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ON SUBFIELDS oF k(x)

by

Victor ALEXANDRU and Nicolae PoPESCU

Let k be a f ield and let k(x) be the f ield of rational functions of one vari-

able over k. By intermediate f ield we understand a f ield K between k and k(x) and

such that K I kj.  I f  K is an intermediate f ield, i t  is well  known that k(x)/K is a f inite

extension and k = k(o), cl e k(x); i .e., K is also the f ield of rational functions o{ the

i lvariable" o over k (Luroth's Theorem; see [Z]). A discussion of the latt ice of inter-

mediate f ields seems to be interesting.

In what follows we consider some problems related to intersections of

intermediate f ields" A somewhat surprising remak is that for every f ield k there

exists simple examples of intermediate f ields k(at) anC k(ur) such that k(sl)

11k(or) = k (Proposit ion 1"8). our Theorem 1.3 shows that the probiem of inter-

sections of intermediate f ields can be reduced to the case when k is algebraical ly

closed. Also in Theorem 1.4, we show that separabil i ty over intermediate f ields is

preserved by intersections. Another results (such as Theorern 2.1) refer to index of

ramif ication of a valuation on k(x) relative to intermediate f ields. part icularly we

sho'iv that the main result of [3] (Section 2, Theorem) is somewhat true in posit ive

characterist ic but in a weak formulation (Corollary 2.2 and Remark 2.5). Some

results on Galois extensions k(x)/k(s) are given in Section 3.

In section 4 one shaw that some subrf ields of k(x) are uniquely represented

or a reduced intersection of indecomposable f ields.

In what fol lows we shall  ut i i ise standard notations. However we remind

these notations for rnore claritv.
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By a valuation on l<(x) we shall  mean every valuation which is tr ivial over

k. These valuations are defined by irreducible polynomials of k[x] and by l /x, the

prirne at inf inity (see [Z], Ch.t).

I f  G is a set '  lG I means the cardinali ty of G. If  n,m are natural nunrbers,

then [n,m] = l .c.m. and (n,rn) = g.c.d. of n and m.

If L/K is a f inite extension, then [L : I(]  means, as usual, the t 'degree of L

over Ktt.

I. SOME GENERAL RESULTS

Let k be a field and let o bqan element of k(x), a f k. We shall say that o

is a sepalabJe elepent of k(x) if k(x)/k(a) is a separabre extension.

LEMMA l. l .  Let o= f(x)/g(x), where f(x) and g(x) are relatively prime

polynomials. The following assertions are equivalent:

a) o: is a separable element.

b) f(x) or g(x) is a separable potynomial.

c) The formal derivative o' = (f '(x)g(x) - i(x)g'((x))/g2(x) is a non-zero

element of k(x).

PROOF. a):*b). Since k(x)/k(o) is a separable extension, the minimal

polynomial of x over k(o) is separable. But the minirnal polynomial of x over k(o) is

h ( y ) = f ( y ) - o g ( y ) , a n d s o h ' ( y ) = f ' ( y ) - o g ' ( y ) . T h e c o n d i t i o n h , ( y ) l 0 i m p t i e s f , ( y ) 1 0

or g'(y) I o.

b)=.?c). If ct' = 0, then f'(x)g(x) = f(x)g,(x) and so f(x)/g(x) = f,(x)/g,(x). tfre

condit ions deg f '(x) ( deg f(x), deg g'(x) ( deg g(x) and the irreducibi l i ty of q lead us

to a contradict ion. Hence b) implies a' I  O.

The other implications are obvious.

in what fol lows we shall  ut i l ise the fol lowing result.



I-E&{MA 1"2. Let k be a f ield and k the algebraic closure of k. Let f 
,(x),. . .

. . . , fn(x) be elements of klxl i lnd ul,. . . ,un elernents (not al l  0) of T, such that

arf 
,(x)+...+an{n(x) 

= 0. Thren there exists elernents a!:. . . ,a1., in k, not al l  0, such that

a ' r f  , (x)+. . .+a i - , fn(x)  
= 0.  Moreover ,  i f  an 10,  we can assume that  a ;10.

d . =  )
I  . -  .

J = t

,i [!;,,','.')
I'l r ITI

I f I
i = l \ j = l

( t )
",;-;) 

r,(x) = € i = 0 '
)

d , , = d r ' ,  l ( i ( n .  T h e n
t )  r  - - *

j ,  and so we can assume

Since the elements err.. .r€6 Bive also a basis of L(x) over k(x), we see by ( i) thatt
n

.l-a,,f ,(x) = 0 for al l  j .  The hypothesis that not al l  a, are C) implies that there exists
i = l ' J

i (I 5 j 5 n) such that not all uij are 0. Let us deriote
n
c

I  a i f  , (x)  = 0.  Par t icu lar ly ,  i f .  a^  10,  then a^,  I  0  for  some
i ; l "  n '  n J '

that a' I  0 as claimed.n '

THEORI,Fi 1.3" Let k be a field and denote nyT the algebraic clcsure of k.

Let o t, o 2 be elements 
' 
of k(x). Then t1o,){' l  k(a r) I k if and only if

TOrlnf0z) lT" tutoreover, one has [k(x): k(crr) R k@r)1 = tf(x),T@r) n [Orlt.

PROOF. It is clear that TO rl f lTtr z) lT whereas k0 l) n k@ 2) I k. I ' low

let us assume ttrat I-0 rl r lFtr 2) {T,. Let a, = ur(x)/v,(x), i = r,2, where ui(x) and

vt(x), respectively ur(x) and vr(x) are relatively prime polynomials, It is easy to see

that we can assume the following inequalit ies are accomplished.

(2)

Letfo,l nl-b2) =

deg ur(x) > deg vr(x), deg ur(x) ) deg vr(x).

T6 ). rh"n one has.

B =f  rb  r ) ler$ |=f20. r ) ler$r ) ,

PROOF. Denote L = k(ar,.. . ,an) and let { e1,...rer} be a basis of the vector
m

uij" j  ,  i  = lr. . .rr lr  with arre k for al l  i ,  j .  Further-

t l

I  a,f  ,(x) =
l = l

space l-/k. Then one has

more, one has
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f r ( t )  =  a o  +  a r t  + . . .  +  
" n t n ,  

a n  1 0 ,  n )  l ,

B r ( t )  =  b o  +  b r t  + . . .  *  b . t m ,  b m  l  o ,  m ) 0 ,

t z ( t )  =  co  +  c r t  + . . .  I  c r t r l  c r l  a ,  12 l ,
'  

S Z ( t ) = d o + d r t + . . . + d r t s ,  d s l 0 ,  s ) 0 ,

are polynomials of T[t] ,  and such that f l( t) and gr(t),  respectively f.r(t)and gr(t) are

relatively prirne. Let us assurre that n ) rn. Then necessari ly r ) s. Indeed, Iet v be

tire valuation on K(x) defined by the prime at inf inity. Then v(B) = (n _ mXdeg

vr(x) - deg ur(x)) = (r - sXdeg vr(x) - deg ur(x)), and so by (2) and the assumption

n ) m rve infer that r ) s, as claimed.

Moreover, we always can assume that n ) m. Indeed, i f  n ( m then we

change B to t/8. I f  n = m we can change 0 to l /(B - a), where abn = an. l lence in

what follows v/e a-ssume n ) m and, as we already proved, we have also r ) s.

Now, the elernent B can be written as fr: l lows

a  v .  ( x ) n + . . . + a  u ,  ( x ) l t
B = .  o ' r * . - - -  -  - . - . . . -

Forr (x)m+. . .+b*u, (x)m)v, (x;h-m (drr^ (x)s+. " ;;;;a;t:lqa;Ft

and according to hypothesis (the polynomials ur(x), vr(x), i = lr? and fi(t), gi(t),

i  = lr2, are relatrvely prime in pairs) one check that

aovr(x)n +. . .  + anur(x)n = cov2(x)r  * . . :  *  c.ur(x)r

(bovr(x)m + ... + b,nur(x)m)ur(*)n-* = (dovr(x)s + ... + drur(x)s)vr(*)r-s .

Thenr'according to Lemma 1"2, there exist elements af,, . . . ,ai. , ,  c!,. . .rc! in

k, not al l  0, such that

(3)

(4) a'ovr(x)n +.." + ai. ,ur(x)n = ctvZ(x)r +.. .  + ciur(x)r



and such that an I 0. But then necessarily ci I 0, since the degree of the

polynomial in the left rnember of (4) is ndegur(x) = rdegur(x) (see (2) and (3)). In the

same manner we obtain that there exist elements bi,. . . ,bin, di, . , .rd! in k, not al l  0,

such that

(5) (u;vr(x)m *. . .  + b ' rnur(*)*)ul(*)n*t  = (dtvz(x)s +. . .  f  o;ur(x)s)vr(*)r ' 's

and such that b; I 0 I dL.

Furthermore, according to (4) and (5) we infer:

r;*. . . +aio.f c ' + . . . + c ' c r f
o T zc f , =

b;*. . . +nfiaf d;n. . . +a{cr,!

T h e  h y p o r h e s e s  n ) m ,  r ) s  a n d  a l s o  a i . ,  1 0 1 c , r , b ;  l 0 l  d i  s n o w  t h a t  e  i s

an element of  k(x)  and u/ .k.  Since ae k(o,) fgk(g) we see that t<(or) f1k{ur)  *k.

Novr it is easy to see that one r-ras: i i l(x),ttoltsi l(x),Tt$:]s[[t*),?toi] and so

tI(*) ,I(dl = i[t*t ,?e)]. But then [k(x) : k(cr)flk( U)]S [t<(x) : k(01.,] = i[(*) , R.d] =

= [T(*), I(c,) d-tg)]!lk(x) : k(o,) (tk(or)i" Hence finally [t<(x) : t<(ar)f]k(g)i =

= [k(x):  k(cr)f l t<(g)i .

THECIREM 1"4" Let k be a f ield and let o1rcr2ro3 ek(x) be such that

k(or)f ik(or) = k(ar) I  k. Then c., and % are sepa.rable elements i f  and only i f  o, is a

separal t le element.

PROOF. It  is enough to show that c, and c-, separable imply cl,  separable.

Let:

o3 - f I (or)1g, (o.1) = t r(yll 52fu2)

where ft(y) una 81(v), respectivety tr(v) and gr(v) are relatively

of k[y]" For the moment let us assume that k is a perfect

separable, then one has (see Lemrna l . l ) :

prirne polynomials

f ield. I f  a, is not



(6)

Because o', I 0, by hypothesis, one sees that

"  f ! (ar )Sr(o l )  =  f l (er r )S j (ur ) .

I f  g!(n,r) I  o, then f ,(or)/S1(ar) =, f !(o,r)/Srfur),  a

oeg f ,(r)(deg f ,(v),  deg g!(v)(deg Bt(y),  and f ,(y),  s1(v)

Hence (5) imply f i (ol)  = gi(or) = 0 and so f  l (ol)  = 1i{cr))p,

the characterist ic of k), k being a perfect f ield. In the same

t z@.2) = (Tr@ z))p, 82tl- r) = k-2(o r))p and so

contradict ion, because

are relatively prime.

sr(crr) = (f l(or))P, (p is

manner one sees that

Let us denote tr ,  =?rfurV6rbr).  Then Er€ k(or)f1k(ar),  and obviously

[k(x):  k(ar)J>[k(x):  k(q)],  a contradict ion. Therefore c; '31o and soo, is separable

(Lemma l " i ) .

Now let us assume that k is not necessari ly perfect, and let? be the alge-

braic closure of k. Since k(or)lXk(cr) =k(ar) /kt i t  fol lows tnat f(sr)f iT{or) =

=T(B) l i ,  and f l  is a separable element. But according to Theorem 1.3, one sees

tfratTG) =f{glU}ano so o3 is also a separable element, as claimed.

COROLLARY 1"5. Let k be a f ield and let orror,o., be elements of k(x)

such that k(rrr)f l lk(o,) = k(ar) I  k. Let us assuff le that the extensions k(x)/k(qi),

i  = LrZ have the same degree of inseparabil i ty namely pe. Then the degree of

inseparability of the extension k(x)1k(sr) is a.lso pe.

PP.OOF. Let  s ,  =  f  , (x) /gr (x) ,  where f  
, (x) ,  g i (x)  are re la t ive ly  pr ime

polynomia ls .  The min imal  po lynomia l  o f  x  re la t ive to  k(or)  is  h( t )  =  f  l ( t )  
-  orSr( t )e



n

e k(s 
t )[t]" 

" 

Since the degree of inseparability or k(x)/k(o 
t ) is pe, w€ hgve

h(t) =fi(tP ), where fr(t) is an irredr;cible polynomials of l<(o,)[t ] .  But then
e € g e t

f r( t)  =ir t to ),  sr(t)  =g_r{tp ).  Hence one has: cr,  = Ir{xp') /Hr{*0";.  In the sarne way
- e  e  -  ' _ e  ^  

ewe see that o, =Tr(xp )l{r&p ). The extensions !a(vP-)/k(ot) and k(*p=yk(o2) are

separable by hypothesis; accorcl irrg to T'heorem i.4, the extension p(xP-)/p1or; is

also separable. Hence the degree of inseprability of the extension k(x)/k(o.) is also

p€, aS claimed.

Uti l ising the same idea as in the proof of rheorern 1.4, one

result: ' rLet k be a f ield arrd let oIroZ, o3€k(*), be such that

Let oei be the degree of inseparabil i ty of the extension

the degree .f irrseparability of the e.xtension 101;,)/t(o,r) is

I-et T be the algebraic closure of k. In (L3), .Sect"2,

that i f  f  ,  (x), f  .(x) are polynomials over k such, thatr t

an inf inite f ield, then k(fr)f ' l t<ttr) I  k. Now according to

fol lows without any hypothesis on k.

At the end of this section we give the fol lowing result:  (see [2], Addecl in

Proof ).

PR.OPOSITION 1.8. Let k be a

natural number such that n ) p and (n,p) =

PRooF. According to Theorem 1.3 we can assume that k is perfect. I-et

RE&IARK I.6.

can prove the following

L1or)/1k(02) = k(s3) I k.

k(x)1k(oi) ,  i= 1,2.  Then
,  e i  e ^ -

max (p rrp z),,.

REMARK 1.7.

Proposit ion) is proves

Itr,lnRi 2) tT.. ancJ k is

Theorem 1.2, this result

f ield of characterist ic p ) 0. Let n be a

l .  Then k(xn)n k(xn *  xP)  = k"

us assume that k(xn)f l  }<(xn + xp) I k. This means (see [3], Lemnra 2) that i lrere erist

two polynomials f(t),g(t) e k[t]  such that f(xn) = g(xn n xP) and f and g trave minimal

degree ) I  with this property. Now passing to derivatives one has:

Q) n*n-lf ' (*n; = n*n-lg,(xn + xp)



and so f '(xn) - g'(xn .. '  *p), since (n,p) = l .  Let us remark that the polync,mial g(t)

does not contain the terms of degree I (since in this case g(xn + xp) contains xp and

f(xn) does not contain xp). Thus, by (7) one check that f,(t) = g,(t) = 0 (otherwise the

minimality of the degree of f(t) is violated). Therefore f and g are p-powers in k[t] ,

and also the minirnality of the degree of f(t) is violated. The contradiction obtained

shows thr k(xn)n k(xn t *l) = k, as claimed" .

2. REMARKS ON VALUATIONS

TI{EOREM 2-l-Let k be an algebraical ly closed f ield. Let k(q), i  = !,2,3,

be intermediate subfields of k(x) such that k(o:) = ktor)ftk(or). Let v be a valuation

on k(x); denote by vi the restriction of v to k(or) and Iet e. be the ramification

index of v relative to vr i  = 1,213. Denote by p the characterist ic of k. Then:

f  [e , ,er l  i f  p  = Q
€ 3 =  i

I  R " [ " r , " r ] , e )0 ,  i f  p>0 .

PRooF' Case l- Assume that o, and o, are separabtre elernents. Then,

according to Theorem 1.4 o, is also a sepa.rable element. Let K be the cornpletion

of k(x) relative to the valuation v (see [2], ch.3), and let K, be t lre closure of k(or)

into K. It is easy to see that K. is in fact isomorphic to the cornpletion of k(cr.r)

relative to the valuation vi, - i  = 112,3. Arso it  is easy to check that y,, lK3 is

separable. Let L be a f inite extension of K which is Calois over I(r.  Denote C =

Cal (L/Kr) and G, = Cal (L/Ki), i  = 1,2. From the general theory of ramif ication

troups (see [51, ch. IV) one l<nows that G is the semidirect product berweerr a p-

group H and a cycl ic group C, such that ( lC l,p) = l ;  moreover, l l  is a normal

"subgroup of G. Let us write G = HG. In the same way we see that Gi = t{ iGi, i  = l t2t

i .e. Gt is the sernidirect product between a p-group H, and a cycl ic group C, rvhose

order is prirne to p. Now, one has HrC l{, i - lr2, since l-{ is the unique p-Sylow



subgroup of G. Let g : G + C/iJ lt n* the canorrical morphism. Since Krfl1K, =

I(rr one sees that G, and G, Senerate G, ancl so Q(Gl) = e , and 0(G2) * 6, gene-

ra te  G/H *  f f .  Now,  s ince  e  i s  cyc l i c ,  one sees  tha t  l t l  = t lOtCf ) l , lq (Ct l  l=

= t l  6 r  l , l  dz l  I  ano so I  c l  =  |  r r l . l t  i  =  |  u l  t le r  l ,  I  d r l  I  =  t l  r - r l  I  r ,  l ,  I  r r l  la2 l  r .
I rur thermore, s ince Hie H, one sees that lHl  = lHr l t l  where t ,  is  a power of  p;

h e n c e  [ G l = t l n l  l d r l , l H l  l e 2 l ] = l t r l H r l  l t r i  |  , t z l H z l l T z l  ] = [ t , l c , l , t r l c 2 l . ] .
on  the  o the r  hand ,  one  has l c l=  [L :  K r1  =  [ l - :  t <J [K :  K r l  =  . ,  [ L :  K ]93 ,  and  a tso ,

l G i t =  t L :  K J e ,  ,  i =  1 , 2 .  T h e r e f o r e  o n e  h a s  l C [ =  [ t :  t < 1 e ,  =  ,  l t r l c r l , t r l C r l ]  =

=  [ t r [ t :  K lep t r [L :  K ]ez l  =  [L :  r c i [ t r e r r t re rJ ,  and  so  e3  =  [ t , e ' t r e rJ .  Novz ,  s ince

t, and tZ are powers of p, we get that., = p"[*r,er1, as claimed.

Case 2. Let us assunle that a, are not separable elements, but the exten-

sions l*(x)/k(ar), i  = 1,2, have the same degree of inseparabil i ty, namely pe. Then
e

t<(xP )/t<(si), i = Lr2 are separable extensions and so the proof can be recluceci tcr

Case l .

Case 3. o, and aZ are not separble elerrrents of k(x) arrd the degrees of

insepar;:bi l i ty pel, Oe2, of k(X)/k(s1), k(x)/k(crr) are not equal. Let us assume that
e ,

e, (er. i f  we ghange x to xP 
' ,  '"ve can asslrre that ol. i ,  separable and cr, has

degree of irrseparabil i ty ps, s ) l .  Since k is perfect, one haso, -g|,". Novr,

o3 = (A(o r))i(n(cr 1)) = (C(orl(D(or))

vrlrere A(t) and ts(t),. .yg5p.ctively C(t) and D(t) are relatively prime polynomials of

k[t]. Hence, passing to derivatives, one hasl

^ , _ O ' ( o l ) n  
( c t , - a ( o f  ) B ' ( c r r )  .  

g ,  ( c . t ) D ( c t r ) - C  ( o r ) D ,  ( o . ? )s;= :--cti 
re'-z-o;<

and so A'(a 
r)n(o r) 

- A(o 
l)B,(a i) 

= 0, since a,, I  O.



t 0

This means that A'(ot)  -  B'(ol)= 0 (see the proof of  Lemma l . l ) ,  and so

n(nt)  = (Ai(st))p,  B(ur)  = (Bi1or))p.  By recurrence i t  fo l lows that A(ol)  = (F(ot))p

and B(or) = 161ur))p . Therefore one obtains:

s
n t a P  \
" r v 2  t
*---s*
n r R P  \
"  t r .2  ,

.  A (cr . t )
ol= Ei-dil

c (oz )  _ -= b'qr - 1 e {e) \n"
\ u ,%,  /

/  
A ( o r )  

\ P "= \ E e i  
I

Denote

e ( 9 2 )

D ( 9 2 )

Then o, and B, are separable elements and so if we denote oy€z resp. {

rarnif icatlon incJex of v relative to k( Br) resp.k( Br) respectiyely, then by case I one

|  - a  t r  . * a
n a s e j = p L e l , e 2 l .

Now we remark that l<(x)/ki*P*; i ,  a purely inseparable extension and, for

every valuation v on k(x), the ramif ication index relative to l .(*P ) is just p'.  Th"r"-

fore one has e, = €3pt and er= 62pt, and so *, = ps6, = ptptl"r,Erl = pt[pse'ptFr] =

t r S  - 1  S  -  S l ,-  p 'Lp"er,"brJ.  Final ly,  we remark that [p"e 'erJ = p"[e 'e2] ,  where 0(s ' ls ,  and so

t . S  r  t + S r .  r  € .e3 = P"Lp"e 'e2J = p"" [e 'er ]  =  p" [er rerJ .  l f 'e  proof  is  compiete.

COROI-LARY 2.2. Let k be a f ield of characterist ic p and let k( $)r

i  =  112,3,  be in termediate f ie lds such that  k(o ink(or)  = k($) .  Let  v  be a va luat ion

on k(x) and let e. be the ramif ication index of v relative to k(1), i  -- 1,2,3. Then

e ,  =  [e l , e2 ]  i f  p  =  0 ,  and  e ,  =  pe [e 'e r ]  w i th  e )0 ,  i f  p )0 .

,).
PROOF. Let I be the algebraic closure of k and let ? be a valuation of

?x) which extend v. Let v, (resp. T1l n* rhe resti^ict ion of v (resp. of T) to k( l)

(resp. to R l)).  Let \ be the ramif ication index of ? relative to !),  pl t f ,*
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ramif ication index o{?relative to v ancl p"i th" ramif ication inclex of 
' f , .  

reiat ive tr.r

vrr i  = L,?-r3. ' fhen one.l ' ,us6.psi = eips, i  = Ir lr3and so the natural nurrrbi:rs e. ancJ-d.

have the same p-regular parts ( i .e. the greatest divisor which is relatively prime to

p). AccorcJirrg to Theorem 2"1, one sees that6, = pele'erJr ancJ so the p-regular

part of e, is in fact the l .c.m. of p-regular parts of e, and er. Now, since 
", 1"3

and e, l"r,  un" sees that e3 = h[e,e2] and rrecessari ly h is of the forrn pe, as

claimed.

. COROLLARY 2"3. I 'he notations and hypotheses are as in Coiol lary 2.2,

Let k(ct4) be the subfield of k(x) generated by k(or) and k(or). Denote by eO ttre

ramif ication index of v relative to t (o+). I f  e, is relatively prime to p, then

*4 = (*  
' ,ez) .

PROCF. The notations are as in the proof of Theorem 2,1. The extensions

r z  l r tKll<3 is tame'ly ramif ied, and so is cycl ic, because k may be assurned algebraical i l ,

c losed.  Therefore G,  and G,  are subgroups of  a  cyc l ic  group.  I t  is  easyto see that

Gal (K/ l ( , , )  = Grf lG,  and so lc l f lGz |  = 
"+ 

= (  lc t  l ,  lc ,  l )  = (e 'er) .

coRot-LARY 2"tr" ([3], section 2)" Let k be a f ield of characterist ic 0 and

let ol, ,tZ, 
% be polynonrials in k[x] such that plcrr)f lk(ctr) = k(or) I k. Then

deg o, = [cieg orr cieg crrJ.

The proof fol lows according to Corollary 2.2, considering the valuation on

l.:(x) associated to the prime at inf inity

REMARK 2.5" Let k be a f ield of characterist ic 3 and let o, = 2x2 + x;

o2= 2*2+ x.  Then p1e.r )n l  k(ar)  =k(cr )  where o,  = ?x2(x2 *  2)2, lndeed,  r . t " ) i r . tor i  iu

a Galois extension rvhose Galois group is G. = { l ,or}, i  = ItZ, where or(x) = Zx + l ,

or(x) = 2x + 2. The subgroup G of Aut (k(x)) gcnerated by Gt and G, is actually

isomorplr ic to the syrnetric group, I,  ( in fact, G has as elements ir olr o2, a!62,

o2ol, oL"1ot) anc.l so is a group rvith 5 elements. This shows that in Theorern 2.1,
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the factor p" do", not be generally dropped.

3. GALOI;'i POLYNOMIALS

Let k be a field and let s k(x). We shall say that a is a Slgig_glgng$ if

k(x)/k(o) is a Galois extension.

THEORE.F/i 3.1. I-et f(x) be a Gaiois polynomial of k(x) such that deg f(x)

and char k are relatively prime. Then the extension k(x)/k(f) is cyclic, i.e.

cal (k(x)/k(f)) is a cycl ic group.

In provirrg this result,  we shall  use t lre fol lc,wing Lemma:

equiva.lent i

l)  C is a cycl ic groupi

?.)t f"  I- t t ,  H2 are subgroups of G, then I HlnHzl = ( l  n1l , l  t -rr l  l .

PROOF of the LEMMA. Since inrpl ication a):5) is obvious, we shali

prove only the reverse implication b) =>a). We shall  use mathematical induction,

relative to I Cl .

f*t p be the smailest prime numLrer which divides I Gl , and let ge G be

suqh that gP = l,  i .e. ord g = p" Then, for al l  a G, ord (aga-l) = p' and so, by

hypothesis (g)n (aga-l) = (g) = 1"ga-l).  This means that every element of C

conjugate to g belongs to (g), and so t, the number of elements of G, which are

conjugate to g, is at rnost p - t .  Since t l  I  Gl ,  i t  fol lows that t = lr and s,c C($, tfre

central izer of g, is necessari ly G, so that g is in t lre center of G. Let 6 = C/(g).

Since every subgroup of 6 is of the form F = I- l /(g), where H is a subgroup of G

which contains g, i t  fol lows that 6 satif ies also the hypothesis b), and so it  is

cycl ic. Now let h€G be such fhatfr, i t ,  i rnage in( is a generator of d. Then one

has ord (h) = I Cl /p, or ord (h) = | Gl .  In t l ' re f irst case, i f  (p,ord(h)) = l ,  i t  fol lows
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that hg is a generator of c; i f  p divides ord(h), then (g)c (h), by hypothesis, and so

ord(h) > orU(fr), a contradict ion. l jence G is a cycl ic group as claimed.

Now, we are a le to  g ive the proof  o f  Theorem 3.1.

According to ((6), Theorern l4) i f  K is an intermediate f ield, k(f)cK d:k(x),

then K = k(d, where g' is a plynomial in x. I f  Kl, K2 are two intermediate f ields,

t h e n K r = k ( f i ) , a n d s o i f  C . = C a t ( k ( x ) / k ( f , ) ) , t h e n  l C i l  = d e g f r ( x ) ,  i - - 1 , 2 ,  L e t  K  b e

the subfield of k(x) invariate by'Gtf lGZ. One has K = k(g), where deg g(x) =

= (deg f 
,(x), deg fr(x)) (see Theorem 2.3 and Coroll  ary 2.3),so that

lGr  f lGz l  -  des  g(x )  =  (deg f  , (x ) ,  deg f r (x ) )  =  ( l c1 l ,  l c r l l

Finally, according to Lemma 3"2 one sees that G is cycl ic, g.e.d.

Remark 2"5 shows that Theorem 3.1 is not general ly val id without thc

assumption that deg (f) and char k are relatively prime numbers.

REM1ARK 3.3. The above result allows us to describe all polynomials of

k(x) which are Galois. "fhey are invariant under aff ine automorplr isms of k(x)

associated to nnatrices

a d  t

4. REMARKS ON STR,UCTURE Otr SO&{E SUtsFIELDS OF k{xi

Let k be a f ielcJ ancl denote by p t lre characterist ics of k. Let f(x) be a

polynomial sucir that (deg f,p) = l ,  in case p 10. tt  k(f)cl(ck(x) is an irrtermediate

subfield, then, according to Noether's Theorem (see [6], Theorem lt l)  one sees that

I (  =  k(g)  where g(x)  is  a  polynonr ia l .  Let  k( f )ck( f , )dk(x) ,  i=  1,2.  Accord ing t<>

Corollary 2.2 and Corollary 2,3 i t  fol lows:

f  a  b \
I I
\  o  t l

where a is a root of unity.
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(A)  deg f  
, laeg f7  i f  anc l  bn iy  i f  k ( fz)Gk( f  

t ) .  Par t icu lar ty ,  k( f  , )  
=  k( f2)  i f

;and only  r t  deg f i  =  deg f r .

(B) (deg f 
, ,degfr) { |  i f  and only i f  k(f 

i , fz) I  k(x), panticurarly,

k( f  
l , f , )  

=  k(x)  i f  and only  i f  (deg f  , ,deg f . r )  =  l .

A subfield K of k(x), K I t< is called indecomposable if it is an

inclecomposale elernent in the latt ice of intern'rediate f ields between k and k(x), i .e.

f rom K = f i IRI (z ,  i t  fo l lqws Kt  = 
5 

o,  .Y:?= K.  we shal l  s l row that  under  some

condit ions a subfield. K of k({ is a recluced intersection of indecomposable

sutif ields, in a unique way.

THEO[{Eftd 4.1. Let f(x) be a nonconstant polynomial such that

(deg f(x),p) = I in case p / 0" Then k(f) can be represented in 
" 

uniqu" way as a

reduced intersection of indecomposable subfields of k(x).

PROOIT" It  is easy to see, using induction on deg f, that k(f) can be

nepresented as a reduced intersection of indecornposable subfields. In proving that

the reducecl intersection is also unique vrc shall utilis also inductiornon deg f.

When deg f = lr ot when k(f) is indecomposale, the proof is clear" Suppose

deg f ) I  and assume that, the result is val id for al l  polynomials g(x) such that

(deg g,p) = I and deg f ) deg g. Suppose k(f) is cJecornposable and let:

(8) k( f )  =  k ( f  l )R . . .n  k ( fn )  =  k (gr ) f1 . . . f l  k (g r )

be two representations of k(f) as reduced intersections of idecornposable f ields.

According to Corollary 2.2 one has:

deg f = [deg f , , . . . ,deg fnJ = [deg g1,... ,cleg ggJ

We shall  divide the proof in several steps.

(e)
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I .  Assume k( f i ) ,  I  < i (n  and k(g, ) ,  tS iSs i l 'e  maxi rnal  subf ie lds of  k(x i .  In

this case the relatiorr (9) becornes: deg f = deg f , . . ,deg f = deg g1...deg gr. This- l

means  tha t  f o r  eve ry  i ,  l ( i ( n ,  t he re  ex i s t s  j ,  l (  j ( s  such  tha t  (deg f r rdegar ) l  t .

But then, according to (B), one has k(f ;) = k(g,); since botl i  intersections of (8) are
t  " ) '

reduced, the unicity fol lows in an obvious manner

II.  Assume k(f ,) is not a maxima! subfield of k(x). According to (9) we may

assume that .(deg f 'deg Li) = d ) l .  Tlren by (B), there exists a maximal subfielcl

L = k(h) of k(x) such that k(frrgr)cl,  and obviously k(f l) I  L, since k(fr) is not

maximal, by hypothesis. Then one lras:

(10)  k( f )  =  k( f  t )n(k( fz) f tL)11. . .  n(k( fn) f lL)  =  k(s1)0(k(gr )nL)n. . .n(k(er )nL)

Assert that we can choose

equality (10) give a representation of

L. Two situations may occur:

a) (deg f , ,deg f i) = i ,  for al l  i ,

L such that the f irst intersecticn of the

k(f) as a reduced intersection of subfiel<is cf

2<i<n.  In  th is  case the i i r tersect ior r :

( t  i ) k(f) = k(f l) n(k(f2) f lL)R ... n (k(fn) R L)

i s  reduced.  Indeed,  i f  there ex is ts  an i ,25 iSn such that  k( f i ) f l l  is  super fu le  in

intersection ( l l) ,  then, since k(fr)dL, i t  fol lows that k(fr) is superf lue in intersec-

t ion (8), a contradict ion"

' 
I f  we assume that k(f l)  is superf lue in ( lr{),  then, accorcl ing to Corollary 2.2

one has def f = [deg h, deg f , , . . . ,c|eg fni" But then, condit ion (9) ancl relatlon

deg f, )deg h (k(f 
l)  is not maximal)lecl us to a contradiciton.

b)  There ex is ts  an i ,  2SiSn,  such that  (degf  
, ,degfr )  

=  d> l .  (we r r ,ay

assume that i  = 2). Then according to (9) i t  fol lows that, for example, (d,deg g,)) t .



1 6

Thus a.ccording to (B), there

k ( f  
, r f 2 ,B1 ) f  L "  Fo r  t ha t  L ,  t he

l:urthermore, in both

c) the intersection

exists a maxima.l subfielcl

intersection ( l  i)  is reduced.

situations a) or" b) one has:

k(h) of k(x) such thatL=

(r2) k(f ) = k(s, ) Fl(k(s2) n L)n ... l ' l (t<(gr)fl L)

is reduced, or

c f )  k(6r) . .  L  and (deg g 'deg g1)  -  J ,  21 j l  l .  (We observe that  in  th is  last

case, as in the proof of a) or b), for j lz k(Sr)f i I- cannot be dropped, and so the

intersection (k(gr) f i  qn...  0 (kkr) f l  L) is reduced).

We consider each situation separateiy

e) Assume condit ions a) or b) and c) are satisf ied and al l  terms of reducecl

i .ntersections (l l)  and (12) are indecorr;posable sub{ields in L = k(h). But then,

accorcj irrs to the incJuction hypothesis (since tL : k(f)]  ( deg f, and, as one easily

sees, f = t(h), where t(y) is a polynomial of kfyl,  such that deg t(y) < deg f (x)), for al l

! ,  lS iSn there ex is ts  a unique j ,  l_{ j_{n such that  k( f i ) f lL  = k(A,) { t rL .  Then,

according to ( l l) ,  Corol{ary 2.2 and t!^re hypothesis that k(f i) ,  k(S,) are

inciecornposable subfields, i t  fol lows that k(tr)d-L i f  and only i f  k(a,)Cl-. l{ence, in

t lr is case, k(f i)  = k(S,). I f  k(f i) f l t-  = k(S,)f l I-,  and it  k(f i) /L, then (deg f 'deg h) = l ,

(deg g'cleg h) '-  l ,  and according to Corc' l lar 2.2, one has deg ft = deg g,, i .e.

k(f ,) = k(g,) (see (B)). Finatly i t  fol lows that i l  :  s arrd (up to a renumeratation)
r  - J

k(fr) = k(g1) I ( i  (  n, i .e. the unicity cf k(f) as a reduced intersec;t ion of

indecomposable subf ields is proved.

f) Assume condit ions a) or b) and d), are satisf ied ancj al l  terms of the

corresponding reduced intersections:
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(t3) l<(f) = k(f l)n 
(k(f 

2)ft L)n ... f](rc(r,n)/l L) = (t<(g2)fiL)tr' i... f}(k(fs)n,L)

are indeco.rnposable subfields of L.

Now we rnay ut. i l ise again the induction hypothesis, and t lrus there exists

j).2 such that k(f l)  
= k(gj)ft I-,  a contradit ion, because k(f ,) is indecornposa.ble and

(deg g,,deg h) = 1 by hypothesis"
I

d Assurne ttiat conditions a) or b) and c) ,or d) are satisfied and not ali

terlns of.( l . i)  or (12) are indecornposable subfields of L" For examplel assume that

k(f i). f \ l" . is decomposable in L.; this mear"ls that k(f i) f  L. I f  k(f) is str ict. ly included !n

k(f i)n.L i t  fol lows, accorcJing to the induction hypothesis, that k(f i)nL is a reducecl

intersection of indecotnposable subfields ancl another representation cannot exist,

which contradicts the assurnption that k(f i) t lL is decomposable in L. Tl ' ,e s€.rne

consicierations are valid for k(Sj)ftL. Hence, i f  one of the terms of the intersection

(l l) ,  say k(f Z)n L, is not indecomposable in L, therr necessari ly one l ias;

t ' )  l<( f )  =  k( f  Z) f \L  
= l<( f  , )  nk( f  Z) ,  s ince k( f  

l )Ct . .

Also, i f  we assume that one of the terms of intersection (12j, say

k(gr)f l1-, is rro1. indecomposabLe in L, then necessari ly one has:

g") k(f)  = k(e2)f i t  = k(gr)f fk(gr)

First we shall  examine the situatior"r go).

Thus necessari l  V k(f.)f t ,  because i. t  wa.s

decornposable. I-et M be a maximal subfjelcJ of k(x)

M = k( fz)  then k( f r ) l lM = l f l tv t .  I f  k ( f  
l )cM,  t l ren k( f  l )

because L I M and k(f ,) is indeconrposabe. If  k(f l) f  f t

where lvl = k(nr), ancJ sor according to Corollary 2,2,

(L = k(h)), i .e. l<(f 
,) is ma:<!mal, a contradicion.

assurned that ktf ) is

rvhich contains k(f2), i f

=  Lf lM,  a contradic t ion,

t t ren (deg f  , ,  deg m) = l ,

i t  f o l l o v v s  d e g f r = d e g h

Ncw, let us assume that k(fr) I  M; then

Mn.r>( )d -ntra
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( t  4)

a

k(f) = k(fz)n(k(f 1)nM) = k(f ?)r)(L frM)

give a represelrtation of k(f) as an intersectioil of subfields of [4. We asser:t that

(t+) is a recluced intersection, Indeed, i f  Lf iM}l<(fr), t lren i t  fol lorvs k(f) = k(f/,  a

contradict ion, because l<(f) is not indecornposable" rf.  k(t z)pk(f l)  nM, i .e. i f

k(f) = k(f l)RM 
= Lfi ful,  then as above we come to the

k( f  , )  is  maximal ,  again a.contradic t ion.  Hence (14)

conclusion that k(f l)  
= L i .e.

is a reduced i.ntersectign, as

claimed.

Furthermore' we assert that LnM and k(f l)f ' !M are idemcomposable

subfields of: M. Now we 
j 

shall  ut i l ise the induction hypothesis, since

th(x) :  LnMl<[k{x) :  k( f ) ]  =  deg f  (because ( la)  is  a  reduced i r r tersect ion) .  There-

fore, again, according tc' lncluction hypothesis one has: I-f lM = k(f i) f lM and so L =

= t<(f t);  a contra.dict ion. Hence the situation g') is impossibie. Now we eaxmine the

situation g").

one has k(f) = k(gz)nL =k(gr)ftk{sr), and as in the cdse g,), we conre to

the sit i .rat ion l<(gr) = L, i .e. k(gr) is a maximi,, lsubfielci,  hence k(f) = L("! l<(gr), I f

k (gr)  = M is  a rnax imal  subf ie ld ,  then l<( f )  =  Lf lM = k( f  l )Rk( fZ)R. . .  f lk ( fn) ,  and

because (cleg f , ,  deg m) = 1, where k(m) = M, i t  fol lows necessari ly k(f i) . ,  L,

ktf Z) 
= M, i .e. k(f ,) is a rnaxirnal subfield, a contraci ict ion,

Now, i f  k(gr) is not a maximal sui:f ielc!, we come to the case, already

examineci, with f ,  replaced to gZ. Hence we cfeouce that the unicity of representa-

t ion (8) may be shown inductively out, possibie, the case when one has:

( i r )  k ( f )  =  k ( f  l ) nM 
=  L  g l k (g r )

where &1,  L are maxi ipa isr ' fo t t r )Cr- ,  k( f  l )  not  maximal ,  k(gr)cU,  k(gr)  not

maximai. Let M = k(m), L = k(h), m,lte l<[x].

In this last situation one has (deg f , ,  deg m) = I = (deg g2,cleg lr),

otherrvise k(f) wil i  be indecomposable (see (B)). I t  is clear that, then one has
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c le f  f ,  =sdegh ,  degg2=sc legm,  l r . , he re  s )1 "  The re fo re ,  ac . : co rd ing  to  (B )  t l r e re

exists a mi:.ximal subfield S of l<(x) suclr that k(f , ,gr)dS" But, then,

(16) k(f)  = k(gr) 4(L r ls) = k(f  t)n(M nS)"

I t  is easy to see that:

h) both terms in the representaion (16) are reduced intersections of

indecomposable subfielcls of S (because of the induction hypothesis). In this case we

uti l ise induction hypothesis, relative to [S: k(f)],  to derive the unicity of ( i5) and

also of (8). I

i)  k(f) = Ln S. It  fol. lows that k(f ,) 
= L, i .e. l((f  

l)  is maximal; a

contradict ion.

j) 'k(f) = MflS. It  fol lows that k(6n) = M, also a contradict ion. The procf is

complete.

R.L.&{ARK 4"2" Let l< be a f ieicl of characterist ic 3 and consi<ier the

polynomial f(x) = 2x2(x2 *').)2" As an easy resuit (see Remark 2.5) k(t) cannot be

represented in a uri ique way as a reduced intersection of indecornposable subficlds

of k(x). This slrows that condit ion (deg f,p) = I in.Theorern 4.1 can not be.droppecl i f

p ) 0 .
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