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ON SUBFIELDS OF k{x)
by
Victor ALEXANDRU and Nicolae POPESCU

Let k be a field and let k(x) be the field of rational functions of one vari-
able over k. By intermediate field we understand a field K between k and k(x) and
such that K £ k. If Kis an intermediate field, it is well known that k(x)/K is a finite
extension and k = k(a), a € k(x); i.e., K is also the field of rational functions of the
"variable" a over k (Luroth's Theorem; see [2]). A discussion of the lattice of inter-
mediate fields seems to be interesting.

In what follows we consider some problems related to intersections of
intermediate fields. A somewhat surprising remak is that for every field k there
exists simple examples of intermediate fields k(ozi) and k(az) such that k(ocl)
ﬁk(oaz)z k (Proposition 1.8). Our Theorem 1.3.shows that the problem of inter-
sections of intermediate fields can be reduced to the case when k is algebraically
closed. Also in Theorem 1.4, we show that separability over intermediate fields is
preserved by intersections. Another results (such as Theorem 2.1) refer to index of
ramification of a valuation on k(x) relative to intermediate fields. Particularly -we
show that the main result of [3] (Section 2, Theorem) is somewhat true in positive
characteristic but in a weak formulation {Corollary 2.2 and Remark 2.5). Some
results on Galois extensions k(x)/k(a) are given in Section 3.

In section 4 one shaw that some subfields of k(x) are uniquely represented
or a reduced intersection of indecomposable fields.

In what follows we shall utilise standard notatio;ws. However we remind

these notations for rnore clarity.



By a valuation on k(x) we shall mean every valuation which is trivial over
k. These valuations are defined by irreducible polynomials of k[x] and by 1/x, the
prime at infinity (see [2], Ch.I).
e is a set, IGI means the cardinality of G. If n,m are natural numbers,
then [n,m] = L.c.m. and (n,m) = g.c.d. of n and m.
' If L/K is a finite extension, then [L : K] means, as usual, the "degree of L

over K".

1. SOME GENERAL RESULTS

Let k be a field and let a be an element of k(x), & £k. We shall say that a

is a separable element of k(x) if k(x)/k(a) is a separable extension.

LEMMA L.1. Let a={(x)/g(x), where f(x) and g(x) are relatively prime
polynomials. The following assertions are equivalent:

a) a is a separable element.

b) £{x) or g(x) is a separable polynomial.

c) The formal derivative o = (f(x)g(x) - f(x)g’((f())/gz(x) is a non-zero

element of k(x).

PROOF. a)=2rb). Since k(x)/k(®) is a separable extension, the minimal
polynomial of x over k(a) is separable. But the minimal polynomial of x over k(a) is
h(y) = f(y) -ic.tg(y), and so h'(y) = £'(y) - ag'(y). The condition h'(y) # 0 implies £'(y) £ 0
or g'(y) £ 0.

b)=2rc). If o =0, then '(x)g(x) = £(x)g'(x) and so (x)/g(x) : f'(x)/g'(x). The
conditions deg {'(x) < deg f(x), deg g'(x) < deg g(x) and the irreducibility of o, lead us
to a contradiction. Hence b) implies o # 0.

The other implications are obvious.

In what follows we shall utilise the following result.



LEMMA 1.2. Let k be a field and K the algebraic closure of k. Let fl(x),...
«of (x) be elements of k[x] and a,,...,a_ elements (not ail 0) of "12, such that
n i n

alfl(x)+...+anfn(x) = 0. Then there exists elements a'l,...,a'n in k, not all 0, such that

a'lfl(x)+...+a;]fn(x) = 0. Moreover, if a, # 0, we can assume that a;) £ 0.

PROOF. Denote L = k(aj,...,an) and let {el,...,em} be a basis of the vector
g

space L/k. Then one has a = 2 aijej sl coeo Ny With aijs k for all i, jo Further-
j=1

more, one has

n R gin m ¢ n
(1) Lafid= ] (2 ai,-ej) £60 = | (Zaijfgx)) e = 0.

i=l i=lN=1 =L \i= ]

PR

Since the elements € ren€ give also a basis of L(x) over k(x), we see by (1) that
i?laijfi(x) = 0 for all j. The hypothesis that not all a; are 0 implies that there exists
j~(1 <j<n) suéh that not all 2 ane 0. Let us denote By &, 1<i<n. Then
ifla'ifi(X) = 0. Particularly, if a £ 0, then anj # 0 for some j, and so we can assume
t}_wat ay £ 0 as claimed.

THEOREM 1.3. Let k be a field and denote by“!ﬂ;r the 'algebrai‘c closure of k.

Let a,, 0., .be elements "of k(x). Then k(oal)(] k(a-z);ék if -and . only - if

V2

ko 1) N ko 2) LT, Moreover, one has [k(x) : k@& 1) f\ ko 2)] = [k(x) : ke l) Nke 2)].
PROOF. It is clear that k@ P ke %) £k whereas kb P Nkl ) # k. Now

let us assume that ki 1)4(\'2:& 2) £k Let a; = Ui(X)/Vi(X)’ i=1,2, where ul(x) and

VI(X)’ respectively uz(x) and vz(x) are relatively prime polynomiais. It is easy to see

that we can assume the following inequalities are accomplished.

(2) deg u; (x) > deg v, (x), deg u,(x) > deg v, ().

Let ki l) (\T;@ 2) - k@ ). Then one has.

B =16 Vg, b )= 10,)/g,6,)



where
fl(t):ao+alt+...+antn, an;éO, n>l,
m
gl(t):bo + bl‘t+...+bmt 5 bm £0, m > 0,
f.z(t):co+clt+...;crtr, el s,

8(1) = d_ + djt+ e+ d t5, d . o,

are polynomials of K(t], and such that f,(t) and gl(t), respectively fz(t) and gz(t) are
relatively prime. Let us assume that n2>m. Then necessarily r >s. Indeed, let v be
the valuation on K(x) defined by the prime at infinity. Then v(B) = (n - m){(deg
vl(x) - deg ul(x)) = (r - s)(deg vz(x) - deg uz(x)), and so by (2) and the assumption
.n_>_m we infer that r >s, as claimed.

Moreover, we always can assume that n2m. Indeed, if n<m then we
change B to 1/B. If n=m we can change B to 1/(8 - a), where ab, =a_ . Hence in -
what follows we assume n.> m and, as we already proved, we have alsor >s.

Now, the element B can be written as follows

e aovi (x)n+. f'+anul (x)n | o ?oVZ (x) r+. A .+cru2 (x)r
(v, o . b ) )™ vy @ (@v, (x

R R T

and according to hypothesis (the polynomials ui(x), vi{x), i=1,2 and fi(t), gi(t),
i=1,2 are relatively prime in pairs) one check that

: n n r r
aovl(x) ot anul(x) = COVZ(X) T CrUZ(X)
(3)
(v ()™ + e+ b_u ()T o (v (0 + eu + dgu,(x)°)v, (0 75
Then, ‘according tc Lemma 1.2, there exist elements a'o,'..,a'n, c'o,...,c'r in

k, not all 0, such that

(4) a'ovl(x)n Ehap a'nul(x)n = C'Ovz(x)r T c'ruz(x)r



and such that af £ 0. But then necessarily e # 0, since the degree of the
polynomial in the left member of (4) is ndegul(x) = rdegu2(x) (see (2) and (3)). In the
same manner we obtain that there exist elements b'o,...,b'm, d'o,...,d'S in k, not all 0,

such that
(5) (b'ovl_(x)m & e e b'mul(x)m)vl(x)mm = (d'ovz(x)S A d'suz(x)s)vz(x)r"S

& 1
and such that bm £04# d‘s.

Furthermore, according to (4) and (5) we infer:

n i

Sl . Sl i el
e anal p f:o crqz
b4, s otblor - dit., dlo
m 1 e) s 2

The hypotheses n> m, r »s and also ay 04 bl #1054 d show that a is
an element of k(x) and a/fz‘. k. Since &Ek(al)fi k(otz) we see that k(al)(\k(%) £ k.
Now it is easy to see that one has: [k(x): k(1< [k(x) s K1 < [kix) :Tf:(q)} and so
(k) + (@] = [0 + k(@) But then [k(x) : k(o) )Mk(a,)I< [k(x) k(o] = [Kix) s K(e)] =
= (k) 2 o) (R0 )1 <Tx) £ ko) (k(oy)l  Hence  finally kG0 : k(o)) fyk(a,)] =
= [k : klap) nk(a,))

THEOREM 1.4. Let k be a field and let 03005 € k(x) be such that
k(oLi 8 l<(042) = k(aB) £ k. Then o and o, are separable elements if and only if o is a

separable element.

PROOF. It is enough to show that a and o, separable imply Oy separable,
Let: » A
og = I (a)g (o)) = f(0,)/ g5(0,)
where fl(y) and gl(y), respectively fz(y} and gz(y) are relatively prime polynomials
of klyl. For the moment let us assume that k is a perfect field. If oy is not

separable, then one has (see Lernma 1.1):



! fi(al)ql(al)—fl(al)qi(ocl)
g 2( )
I

. oy =0

r
1

Because o) # 0, by hypothesis, one sees that
(§) f1e)g,@)=1,0 g0, . -
If g’l(al);é 0, then fl(ul)/gl(a,l) ‘f'l((xl)/g'l(oal), a contradiction, because
deg f‘l(y)<dég fl(y), deg g’l(y)<deg gl(y), and fl{y),’ gl(y) are relatively prime.
A H A = erd o e p SHla p i
Hence (6) imply fl(al) = gl(ocl) = 0 and so fl(ul) = (fl(al)) . gl(a‘l) = (gl(al)) , (p is
the characteristic of k), k being a perfect field. In the same manner one sees that

1,65) = 6,0, g,0.,) = (@,0,)P and so

f (a.) F(a)
9, (al) 9, ((12)

Let us denote '&'3:?1(@1)/'51(@1). Then 335 k@) fik(e,), and obviously '
[k(x) : k(oa3)}>{k(x) : k(&;)], a contradiction. Therefore aly # 0 and so Q.5 is separable
(Lemma 1.1).

Now let us assume that k is not necessarily perfect, and let k be the alge-
braic closure of k. Since l<(ocl)l"\k(ozz) = k(aB) £k, it follows that ul?(ocl)("%‘i:(az) =
- k@) ;4‘12, and § is a separable element. But according to Theorem 1.3, one sees

that 1:(8) :'wiz(;gﬁ}and SO o, is also a separable element, as claimed.

COROLLARY 1.5. Let k be a field and let 0y 500 g be elements of k(x)
such that k(ocl)é"\k(az): k(0:3) £ k. Let us assume that the extensions k(_x)/k(Cti),
i=1,2 have the same degree of inseparability namely pe. Then the degree of

inseparability of the extension k(x)/k(oaB) is also p°.

PROOF. Let a, :f](x)/gl(x), where fl(x), gl(x) are relatively prime

polynomials. The minimal polynomial of x relative to k(otl) is h(t) = fl(t) - oclgl(t) €



€ k(Otl)[t]. Since the degree of - inseparability of k(x)/k(@l) is p%, we have
h(t) = h(t Pe), where h(t) is an irreducible polynomials of k(o )[t]. But then
f (t) =1 (‘t ), gl(t) = gl( e) Hence one has: @, = l( )/gl(x e) In the same way
we see that 0&2 - f (xP )/gz(x C). The extensions ,<(xp )/k(Odl) and k(xP )/k(Olz) are
separable by hypothesis; according to Theorem l.4, the extension k(xpe)/k(& ) is
also separable. Hence the degree. of inseprability of the extension k(x)/k’OLB) is also
pe, as claimed.

R‘EMARK l.6. Utilising the same idea as in the proof of Theorem 1.4, one
can prove the following result: "Let k be a field and let a, Otz, OU: k(x), be such that
k(o )!'\ k(OL, )= kio )#k. Let pei be the degree of inseparability of the extension

k(x)/k(o i» i=1,2. Then the degree of inseparability of the extension kix)/ k(0'3) is

max (p lp 2y,

REMARK 1.7. Let k be the algebraic closure of k. In ([3], Sect.2,
Proposition) is proves that if fl(x), fz(x) are polynomials over k such that
E(fl)ﬂz(fz) #k and k is an infinite field, then k(f.l)ﬂk(fz) # k. Now according to
Theorem 1.2, this result follows without any hypothesis on k.

At the end of this section we give the following result: (see {2}, Added in

Proof).

PROPOSITION 1.8. Let k be a field of characteristic p>0. Let n be a

natural number such that n>p and (n,p) = 1. Then k{x™ A k(x" + xP) = k.

PROOF. According to Theorem 1.3 we can assume that k is perfect. Let
us assume that k(x")A k(x" + xP) £ k. This means (see [3], Lemma 2) that there exist
two polynomials f(t),g(t) € k[t] such that £(x") = g(x™ + xP) and f and g have minimal

degree > 1 with this property. Now passing to derivatives one has:

(7) nxn—lf'(xn) = nxnnlg’(xn + xP)



and so f'(x") = g(x" + xP), since (n,p) = 1. Let us remark that the polynomial g(t)
does not contain the terms of degree | (since in this case g(x" + xP) contains xP and
£(x") does not contain xP). Thus, by (7) or#e check that f'(t) = g'(t) = 0 (otherwise the
minimality of the degree of f(t) is violated). Therefore f and g are p-powers in K[t],
and also the minimality of the degree of £(t) is violated. The contradiction obtained

shows tht k(xn)n k(x™ + xP) = k, as claimed."

2. REMARKS ON VALUATIONS

THEOREM 2.1. Let k be an algebraically closed field. Let k(o:i), lesdl 23
be intermediate subfields of k(x) such tﬁat k(aB) = k(o',l):"s k(ocz). Let v be a valuation
on ki(x); denote by v; the restriction of v to k(ai) and let e; be the ramification
index of v relative to Vo i = 1,2,3. Denote by p the characteristic of k; Then:

{ [el,ez] if p= 0

ey = 7
l plepefieso;  ifpb

PROOF. Case 1. Assume that @) and 0, are separable elements. Then,
according to Theorem 1.4 Oy is also a separable element. Let K be the completion
of k(x) relative to the valtation v (see [2],'€h.3), and'lst Ki be the closure of k(oai)
into K. It is easy to see that Ki is in fact isomorphic to the completion of k(ai)
relative to the valuation Vo -i=1,2,3. Also it is easy to check that K/KB is
separable. Let L be a finite extension of K which is Galois over K3. Denote G =
Gal (L/KB) and Gi = Gal (L/Ki)’ i =1,2. From the general theory of ramification
groups (see [5], ch. IV) one knows that G is the semidirect product between a p-
group H and a cyclic group G, such that (]G ],p) = l; moreover, H is a normal
subgroup of G. Let us write G = HG. In the same way we see that Gi = HiGi’ =il 2,

ive. Gi is the semidirect product between a p-group Hi and a cyclic group G; whose

order is prirne to p. Now, one has HiC H, i- 1,2, since H is the unique p-Sylow



subgroupof G. Let¢ : G + G/H = T be the canonical morphism. Since KlﬂKz =
l<3, one sees that G1 and GZ generate G, and so ¢(GJ) = El and ¢(G2} = EZ gene-
rate G/H = G. Now, since G is cyclic, one sees that Gl :[H)(Gl)[,lq)(Gz)]]:
:[]EII,IGZHandso |G| =|H|-|G]| = ]Hl[]'ﬁl],['cj}"z[]:[ml |G|, [H]|G,| 2
Furthermore, since H,CH, one sees that |H| = IHiI t,, where t. is a power of p;
hence IGI=[| H| |G | [,| H| | G,| 1=[t,| H,]| e (G e e
On the other hand, one has|Gi=[L : K 3] =[L:K][K: K3] = L K]_eB, and also,
IGl=[L : Kle;, i=1,2. Therefore one has |Gl=[L : Kleg= =[t;|G | ,t,]G,|]=
= [tl[L : K]el’tZ[L : K]ez] =[L ¢+ K] [tlel,tzez], and so €y = [tlel’tZez]' Now, since

3] and t,-are powers of p, we get that ey = pe[el,ez], as claimed.

Case 2. Let us assume that a; are not separable elements, but the exten-

sions k(x)/k(oai}, i=1,2, have the same degree of inseparability, namely pe. Then
e

k(xp )/k(ai)’ 1=1,2 are separable extensions and so the proof can be reduced to

Case 1.

Case 3. o, and O, are not separble elements of k(x) and the degrees of

e, e

inseparability p 1, p 2, of k(X)/ k@), k(x)/k(e,)) are not equal. Let us assume that
e

€ <e, If we change x to xP %, we can assume that oy is separable and ¢, has

degree of inseparability ps, s > 1. Since k is perfect, one has a, = Bg.. Now,
. /(P .
oy = (MG )/(BE,)) = (CO/DE.)

where A(t) and B(t), respectively C(t) and D(t) are relatively prime polynomials of

klt]. Hence, passing to derivatives, one has:

A (o )B(OL])"A(OLl)B'(CLl) C’(az)D(a2)~C(a2)D'(a2)
B el aj=0
B(onl) D (a

and so A’(rxl)B(oel) = A(@l)B'(al) = 0, since oa'l £ 0.



This means that A’(OL )i= B'(Ot )= 0 (see the proof of Lemma I.1), and so
Aoy = (A ()P, Bley) = (B, (% )P. By recurrence it follows that Ale) = (B(e ))P
S
~and Bw:l) = (B(Oc1 )) . Therefore one obtains:

S
- S P - S
— Afa,) ~(A(onl) e C(a,) . C(ps ) _(C(Bz) )p
C e e T e Soamiterie) T e e '
1 B( 1) 2 D(Bg ) D(Bz)
Denote
e e
" TEe) e

Then % and 82 are separable elements and so if we dencte ‘by‘E’z resp. -5’3
ramification index of v relative to k( BZ) resp.k(BB} respectively, then by case 1 one
has ™ e,; p [el,"??

Now we remark that k(x)/k(xpe) is a purely inseparable extension and, for
every valuation v on k(x), the ramification index relative to k(xP ) is just ps. There-

onm S Sre
e

fore one has €y = e5p and ez_ezp,and S0 €5 = peB pp;el,e ]_p[p S 2]

i) [p el,c ,J- Finally, we remark that [p €e, 1'=p Lel,e2], where 0<s'<s, and so

+

€32P [p €€, =P Lel,e s [el,e ). The proof is complete.

COROLLARY 2.2. Let k be a field of characteristic p and let k(a),
i =1,2,3, be intermediate fields such that k{ O‘Pink( 02) = k( 0L3)ﬁ Let v be a valuation
on k(x) and let e be the ramification index of v relative to k( ul), i'=1,2,3. Then

ey = [el,ez} if p= 0, and €y = pe[el,ez] with e >0, if p> 0.

PROOF. Let k be the algebraic closure of k and let V be a valuation of

K(x) which extend v. Let v; (resp. V) be the restriction of v (resp. of V) to k(%)

amp

(resp. to T Og)). Let € be the ramification index of *V relative to 71), p. the



: ; S. S

ramification index of v relative to v and p ! the ramification index of v; relative to
: ; S D% e ‘ =

Vi b= 1,2,3. Then one has ep L ep,i= 1,2,3 and so the natural numbers e and e

have the same p-regular parts (l.e. the greatest divisor which is relatively prime to

: _ e e ; b
p). According to Theorem 2.1, one sees that e3P [el,ez], and so the p-regular
part of €y is in fact the l.c.m. of p-regular parts of €, and e,. Now, since ¢ |e3

'y H - e -
and ezleB, one sees that €y = h[el,ez] and necessarily h is of the form p~, as

claimed.

COROLLARY 2.3. The notations and hypotheses are as in Corollary 2.2.
Let k(@) be the subfield of k(x) generated by k(OLl) and k(ch). Denote by e, the
ramification index of v relative to k(oc#). If e is relatively prime to p, then
€, = (el,ez).,

PROOF. The notations are as in the proof of Theorem 2.1. The extensions
K/K3 is tamel)} ramitied, and so is cyclic, because k may be assumed algebraically
closed. Therefore Gl and G, are subgroups of a cyclic group. It is easy to see that

Gal (K/K,) = G, /1G, and so |G NG, | =¢, =(1G, I, 1G5 ) = (ese,).

COROLLARY 2.4. ([3], Section 2). Let k be a field of characteristic 0 and
let G, O G5 be polynomials in k[x] such that k(@l)ﬁ k(az) = k(%) £ k. Then
deg 0, = [deg o, deg Cv.z]

The proof follows according to Corollary 2.2, considering the valuation on

k(x) associated to the prime at infinity.

REMARK 2.5. Let k be a field of characteristic 3 and let o, = ’>x2 + X5

Il
0L2 = 2x2 + x. Then k_(&i)ﬂ k(a?) = k(Ot3) where O, = 2):2(x2 + 2)2° Indeed, k(x)/k(ai) is
a Galois extension whose Galois group is Gi = {J’Oi}’ i=1,2, where Gl(x) = 2% + 1,
Uz(x) = 2x + 2. The subgroup G of Aut (k(x)) generated by G, and G, is actually

isomorphic to the symetric group 23 (in fact, G has as elements I, Oy Oy 0,0,

0?01, 5516201) and so is a group with 6 elements. This shows that in Theorem 2l



the factor pe does not be generally dropped.
3. GALOIS POLYNOMIALS

Let k be a field and leta k(x). We shall say that o is a Galois element if

l;(x)/k(&) is a Galois extension.

THEOREM 3.1. Let f(x) be a Galois polynomial of k(x) such that deg f(x)
and char k are relatively prime. Then the extension k(x)/k(f) is cyclic, i.e.
Gal (k(x)/k(£)) is a cyclic group.

In proving this result, we shall use the following Lemmaz

LEMMA 3.2. Let G be a finite group. The following assertions are
equivalent:
1) G is a cyclic group;

2) If Hy, H,, are subgroups of G, then | H O H,| = Hl] » | Hop )

PROOF of the LEMMA. Since implication a)==3>b) is obvious, we shall
prove only the reverse implication b) =>a). We shall use mathematical induction,
relative to i Gi :

Let p be the smailest prime number which divides | G| , and let ge G be
such that gP= 1, ie. ordg=p. Then, for all a G, ord (aga—l): p and so, by
hypothesis (g),"}(agaﬁl) 2 (g)= (aga—l)e This means that every element of G
conjugate to g belongs to (g), and so t, the number of elements of G, which are
conjugate to g, is at most p - 1. Since t} | G| , it follows that‘t = 1, and so C(g), the
centralizer of g, is necessarily G, so that g is in the center of G. Let T G/(g).
Since every subgroup of G is of the form H = H/(g), where H is a subgroup of G
which contains g, it follows that & satifies also the hypothesis b), and so it is
cyclic. Now let h€G be such that h, its image in‘a, is a generétor of G. Then one

has ord (h) =| G| /p, or ord (h) =| G| . In the first case, if (p,ord(h)) = 1, it follows



that hg is a generator of G; if p divides ord{h), then (g) (h), by hypothesis, and so
ord(h) > erd(h), a contradiction. Hence G is a cyclic group as claimed.

Now, we are ale to give the proof of Theorem 3.1.

According to ((6), Theorem 14) if K is an intermediate field, k(f)e K €k(x),
then K = k(g), where g is a plynomial in x. 1f Ky K, are two intérmediate fields,
then K= k(fi)’ and so if G = Gai(k(x)/k(fi)x then IGiI = deg fi(x), i=1,2. Let K be
the subf‘ield of k(x) invariate by GlﬁGz. One he;s K = k(g), where deg g(x) =

= (deg £, (x), deg £,(x)) (see Theorem 2.3 and Corollary 2.3), so that
1 O
: |Glﬂ(}2{ = deg g(x) = (deg f,(x), deg £.,(x)) = (]Gl s |Gzl)

Finally, according to Lemma 3.2 one sees that G is cyclic, q.e.d.
Remark 2.5 shows that Theorem 3.1 is not generally valid without the

assumption that deg (f) and char k are relatively prime numbers.

REMARK 3.3. The above result allows us to describe all polynomials of
k(x) which are Galois. "‘They are invariant under affine automorphisms of k(x)

associated to matrices

: a b
( atl
0 1

where a is a root of unity.

4. REMARKS ON STRUCTURE OF SOME SUBFIELDS OF k{x)

Let k be a field and denote by p the characteristics of k. Let f(x) be a
polynomial such that (deg £,p) = 1, in case p # 0. If k(f)&K &k(x) is an irtermediate
subfield, then, according to Noether's Theorem (see [6], Theorem 14) one seces that
K = k(g) where g(x) is a polynomial. Let k(f)€ k(fi)Ck(x), i=.1,2. Accerding: to

Corollary 2.2 and Corollary 2.3 it follows:



(A) deg fl | deg fZ’ if “and bniy if r’<(i2)§1:!<(3’.’1). Particularly, k(fl) = k(fz) if
‘and only if deg fl = deg fz.

(B) (deg f,,deg fz) £1 ity and only it k(fl,fz) £ k(x). Particularly,
k(f ,f,) = k(x) if and only if (deg f,deg ) = L.

A subfield K of ki(x), K#k is called indecomposable if it is an

indecomposale element in the lattice of intermediate fields between k and k(x), i.e.
from K = KlﬁKZ, it follows K1 =K or K2 = K. We shall show that under some
conditions a subfield K of k(x) is a reduced intersection of indecomposable

subfields, in a unique way.

THECREM &.1. Let f(x) be a nonconstant polynomial such that
(deg £(x),p) = 1 in case p # 0. Then k(f) can be represented in a unique way as a

reduced intersection of indecomposable subfields of k(x).

PROOF. It is easy to see, using induction on deg f, that k(f) can be
represented as a reduced intersection of indecomposable subfields. In proving that
the reduced intersection is also unique we shall utilis also inductisaon deg f.

When deg f = 1, or when k(f) is indecomposale, the proof is clear. Suppose
deg £ > 1 and assume that, the result is valid for all polynomials g(x) such that

(deg g,p) = 1 and deg f > deg g. Suppose k(f) is decomposable and let:
- - i ﬁ
(8) k(f) = k(E DN KE ) = k(g DA ... N k(g,)

be two representations of k(f) as reduced intersections of idecomposable fields.

According to Corollary 2.2 one has:

(9) deg f = [deg fl,”.,deg fnJ = [deg gl,...,deg 83]

We shall divide the proof in several steps.



I A.ss.'umr::' k(fi}, 1<i<n and k(gj), 1<j<s are maximal subfields of k(x). In
this case the relation (9) becomes: deg f = deg fl..bdeg f. =deg g|---deg g,- This
means that for every i, 1 <i<n, there exists j, 1 <j<s such that (deg i.,deg g’i) b
But then, according to (B), one has k(fi) = k(gj); since both intersections of (8) are
reduced, the unicity follows in an obvious manner.

II. Assume k(fl) is not a maximal subfield of k(x). According to (9) we may
assume  that .(deg f,deg gl) = cli> 1. Then by (B), thére exists a maximal subfield
L = k(h) of k(x) s:uch that k(fl,gl)C.L, and obviously k(fl) £ L, since k(fl) is not

maximal, by hypothesis. Then one has:
(10) k(f) = k(f )R k() L)AL AK(E)OL) = kig )N ((g,) N L)f"%mmk(_gl)m.)

Assert that we can choose L such that the first intersection of the
equality (10) give a representation of k{f) as a reduced intersection of subfields of
L. Two situations may occur:

a) (deg fl,deg fi) = 1, for all i, 2<i<n. In this case the intersection:
(11) k() = k() AGKE) AL e R )AL

Is reduced. Indeed, if there exists an i, 2<i<n such that k(t.) ;’\L is superfule in
intersection (11), then, since k(fl)-z’:.L, it follows that k(fi) is superflue in intersec-
tion (8), a contradiction.

If we assume that k(f ) is superflue in (), then, according to Corollary 2.2
one has def f =[degh, deg fz,...,deg fn]"' But then, condition (9) and relation
deg f; >deg h (k(i,) is not maximal) ted us to a contradiciton.

b} There exists an i, 2<i¢n;sueh that (degfl,degfz) =d>1. (We may

assume that i = 2). Then according to (9) it follows that, for example, {d,deg gl) Sk



Thus according to (B), there exists a maximal subfield L= k(h) of k(x) such that
k(flny’gl){: L. For that L, the intersection (11) is reduced.
Furthermore, in both situations a) or b) one has:

c) the intersection
(12) k(f) = k(g )k(g )AL ... (g IO L)

is r'educed,.or

d) k(gl) = L and (deg g)»deg gj) = 1, 2<j< 1. (We observe that in this last
case, as in the proof of a) or b), for j>2 k(g}-)(‘iL cannot be dropped, and so the
intersection (k(g,) A1 11... D(k(g) AL) is reduced).

We consider each situation separately.

e) Assume conditions a) or b) and ¢) are satisfied and all terms of reduced
intersections (11} and (12) are indecomposable subfields in L = k(h). But then,
according to the induction hypothesis (since [L : k(f)]<deg f, and, as one easily
sees, { = t(h), where t(y) is a polynomial of k[y], such that deg t(y) < deg f(x)), for all
i, 1<i<n there exists a unique j, 1<{j<n such that k(fi){\L = k(gj)ﬂl,. Then,
according to (B), Corollary 2.2 and the hypothesis that k(f_i), k(gj) are
i.'ndecomposabie sgbfields, it follows that k(fi)::tL if and only if k(gj)CeLc Hence, in
this case, k(f,) = k(gj). 1T k()AL = k(gj)[",l., and if k(fi)f@/L, then (deg f;,deg h} = 1,

(deg gj,deg h) =1, 'and according to Corollar 2.2, one has deg fizdegg ises

j}
k(fi) = k{gj) (see (B)). Finally it follows that n=s and (up to a renumeratation)
k(f;) = k{g;) 1<i<n, le. the unicity of kif) as a reduced intersection of
indecomposable subfields is proved.

f) Assume conditions a) or b) and d), are satisfied and all terms of the

corresponding reduced intersections:



(13) ki) = k(I DAKEI AL O DAL) = ((g )AL HKEIA L)

are indecoﬂmposable subfields of L.

Now we may utilise again the induction hypothesis, and thus there exists
j > 2 such that I<(f1) = k(g}.)ﬁ L, a contradition, because k(fl) is indecomposable and
(deg gj,deg h) = 1 by hypothesis. »

g) Assume that conditions a) or b) and c) or d) are satisfied and not all
~terms of (11) or (12) are indecomposable subfields of L. For example,; assume that
k‘(i"i){\i-. is decomposable in L; this means that k(fi)§2.l.L. If k(f) is strict]ky included in
k(i"i)ﬁ,L it fbllo.ws, according to the induction hypothesis, that k(fi)ﬂL is a reduced
intersection of indecomposable subfields and another representation cannot exist,
which contradicts the assumption that k(fi)ﬂL is decomposable in L. The same
considerations are valid for k(gj)ﬁ L. Hence, if one of the .terms of the intersection
(11), say !((fz){‘s L, is not indecomposable in L, then necessarily one has:

g k(f) = k(f,)NL = k(fl)ﬂk(fz), since k(fl)CL,

Also, if we assume that one of the terms of intersection (12), say
k(gz)g"‘gL, is not indecomposable in L, then necessarily one has:

g") kD) = k(g )NL = kg ) (1k(g,)

First v:/'e shall examine the situation g').

Thus necessarily k(fz)t;f[., because it was assumeé thateek(f) is
decomposable. Let M be a maximal subfield of k(.x) which contains k(fz), If
M = k(fz) then k(fl){";M = LAM. If k(fl)CM, then k(fl) =LAIM, a contradiction,
because L # M and k(fl) is indecomposabe. If l~:(fl)§iﬁg then (degfl, deg m) =1,
where M = k(m), and so, according to Corollary 2.2, it follows deg f, =degh
(L = k(h)), i.e. k(fl) is maximal, a contradicion.

Now, let us assume that k(f.) # M; then

/l///w/ 2d s



&
(14) : k() = k() (Y ) (M) = K(E) (WL OM)
give a representation of k{f) as an intersection of subfields of M. We assert that

(14) is a reduced intersection. Ind-eed, if Lﬁf\/l;,,‘}k(fz), then it follows k(f) = k(fz), a
contradiction, because k(f) is not indecomposable. If k(fz);f:& k(fl)ﬂM, Lew if -
k(f) = k(fl)f}[\/l = LNM, the.n as above we come to the conclusion that k(:fl) =L le.
k(fl‘) is maximal, again a .contradiction. Hence (14) is a reduced intersectian, as
claimed. e

Furthermor-e., we as:sért that L{iM and k(fl)ﬁM are idemcomposable -
subfields of M. Now we- shall utilise the induction hypothesis, since
[h(x) : L AMI<[k{x) : k(f)] = deg f (because (14) is a reduced intersection). There-
fore, again, according to induction hypothesis one has: L(YM = ):;(fl)ﬁM and so L =
= k(fl); a contradiction. Hence the situation g') is impossible. Now we eaxmine the
situation g"). ‘

One has k(f) = k(gz){‘ﬂ, = k(gz)ﬁk{gl), and as in the case g'), we come to
the situation k(gl) =L i k(gl) is a maximal subfield, hence k(f) = L{‘;k(gZL If
k(gz) =M is a maximal subfield, then k(f)=LAM = k(fl)ﬂ k(fz)[‘]... (}k(fn), and
because (deg fl’ deg m) = 1, where k(m)=M, it follows necessarily l<(fl}:: 155
k(fz) =M, i.e. k(fl) is a maximal subfield, a contradiction.

Now, if k(gz) is not a maximal subfield, we come to the case, already
examined, with ”fl replaced to g, Hence we deduce that the unicity of representa-

tion (8) may be shewn inductively out, possible, the case when one has:
(15) k(f) = k(1 )AM = L f1k(g.)

where M, L are riﬁz1xi':pa;is;.' k(fI)CI,, l<(f1) not maximal, k(gZ)CM, k(gz) not
maximal. Let M = k(m), L = k(h), m,ke k[x].
In this last situation one has (deg f,, degm) =1 = (deg g,,deg h),

otherwise k(f) will be indecomposable (see (B)). It is clear that, then one has



def fi = 5 degh, deg g, = s degm, where s> 1. Therefore, according to (B) jhere

exists a maximal subfield S of k(x) such that k(fl,gz)&i S. But, then,
(16) k(f) = k(gz)f“é(l@ (¥5) = k(fl)ﬁ(M AAs).

It is easy to see that:

h) both terms in the representaion (16) are reduced intersectiohs of
indecomposable subfields of S {because of the induction hypothesis). In this case we
utilise induction hypothesis, relative to [S: k({)], to derive the unicity of (16) and
also of &). / ‘

D-kf) = LOS. It follows  that k(fl) =k hies .k(fl) is maximal; a
contradiction.

j)k{f) = MA\S. It follows that l<(g2) = M, also a contradiction. The proct is

complete.

REMARK &.2. Let k be a field of characteristic 3 and consider the
5 Dt P o) .
polynomial f(x) = 2x“(x” + 2)°. As an easy result (see Remark 2.5) k{(f) cannot be
represented in a unique way as a reduced intersection of indecomposable subficlds

of k(x). This shows that condition (deg f,p) = | in Theorem 4.1 can not be dropped if

p> 0.
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