) \wedge \mathbb{D} \neq \emptyset$ (D is the open unit disc in C) and $A^{\mathrm{n}} \to 0$ for $n \to \infty$ in the strong operator topology (that is $A \in C_0$.). Let \mathcal{M} be a weak*-closed subspace of H° with the following property:

there exists M > 0 such that for h $\in \mathcal{M}$

(2.1)
$$\|h\|_{\infty} \leq M \sup_{\lambda \in \mathcal{F}(A) \cap D} |\hat{h}(\lambda)|$$

Let \mathcal{A}_A be the ultraweakly closed algebra generated by A in $\mathcal{L}(\mathcal{H})$ (see [1]) and $\Phi: \mathcal{H} \longrightarrow \mathcal{A}_A$ the canonical homomorphism $\Phi(h) = h(A)$, and let $\Phi(\mathcal{M})$ be denoted by \mathcal{M}_A . Then \mathcal{M}_A is a weak*-closed subspace of $\mathcal{L}(\mathcal{H})$ with property (\mathcal{A}_A).

Proof. $\|\dot{\phi}(h)\| \le \|h\|_{\infty} \le M \sup_{\lambda \in \sigma(A) \cap D} |\hat{h}(\lambda)| \le M$

 $\langle M \| h(A) \| = M \| \hat{\Phi}(h) \|$ for every $h \in \mathcal{M}$ (see [1], [3] Lemma 3.1).

 \mathcal{M} is closed in \mathcal{H} and from the previous inequalities \mathcal{M}_A results norm closed in \mathcal{A}_A . ϕ is weak*-continuous so from [2] Theorem 2.7 and Corollary 2.4, ϕ induces a weak* homeomorphism between \mathcal{M} and \mathcal{M}_A .

For any fixed ${}^{\lambda}{\in}$ D the map $h\mapsto \hat{h}\,({}^{\lambda}{})$ is a weak $^*\!\!\!-\!\!\!$ continuous linear functional on ${\cal M}$.

Since the map $h(A)\mapsto h$ is a weak* homeomorphism of \mathcal{M}_A onto \mathcal{M}_A , the map $h(A)\mapsto \hat{h}(\lambda)$ is a weak* continuous linear functional on \mathcal{M}_A , so there exists an element $[C_\lambda]$ in $Q_{\mathcal{M}_A}$, the predual of \mathcal{M}_A , such that

 $\langle [C_{\lambda}], h(A) \rangle = tr(h(A)C_{\lambda}) = \hat{h}(\lambda)$ for all h in \mathcal{M}

Condition (2.1) implies that •

 $\overline{aco} \; \left\{ \left[\text{C}_{\lambda} \right] \middle| \; \lambda \in \text{G(A)AD} \right\} \; \text{contains the closed ball of radius} \; \frac{1}{M} \; \text{about the origin in} \; \Omega_{\text{M}} \; \left(\left[1 \right], \; \text{Proposition 1.21} \right).$ By [2] Lemmas 4.3, 4.4 and 4.5,

Remark. The same theorem is true for an absolutely continuous contraction A of class C_{oo} with $\sigma(A) = \sigma_{e}(A)$, $\sigma(A) \cap D \neq \emptyset$.

\$ 3

To apply theorem 2.2 we consider A an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$, $A \in C_0$, $G(A) = G_{le}(A)$ and $G(A) \cap D$ contains an interpolating sequence of exponential type, $\{z_i\}_{i=0}^{\infty} \ , \ \text{that is}$

$$|z_{j}| \rightarrow 1$$
 for $j \rightarrow \infty$ and
$$\frac{1 - |z_{j+1}|}{1 - |z_{j}|} \langle a \langle 1 | \text{for every } j \rangle \langle 0 \rangle \langle [7] \rangle.$$

We construct two weak*-closed subspaces of H°, \mathcal{M}_1 and \mathcal{M}_2 for which condition (2.1) is fulfilled. The first one \mathcal{M}_1 , is isomorphic and weak* homeomorphic with 1^1 , the space of summable complex sequences. It is generated by a sequence $\left\{h_n\right\}_{n=0}^{\infty}$ in H° interpolating a properly chosen sequence in 1^{∞} , the space of bounded complex sequences. The construction relies on the properties of some Sidon set.

The second subspace, \mathcal{M}_2 , is isomorphic and weak*-homeomorphic with 1 , being generated by the sequence $\{f_j\}_{j=0}^\infty$ given in [4]. We proceed now to detail the construction of the two subspaces and begin with \mathcal{M}_1 .

Let $C(\mathbb{T})$ be the space of complex valued continuous functions on the unit circle \mathbb{T} , denote by $\hat{f}(n)$ the n-th Fourier coefficient (n \in Z) of f and, for P a subset of Z , let

 $C_p(T) = \{ f \in C(T) | \hat{f}(n) = 0 \text{ for every } n \text{ in } Z - P \}$

Let $E = \{2^k \mid k \ge 1\} \cup \{0\}$.

E is a Sidon set (see [8], [10]) and we denote by C the positive constant for which

(3.1)
$$\sum_{n=0}^{\infty} |\hat{f}(n)| \langle C \| f \|_{\infty} \quad \text{for every } f \in C_{E}(T)$$

We identify $C_E(\pi)$ with a weak *-closed subspace of H * and subsequently refer to it as a subspace of H *.

Define
$$f_k(z) = \frac{1}{2}(z^{2k-1} - z^{2k})$$
 for $k \ 1$

$$f_0(z) = 1$$
 for every $z \in \mathbb{D}$

and denote by F the closed linear subspace generated by $\left\{f_k\right\}_{k\geqslant 0} \text{ in } H^{\infty} \text{. It is easy to see that there exists an isomorphism } U \text{ between } 1^l \text{ and } F \text{ such that } U(e_k) = f_k \text{ , where } \left\{\ell_k\right\}_{k\geqslant 0} \text{ is the canonical basis in } 1^l \text{. Morrover, } F \text{ is weak}^* - \text{-closed in } H^{\infty} \text{ and } U \text{ is a weak}^* \text{ homeomorphism of } 1^l = (c_0)^* \text{ onto } F \text{ } (c_0) \text{ is the space of complex sequences converging to } 0) \text{ .}$

Define $\mathcal{E}_{k} = \{ \mu \in T | f_{k}(\mu) = 0 \}$ for $k \ge 1$.

Obviously $\mathcal{E}_k \subset \mathcal{E}_{k+1}$. Put $\mathcal{E} = \bigcup_{k \neq 1} \mathcal{E}_k$. \mathcal{E} is a countable dense subset of T and let $\mathcal{E} = \{ \mu_j \}_{j=0}^\infty$ be an ennumeration of \mathcal{E} such that for $\mu_j \in \mathcal{E}_k$, $\mu_i \in \mathcal{E}_k$ and j(i we have \mathcal{E}_k).

Proposition 3.1. Let $w_n \in 1^\infty$ with components $w_{n,j} = f_n(\mu_j)$, $j \gg 0$, $n \gg 0$. There exists $\left\{h_n\right\}_{n=0}^\infty$ in H such

that $h_n(z_j) = w_{n,j}$ for j > 0 , n > 0 , $\|h_n\|_{\infty} \le M_1$ for every n > 0 and

$$h_n \xrightarrow{w^*} 0 \text{ as } n \to \infty$$

Proof. Observe that for $\mu \in \mathcal{C}_k$, $f_n(\mu)=0$ for every $n \geqslant k$. Then $w_{n,j}=f_n(\mu_j)=0$ for $j \leqslant 2^{2n-1}$, $n \gg 1$.

Let $u_j=1-|z_j|$, $j \gg 0$. Then $0 < |z_j| < 1$ implies $0 < u_j < 1$ for every $j \gg 0$.

 $\frac{1-\left|z_{j+1}\right|}{1-\left|z_{j}\right|} \ (\text{a (1 implies } u_{j} \text{ (a}^{j}.u_{o} \text{ for every } j)\text{1. Let}$ $\text{jyn. } \left\{z_{j}\right\}^{n} = (1-u_{j})^{n} \ \text{y (1-a}^{j}.u_{o}) \ \text{y (1-a}^{n}.u_{o})^{n} \ \rightarrow 1 \text{ as } n \rightarrow \infty. \text{ Then}$ $\left\{\frac{w_{n,j}}{z_{j}^{n}}\right\}_{j=0}^{\infty} \text{ is in } 1^{\infty} \text{ for every } n \ \text{y 0 and there exists } M_{1}' \ \text{y 0 such}$ that

$$\left\| \left\{ \frac{w_{n,j}}{z_{j}^{n}} \right\}_{j=0}^{\infty} \right\| 1^{\infty \langle M_{1}' \text{ for every } n > 0}$$

Let $g_n \in H^{\infty}$ be such that $g_n(z_j) = \frac{w_{n,j}}{z_j^n}$, $n \geqslant 1$ and $g_0(z) = 1$ for every $z \in \mathbb{D}$.

[7] § 10 or [6] Chap.VII implies that there exists M $_1$ > 0 such that $\|g_n\|_{\infty} \le M_1$ for every n > 0. The sequence

$$h_n(z) = z^n g_n(z)$$
 defined for all $n \ge 0$

satisfies the requirements of the proposition.

Let \mathcal{M}_1 be the closed linear subspace generated by $\left\{h_n\right\}_{n=0}^{\infty}$ in H^{∞} .

Proposition 3.2. \mathcal{M}_1 is isomorphic and weak* homeomorphic with 1 (so \mathcal{M}_1 is weak*-closed in H°).

Proof. Let
$$\tilde{U}: 1^1 \longrightarrow \mathcal{M}_1$$

$$\tilde{\bigcup} \left\{ \alpha_{n} \right\}_{n=0}^{\infty} = \sum_{n=0}^{\infty} \alpha_{n} h_{n}$$

 $\|\widetilde{U}\{\alpha_n\}_{n=0}^{\infty}\|_{\infty} \leq M_1 \| \{\alpha_n\}_{n=0}^{\infty}\|_1 1 \quad (M_1 \text{ is the constant from Proposition 3.1)}.$

Observe that $\{w_n\}_{n=0}^{\infty}$ is basic in 1^{∞} ([12] I § 7) so \tilde{V} is injective.

It is easy to prove \widetilde{U} is weak*-continuous (use $h_n \xrightarrow{w^*} 0$ for $n \to \infty$). Since for an element $h = \sum_{n=0}^{\infty} \propto h_n$ in \mathcal{M}_1 we have

 $h(z_j) = \sum_{n=0}^{\infty} \propto_n h_n(z_j) = \sum_{n=0}^{\infty} \propto_n f_n(\mu_j) \text{ then } \sum_{n=0}^{\infty} |\alpha_n| < c \|h\|_{\infty}$ (C is the constant in (3.1)) and we deduce $\{h_n\}_{n=0}^{\infty}$ is a basis of \mathcal{M}_1 and $\tilde{\mathcal{U}}$ is onto. The proposition follows using [2] Th.2.7.

Proposition 3.3. Theorem 2.2 holds for \mathcal{M}_1 .

proof. All we have to prove is inequality (2.2). Let hold be in \mathcal{M}_1 , $h = \sum_{n=0}^{\infty} \alpha_n h_n$. Then $\{\alpha_n\}_{n=0}^{\infty}$ is in 1^1 and $\|h\|_{\infty} \leqslant M_1 \|\{\alpha_n\}_0^{\infty}\|_{1^1} \leqslant M_1 C \|\sum_{n=0}^{\infty} \alpha_n f_n\|_{C(\mathbb{T})} = M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n f_n(\mu_j)\right| = M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| = M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| = M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| = M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}^{\infty} \alpha_n h_n(z_j)\right| \leq M_1 C \sup_{j \in \mathbb{C}} \left|\sum_{n=0}$

since $\{z_j\}_{j=0}^{\infty}$ is in $\mathcal{T}(A) \cap D$.

So we have (2.1) with $M=M_1C$.

Corollary 3.4. There exist x and y in \Re such that (x,y)=1 and $(h_n(A)x,y)=0$ for every n > 1.

Proof. Take [L] = [C_o] the evaluation at 0 and apply theorem 2.2 to \mathcal{M}_1 .

To construct \mathcal{U}_2 we follow [4], [6]. Let

(3.2)
$$M_{2} = \sup_{\|\{a_{j}\}_{j}\|_{1^{\infty}} \leq 1} \inf \{\|f\|_{\infty} | f(E_{j}) = a_{j,j} > 0 \}$$

There exists $\left\{f_{j}\right\}_{j=0}^{\infty}$ in H^{∞} such that

(3.3)
$$f_{j}(z_{j})=1$$
, $f_{j}(z_{k})=0$ for $j\neq k$ and

(3.4)
$$\sum_{j=0}^{\infty} |f_{j}(z)| \langle M_{2} \text{ for every } z \in \mathbb{D}$$

Let \mathcal{M}_2 be the closed linear subspace generated by $\{f_j\}_{j=0}^{\infty}$ in H^{∞} . By [6] Ch.VII \mathcal{M}_2 is a complemented subspace of H^{∞} isomorphic with I^{∞} through the canonical operator

$$\{a_j\}_{j=0}^{\infty} \mapsto \sum_{j=0}^{\infty} a_j f_j$$
 , the norm of this operator being M_2 .

Condition (3.4) insures the weak* continuity of this operator so by [2] Th.2.7 \mathcal{M}_2 is weak*-closed in H $^{\infty}$.

Proposition 3.5. Theorem 2.2 holds for M_2

Proof. Let h be in \mathcal{U}_2 , $h = \sum_{j=0}^{\infty} a_j f_j$ with $\{a_j\}_{j=0}^{\infty}$ in 1^{∞}

$$\|h\|_{\infty} \le M_2 \|\{a_j\}_{j=0}^{\infty}\|_{1^{\infty}} = M_2 \sup_{j} |a_j| = M_2 \|a_j\|_{\infty}$$

$$= M_2 \sup_{j} |h(z_j)| \leq M_2 \sup_{\lambda \in \mathcal{G}(A) \wedge D} |h(\lambda)|$$

since $\{z_j\}_{j=0}^{\infty}$ is in $\mathcal{S}(A) \wedge D$.

(2.1) holds with $M=M_2$ and the conclusion follows.

· REFERENCES

- Bercovici, H.; Foiaş, C.; Pearcy, C.M., Dual algebras with applications to invariant subspaces and dilation theory; CBMS Regional Conf. Ser. in Math. no.56, Amer.Math.Soc.Providence R.I. 1985.
- 2. Brown, S.; Chevreau, B.; Pearcy, C.M., Contractions with rich spectrum have invariant subspaces; J. Operator Theory 1 (1979), 123-136.
- 3. Chevreau, B.; Pearcy, C.M.; Shields, A.L., Finitely connected domains G, representations of H^{oo}(G) and invariant subspaces; J.Operator Theory 6 (1981) 375-407.
- 4. Earl, J.P., A note on bounded interpolation in the unit disc; J.London Math.Soc. (12) 13 (1976), 419-423.
- 5. Foiaş, C.; Pearcy, C.M.; Sz.-Nagy, B., Contractions with spectral radius one and invariant subspaces, Acta Sci.Math. (Szeged) 43 (1981), 273-280.
- 6. Garnett, J., Bounded analytic functions, Academic Press
 1981.

- 7. Hoffman, K., Banach spaces of analytic function (in russian) Iz.In.Lit. 1963.
- 8. Kahane, J.P., Séries de Fourier absolument convergentes (in russian), Mir 1976.
- 9. Robel, G., On the structure of (BCP)-operators and related algebras I, J.Operator Theory 12 (1984) 23-45.
- 10. Rudin, W., Trigonometric series with gaps, Journal of Math. and Mech. vol. 9(1960), no.2, 203-229.
- 11. Sz.-Nagy, B.; Foiaş, C., Harmonic analysis of operators on Hilbert space (in russian), Mir 1970.
- 12. Singer, I., Bases in Banach spaces. I, Springer Verlag
 1970.

Andrei HALANAY

Mathematical Chair 1

Polytechnical Institute

Splaiul Independenței 313

79590 Bucharest, Romania.