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ALGEBRAIC EXTENSION OF VALUED FIELDS

Dorin POPESCU

&1: Introduction

Let R«»R' be an unramified extension of (noetherian) discrete va-
luation rings inducing sepadrable extensions on fraction and residue

fields. Then

o

Gl Theorem (Néron {N]) R’ is a filtered inductive union df its
smooth shb~R—algebras of finite type.

This theorem gives a method to substitute the solvability ind R o
certain polynomial equations over R with the solvability of some equa-
ﬁions_for which 1t is possible to apply'the Implici€ Function Theorem
Trying to extend Theorem (1.1) ‘we stated in [ij that a morphism of
noetherian rings A—>A' is regular iff A’ is a filtered -inductive limit
of smooth A—algebfas of finite presentation. This result has some nice
applications (see (?31), and it would be good to have an analog of it
for mennoetherian rings, for instanée for (nonnoetherian) valuation

rings.

(1.2) Theorem (Zariski [Z]): Let R be a valuation ring containisg
a Fleld k of characteristic zero; Then R is a filtered inductive union
of its smooth sub-k-algebras of finite type.

In [Pll we state the following result (bv mistake the condition

(1i) appeared actually in a weaker form) .

Ri:- deminstes R) ‘and k the residue field of R, Subpeﬁe Ehat

(i) char k=0 and dim R<ea,

(ii) every prime ideal from R generates in R’ a prime ideal,
Then R’ is a filtered inductive limit of smooth R=algebras of finlte
Presentation;

Nete that in Theorem (1.3) the smooth R~algebxas” can be not



"sub- R-algebras" like in Theorem (1.1) and (1.2).

It is the purpose of our paper to try to
improve the result in this sense and to investigate the obstructions

which appear in positive characteristic (see Theorems (5530 (6.6)° and

(6.9)7. Ostrowshk: = Defekisatz” seems to be behind of some xﬁsults
from §3,v§5(see(3.10.1)'and (5.4.1)), though we do not use it.ih@‘b@&~f
pletién” considered here (see (2.2.3)) is in fact a weak form:of comple-
tion which may be not henseliaﬁ.when the rank of the valuation is bigger

than one. All the rings are supposed to be commutative with identity.

$ 2. Preliminaries

(2.1) A valued field is a triplet ¥=(F,v,['), where F is a field,
- e < L‘

{

a totally ordered group and v:F ~«>F “P\{OJ a valuatlon (here we
assume valuations to be surjective). By convention we shall put someti-

mes v(0)=~. The ring R= {xe])v OJU%} is the valustion ingsof J o

« .' - = O it
valied field 7' (B wv' 7)) de an extenolon oF ¥ (shortlv we write e f )

abaE Fel' | I ef iandiy is given . by.restrietion from v’ . Let ks bewthec re=

; : 5 o ; g e ;
sidue filelds of the walulation rings R recp.R" of & resp. £ The extern—

Gl for B R is called immediate if "=’ and k=k’. Moreover if

for every x¢F’ and every 3¢ there exists an-element such that
Y Yy : Y

o ;
Vix=y)>d then ¥c5 (or RcR') ‘iz dense.

S e —

(2.2) B well sorderecd sequence am(av)vcé of elements from F is

called fundamental (shortly we write a is F.s.). if
i) a has not a last element, i.e. § is a limit ordinal,

ahat)) V(a?—a <v(a ~av) o a1l exdVen .

§J - Z- ~J
1ii) for-every +e[ there exists a e¢<B such that via - a0)>'$ EOT
¥ 1 ‘ . =

] ey withe g - ¢ %

Letlé, 0<¢&<1 be a real number. If f¢ R and & is the ordinal of IN then
via,)

a. is fi.s exactly when the sequence (¢ ) o of real numbers is fun-
A, (j"( (.

damental.
(2.2.1) An element yveF’' is called the dimie of A figiaa i ad )

FfromF if



(%

g
Vo a )= S‘i 3 for all g<o.
If there exists the llmlt must be unique (see iii)).

P

(2.2.2) The extension FcFr is dense iff every element From & e
‘the limit of a Lis. foom T

(22,8 % ic o1 complete if every dense extension of it is
trivial —or equivalently if every f.s. from F has a Timie in P 5 co

plete valued field of rank one (i,ecrg R) g hencelJ an, i.e. its valua

e e

L

. . . . . g g Ly . . S T ey e L=
tion ring satisfies Hensel’™ Lemma. ¢ * is the comnletion of ¥ if Foe gl

is dense and ¥’ is complete (every valued field has an unique ¢ Cw‘hﬂjon

g 1s eolled complete relatively to §’ if no elemenL Erom Fixpris o 3

MLt ofia Foa, from Wi-A valiued ficlg gr(E,w,T),.Fc%cg’ 1s called the o

plete closure OF F rolatively to gt 45 Fc g is dense and & is complete

relatively to ¥/, Clearly E is. the subfield of all elements from F’ whic
are limits of some f.s. from F,
(2.3) A well ordered sequence a= (a )

i of elements from F is cal

led pseudo convergent (shortly we write a is a P.c.s.) if it satisfies

i and ii) From (DpaNeE

2.3.1) An eloment YeF L 459 called a pse udo llMLL (shortly we writ

?.)

& prki)of a p.o,s. as=la )« frem B i¢

<o

(1) ‘ v(y"af) = v(a?+l = a§)

feor all 056, Note that thie hs bbencs I f (L) holds JusiE for S0 .y
for~? sufficiently larage, When a is not a f.s. then there exists a ¥e T

such that v(a?ea¢)<& torall Pl If vy i5 & p,ff ofa in F' and bek!

~

7

is an element such that v(b)z¥ then y+b is another paf, OF a5
: 0 . : '
Thus § pol. is -not unigue in general.
Gas 2] S the extension Fc¥' is immediate then every element fro

: - i 2 o ; f '. <
ENE is a.p.l.oof & pP.C.s. from F havina no p.f; Tnel (seec Tl

(2.3.3) & is called mnVImhllv co

nlete if every immediate extension of it is tr

vial or equivalent if every p.c,s. from F has a p,f. in F. A maximally complete valued

field is complete and so henselian e :f<,§7’ is a maximallv_comnlete inm@diate exter

o SRS e AT, =
sion of ¥ if Fc ¥ is immediate and F' is maximally complete.Every valued field has a

r
e

maximally complete immediate extension which can be not unique if p=char Fs0 (see (K])
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ments hold (see [K] or [S] ch.IT for proofs):
Cediel) v(ar~a§):v(a§+l—§§) for all j><G<@,
(2.4.2) either
i) v(ag)/v(a e fon alil gelsgetion
5 \f(a?):ﬂf{a o for > © 550,

P}’ for all P in tlesence (2047025 1) sor

i) viy)>via

ii) v(y)=v(a,) for e>» 0 in the case (2.4.2) ii).
N

))

(2.4.4) for every polynomial f in V over F the sequence (£ (

-
is ultimately pseudo-convergent (thus byl 274.2) ik fpllowé either

£<0

viiE(a, ))evifila Jd or v(E(a J vt e, ) o V> p>0) .

i g

(2wl o5 )it v(f(az))gv( a ) for-a certain polyvnomial f¢F[Y] and

a —
ZHl e
a certain'5<0 then V(f(aﬁ)):v(f(ag)) RO ol R e
\

(2.5) Lemma. Suppose that F¢¥' is dense and let a=(a ) be a

ol
5 j-‘ 8
%

2L

p.c.s. from b wiiichH is ot f.g. Then a has a D.EG I P IEF O F heisione
TmaE.,

Proof. ‘et LeF” be & paf. B g, By (2.2 0) b e o linit o

f.s‘,c=(c,})ﬂ\,J fr¥om F. Since a is not a f.a. there exists an element
P R &) 3
Fel such that vla ~a )< 4 for alll eev<B S cheose a A sufficiently
s j’ «} G
large in order to have v(b—c\) ., Then V(cx—a?)=v(b~ao)=v(ag_l—ap)
; 7 & 3o : ;""x" X

>
tor 41l ¢<@ &and so e, s @ pﬂf. of -a-in P (cee (2.4.10) &

(2:6) Lemma. Let y be an element from F’ whicheis notiin P Then

one and only one of the following statements holds:

i

: . : : : ; /] : -
B yas a8 Bl OF B pio,s. trom F having no p.{.»es P,

Ad ) Ehe Setxizzgv'(y—b)fb@F} has a larqeét element.

Proof. Suppese 1i) does not hold. Then we show i) by adapting the

proot ©of (sl @h Th ' Lemma 20 Lo our coase. Selectiin A 4 cotinal well
2 ( - U Fe : ;
ordered subset/x’:iv(y»ay)uud}k r a € F having no last element because
ii) does not hold. We have
vila = ag) = vi{y~a_)

if << & Dbecause vily-a Jcviy-a.) by construction. Sihce (W (y=a )]

L



increases monotonjpaJLy wellconclude s Ehat fa= (aj)ng iee 8 peeis. fron

and v is g p.f. of it I€ 2ePF is another p.ﬁ. of a then

v(y»z)>v(av—a§)=v(y—a§)

forsall il a s e Al s not cofinal In A(Contradiction!) . This

J
has no p;ﬁ. iR oon
il D pac.E a=(ag)§<@

i) t;anscendenta} Lt vilela Y=viltila )] for 0l non-ovo polynomia

¢ v
e

finveom  E s called

feB[Y] and all Cremn0,

i) algebraic if v(f(af))<v(f(av)) for at least a nonzero pPoOlyno:

mial feF[Y] and all e

(2 EaL)on pricss, a=(af2§<e from F has o p f il B L FE bhere eviol

a polynomial feF([Y] of degree one such that
(1) vilfla et taa))
f 7

for all wogeol SIndaed i el o a0 f e a then V(b= af) =v(a_-a_) fc

el ﬁnnﬁ/(‘ and taking f=Y-b we get (1) fulfllled for aill v>p. Conver-

sely, if (1) holds for fec(¥-b), c#f0ithen (vib—a )] @ increases monote

o

nically For g220 and so we get

v(b—af):v((b”av)+(av~§§))=v(qr—§f), ¢$.§>>O

Thus b is a p,f. of Filseas (2.3 1),
) A trabSﬂendental p.C.8. from F has no o, f, dn (009077
A'p.fﬂ of a transcendental p.c.s from F is traﬂscendental over B
el e T transcendental p.c.s. from F then there exists
an immediate transcendental extension F(z)x(F(z),?,F} of ¥ in which z

a p,f. of a. Conversely, if E(u)z(F(u),w,F) is a transcendental exten-

. et . ‘ ; 7 = = .
sion-of - F in which u is & pil. of a then Flz) aned F(u) are analvtical:
3 SF . . . S5y i
ly equivalent over ¥, the equivalence being given by z —>u. This resul:
. § = gl / v . . .
is in' fact [K| Theorem 2 when a has no p'f. in-Febue this is ‘certainl

e a0 70 )

, ; ; ; ; 7 . F :
(2.7.4) If a is algebraic having no p.Y. in F then there exists ar

. . = : . 5 < = o, : = 9
immediate algebraic extension Sl v ) of B iR ik 5 ois oo

Of a. The-defining equation is £(z)=0, where f is a nonzero polynomial



Of ledst degree for which (2,7) 1i) holds [(such poltyrnomial £ 99 drrc-
diucible of degkece 32), Conversely, if u is a root of f and if ¥ (u)=

of A&

e

2@(u),w,r) is an immediate extension of ¥

i ; : 0
in whichonm de e ¢
then ¥ (u) and ¥ (z) are analytically equivalent over ¥, the equivalence
being given by u=~sz. This result is in fact [K] Theorem 3.

(2.8) Lenna. Eek a=

= @ )¢ <o

be an algebraic p.c.s. from E which ic

not f.8. and geRlv] a nonzero polynomial satictving (2 7)1 )" Then the

sequence v(g(a_))

: o
¢! oco is bounded inf" .

X

wl : : i : .
Proof. ek be an extengion of F containing a p.fo i iepis vl

Ceppdy (207 40 iy (04 4y - (94,0 iy and (2.4,3) i) we Have

v (g (y)): vilgia )’) for 5> 0.
> f 5

iR

Since a is not a f.s., y is not unigue and a has an infinite set of
p.f. in ¥'. Thus changing y (if necessary) we can suppose g (y)#0. Then

v(g(y)) is the wanted bound. @

(2.9) Lemma. Let a=(a )

¢p<o be:a Lranscendental pie.s. from F
R ol -

which is not f.s. If ¥¢¥' is dense then a is also transcendental over
ST
Lo

Proof. Suppose that a is algebraic over F’. Then there exists a

nonzero polynemial feF!' satisfving (2.7 il). By Lenma (2.3) the seauen-
POLly ying 25 o

ce v(f(a is bourded in{' . Choose a polynomial ge¢F[¥] such that

the valuation of all coefficients of geif s bigger thean a0 v(f(af)), ;

§<@ . Then v(g(a?)):v(f(a ¥) for all ¢ <@ and so a is algebiaie over B,

j‘)

Contradiction! @

~ensions are dense?

§ 3. When immediate algebraic ex

o J 3 a
Let-3=(F,v,[) be a valued field,p=char F, ar(af)f<é).a PC. s From
i g L

I and ta nongcre polynontial from FlVl. The notatleon €7 = Tl
L

@ : . sy B £

r( ):f has sense also when p»0 because the coefficients of -3 are
oy

-~
b . ! . - ~A ; X
mulitiple of 51, by Tﬁlor’s formula we have.

=f

S5 : e ey o
o e aﬁ)(a a, ve R ¢ <,
ol

Taylor’s formula holds also when p>0; to see this substitute all



constants by variables and apply the usual formula dn: s ring of polvno

mials over Z, then change back variables by constants.let P be the re-
sidue field characteristic of the valuation rimg on e
(3.1) Lemma. Suppose that

(1) vilfla,))=vfla.)) for G:§§>7O

€ z
Theﬁ

@) vig@aeviED @) @ -a )
for every jzl providinq“z>i?f>00

e

Pro@f. If 2 increases, §<K then v(éfwaz) increases too. Thus we

~can suppose that the nonzero elements from

{ (3) j%
i (e Jite —a ]
_ SO -

have their valuation different. Then (2) ‘follows Ffrom (x)‘and (R

(3elel) Remark. Wheéh £ isia monic polynomial of degree e satis-

fying (1) then the above Lemma gives V(f(a?))<ev(apmaz)4ev(ag+l—az) £0o2

& >p>20.
(3.2). Lemma. Let & be a positive integer such that f(e)#o and
sielne 2

(1) V(f<e)(a§))=v(f(e)(az)) for 7> e>»0.

Then

(u)

2) v (o) e -2 )0 (E™ (=) (@ —a

L , S a W TR c oAy o
1i) B> 0 and C/ﬁ((e))—o, where (e)~— ) an@ L,ﬁ@_ —> 7 d?l’lOC@S

the Toadic valuation.

(e
Proof. Applying Lemma (3.1) to h:f\C)(by(l) h satisfies the hyno-

thesis) we obtain

V(h(ag))<v(h(u_e)(ag)(ag—az)u”e)

(j):(jﬁ—e>f (i+e)

for z¢>§>>o. Since h >

fors all o we geit—al ) g

. s ' s, =1 oo =i o =
(3. 2.1) Remark. Suppose D> 0 and let u= 2B e ﬁip ; )iwi’ﬁi“p
- 120 iz 5y

20
3 i e 3 Wi = e
besthe-badiec expansion of U resp.e, Then &ﬁ(( ) ) =0 Lffﬂé-f;



LY kel LOL ENEe Prooyr note rtirst that

Foon ‘,_— e % ..»-j_ _vi i ;
Oy tali=2 o 0((67) 1) and &5 (6 ) 1)=&

Inparticular & e=§l and &ﬁ(u)zi then O%((g))=0;

e e

(1) V(f(éf)%fv(f(a

for & > e >
a:)) for € > ¢. 0.

Then there existes a positive integer 7§ such that

2) vt viEe D @y a-and)

Forthe prooiapply (&) like in Lemma (3.01).

(3.4) Corollary. Suppose that f is a nonzero polynomial of least
degree for which (2.7) 1i) holds. Then the valuation of the nonzero

elements from

(3) -
{f el llds—as) }ng ‘

z > Vﬁ?o is different and reaches the minimum for either
i) j=1 1f p=0, or
il) one . of the form ﬁl, e if psOs

Proof. By hypothesis f(l>

sacdsrfiess (2.7F 1), T =0 then ¥ is
enough to apply Lemma (3.3) and Lemma (3.2) for e=1.

Now suppose p>0. Let.u be a positive integer such ‘that f(u)#O'
'{}’... (1) 7] : u (ML)
and t=p - - ., By Remark (3.2.1) we have 65((t))20' Talking =f """ dike

in Lemma (3.2) we get

et )
h —(t)f »2(

Then h#0 because otherwise 05((3))»0. Contradiction! Thus f(t>#0. By
(t) ' :

\

o

hypothesis £ Savlsfies (2.7) 1). Bpplying Lemma (3.7 we get

i (u)

(a ) (a. ~a ) J<v(£

tor E§>ju&0. Then the valuation of the nonzero elements from

AN %] RS
e @é’(‘ag a(/) i

_(39) e j} e
| {f‘ (az)(dg a,) 5l §

o Gl ; e e :
reaches the minimum for j=p , ieiN. By Lemma (3.3) we are ready. {1

ments from F such that



ARy
ind |

. e % £ { o
Ty = S e Tl - . - t ol
Gl g 0 ane v (7 e(g Gl ) fomaal I ks

Suppose that F is henselian. . Then f is.in F[Y] aemultiple of a polyno-

mial h of degree t.

Egggf. Using Taylor’s formula we have

e B o
fy + 20)=f(y) + 2 £ galxl, eicdeg e
izl
Ca ) e :
-t F L : =
Put c_.::zj t in«iXL r )20 and g::}>'cJX7. By hiypothesis v (c. )50 for

all j#t and c,=1. Let (R,m} be the valuation ring of ¥ . We have geR] X
and g;Xt mod m. Applying Hensel's Lemma we get g=h'h! for some polyno-

mials h', h'eR[X] such that deg h’'=t and h’gXt mod m. Take h::zth’(z%xj

(3.6) Proposition. Suppose that F isiliencelism and £ is & nonzere

polynomial of least degree foer-which (2.7) ii):helds. Then £ is linear

o

if p=0. Otherwise deg f:ﬁs for a certain selN and

=5 e 2
v(f(P )(az)(a‘~a.)p)<v(f(})(a

z)(ég—az)j?,_ Z > p>>0

for all j, 0¢i<E".

Broof, By Corollary. (3.4) the wvgluation of the nonzerg elements

from

{,f(j)(az)(ag—az)j}jgo i & >f)>:? 0
is different and reaches the minimum for either
iJq=1-1f P=0;" or
ii) one j‘of the form @?, SeN if p>0.

Choose €>¢>>0 and apply Lemma (3.5) for ¥=a. o 2ma a0 Then: fedsia
[4

multiple in FIY] of ‘a tinear polynomial h if p=0 or of a polynocmial

h o degre §S. By (2.7.4) F is drreducible in # iV L ahid so £:h are 250

(65}

giated in the divisibility, In particuler deg f=p .4
..A A ”~ i
(3.7) Lemma. Let ¥=(F,v,I") be the completion of ¥. Suppose that

asis not fes. and f is a nonzero polynomial of-leask degree for which
5 N
(2.7) ii) holds. Then every nonzero polynomial g from F[Y] with deg g«

deg £ satisfies (277) 1}).

Proof, It 15 enough o take g moniec, Sinee o ds - not .5 there

such that v(ao+]~av)<ﬁ'for 2l ﬁgG. Choose a monic nolyno-
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have their valuation bigger than e?. By assumption § satisties W20 )

(egdeg £) and so

v(g(ad))<e 7 er g 0

§
(see Remark (3.1.1). Then we get
or z = ,:— \ ‘F o ) )_
V(g(jg)) v(q(ay/) for p>>0

Thus g .satisfies- (2.7) 1) ..a

e ey R ) i R
(3.8) Preposition. Suppose that T'=K' “a is not fes  and @ iaa

nonzero polynomial of least degree For whrrch (2.3) 11) Holds . D ihentrt o

linear if $=0. Otherwise deg f=p° for a certain selN and
(& e s ) Jevite @y a )y ¢ > 55 0

for a1l 0.

1

A ) .
Proof. Let F be the completiocn of F. By Lemma (3.7) we can apply
S L Y £ 2,

et e

Proposition (3.6) to f over P because F is henselian ([t R).q -

(3.9) Theorem. An algebraic paCts From B which ig not'f.s. has &

i

p.f. in P if p=0 and I< R.

Proot, Let a be an ' algebraic p.cis. from F and £ a nonzero polyno-

mial of least degree fowmiwhich (2.7) ifl). heldsi By Preposition (3.8) ¢

is linear and so a has a pf.” in F (see (2.7 .10

valued field extension of ¥ is dense.

Proof. Let ¥'=(F’,v’,") be an algebraic immediate valued field

P u——

o

.extension of J and y an element from F/~F. By (2.3.2) Y 158 puf. of a

_{1

pecos. as fremalt laving no pLa ke in R, Using (2.7.2) we note what g s e

algebraic? e & Mook P 0 then o has a p.f. e by iheerem - (3.9 )
Contradictien! Thus & is s, and 'so vy belongs to the complete closure

t= ; : : SR
of & relatively to ¥'. As y was arbitrarily chosen we get ¥ ¢¥’ dense.

o ) Remark. Actually Theorem 3.9 and the above Corollarv are

also consequences of "Der Defektsatz" from [O]§9 nLo. b (see e.q.'[Pﬁ

Corxollary (4.2



. )

?g?’ is dense. d

]
ol

(Bell)Coral lerv i gE ¥R = RE beithe valuationiizings of ¥ resp. §

and qcR a prime ideal of height one from R. Suppose that

(ii1) Y& #'" . 1s immediate and algebraic. *"
¢ .

Then ¥ ¢ %' is dense.

Proot . by (1) gR" s & prime ideadl amd R@ER’

qrR’ is an immediate we

luation ring extension (see (iii)). Applying Corollaxry (3.10) we geb
RngéP’ dense. Thus for every veF’ and every teq there exists ael sucl
that v(y-a)sv(t). Since the elements from r\v(q\§0§) are smaller than

the elements from v(q-~{0}) we get R¢ R’ dense too. @

(3.12) Theorem. Let ¥'x(F', v'’,J) be an algebraic immediate value
field extension of J . Suppose that p>0, 'c R and for every yeF',

[F(y) :Fl¢P. Then ¥¢¥F' is dense.

Brool. Let vy be an-element frem B’ F. Like abeove v is a p.ﬁ, O.f

—allalgebraic .p.C.5. @ from B having no p.£. in F. Let f be a nonzero

polynomial of least degree for whieh (207) ii)lelds “By hypothesis
deg f¢p. Using Proposition (3.8) we get deg. =l iivelis nok f.o. Bk

this is not possible because a has no p.p. im R higs gais fis. and e

(3.12.1) Remark. The above Theorem cannot be improved too much

g

because there exist algebraic (even separable) immediate valued field
extensions which are not dense as shows the following example inspirec

from (0} §9, no.57.

(3.13 Eﬁg@giﬁ. Let k-be a field,; =X a variable, P =0cand I the

fraction field of the group algebra kf?} r o leewoBlie salaments of e e

: : e ~ S : ri
rational functions -in: (X ) Let F be the field of all formal sums

& el
S
e F ] : e i 3 i 4 e :
gf<ﬁnA , where « ¢ k and 3:(£h>nfm is 'a monotonically increasing se-
ne N =
= :
. quence from ] . The correspondence
e e s »:{‘n : ( . &
52 redi Xoo o aslig e = m1n;nﬂN]d’#O } o
“n*j N n e S { n

oy
. . o2 ‘YX el = 2 e bl . . ' e
defines a valuation v:F'-—»|. Clearly v=(F,v,l) 1s an immediate exten-
s o it : < . K sy % ek
sion of 9 =(F,v,|) (in fact a maximally complete immediate extension of
et
E./

‘¥ ). Suppose p=char k>0 and denote @ = fe—we——m | Clearly

A 4 e



»3 -*\Yn/n{.}N e B SR R e 8 S R D RN e e ) S e S it s S Rk b e e S S e b S T e A T Y

o=l

et (1)
n30

nxyn

7

o

Ere—F V), V’xV!F;X , F'=(F',v',l'). Clearly there exists no ze¢F such
that v(y«z)}E:T , 1.e. ¥<F is not dense. On the other hand ¥¢¥’ is imme:

diate (¥'¢¥ ) and algebraic because y is a solution of

£:=YP + XY + 1

o e A . £ — D b) o o R
To see thise-note thagblifn7p5n+l,fn,0 and 2 1. .
i - el - o e
Denote e dl s 5 o (1) ;o sa=(a.) -Then a is ap.c.s. from
s 1 oie : S’ s¢iN G

B oand y isea pof. of 1t. A small computation give us

's s+1
e
: S s-1 il s Fig+l
o) S ¢
Vi (as)(akwl~a )p)“Pss oS
SinCeﬁ§S+l>jg we have
(p) = P e S I
v er c(a )i(ai=a ) )=y (£ tae k@ ra by

cstsl for all 0 gep, " This 1 Ilustrates ‘gur Pioposthion (S350

(3.14) ggfgilggx,-Let R, R' be the vgluation rings of ¥ resp. ¥’
and gcR a primé tdeal of helght one from R. Suppoée that
‘ (1) R/gRsR’/gR’, ,
(ii)%:dwm'R@pOamifoggvery yeF’y{}(y):ﬁjég:
{iii) Fc¥’! is immediate.

e el .
Then: 7o ¥ ' 1s dense.

The proott gecs lTike iin Corollary (3.l1) using dheorem (23.12) .

/5 4, The structure of finite dense valued field extensions

In this section we shall use a theorem of Néron desingularization

on dense valued fileld extensions. The result belongs in fact to

- N.Schappacher LSchaﬁ; ol prock follows “the preof G [blz Lemma (4.3).

(4.1) Theorem (Néron-Schappacher). Let & ¢J’ be a dense valued

field extension and R¢R’ their valuation ring extension. Suppose that

Pc B! ig separable..iThen R’ is e filbtered inductive unien of its smoeth



sub-R-aligebras of "Finite ‘presentation.

Proof. Let BCR’' be a sub-R-algebra of .finite type, let us say

B:=R[y] for some elements v=(y 1,...,yn) from B. It is enough to embed

B in a smooth sub-R-algebra Ble R of finitesprecantatiiion: Sinee tho

: : B
extension Fg;F’ is separable there exists a system of polynomials

fz(fl,. ’fr)’ r:i=n- tldeqF (y) and a rxr-minor M of Jacobian matrix
J:=(§§) suclh that M(y)#o. Choose M in J cuch that v (M) ) ds minimum:

Since ¥c¥’' is immediate there exists an element deR such that: v(d)=

=v' (M(y)) and so AR’=M(y)R’. If v(d)=0 then B’ :=p is a smooth R-al

‘ M (y)
gebra of finite presentation_(see e.g. Lemma (7.2)). Suppose now
vi(d)>0, Since Fe¥! ic dense there exist a system of elements §gR&such
that v’ (y-y)22v(d) and so'yay mod d*R’. Changing y by y-y and Y by

Y+§ we may suppose from now on that yédzR’, let us o8y y=dz for an-elc

n
ment zedR"” . We have

s f o : P
Thus v(M(0))=v(d) and every rxr-minor of (§§(O)) is divisible by d, By

theory there exist two invertible matrlces U,W such that U(Q§WO))W has

a disgonal form

. :
where diGR, v(dl)gv(dZ)g...gv(dr) and TY di=dh Applving on £,z the in-
i=1
vertible transformations given by U reSp.wfl we can suppose that
-:)f. - =
(~==(0)) = oL e 0. . being Krenecker’ sumbol .
WY l lJ 1]

Wo have
0 :fi(y)=fi(0)+d di(zi+Qi(z)); Teigr

are polymomdals in Z=(Z. . . 7 ) Cuer B containing

where O:( i s

)l& gl‘

only monomials of degree > 2. Then fi(O)GddiR’ﬂ R:ddiR and so fi(O):



Teeg by LOL SOMEe sultaple cigR, l£igr. Denote BEiRiay,

L= A7 D <ig
hl cy Alel . 1<€igr

since F (z)=F.(y) we get trdegrf(z)znmr. Note that h (z)=0 and %%(z) con-—

‘tains a rxr-minor u from 1+zR’. Then B’:ﬁBG is a smooth R~algebra of fi-

nite presentdtion (apply Lemma (7.2) like abowve)..H

(4.2) Theorem. Let ¥c¥’ be a dense valued field exXtension and Rg R/
their valuation ring extension. SUpmose Ehat o Pt dg findte separable.

Then R’ is etale and eSsentially finite over R.

Rloof. TieedBie RE Hho o finité sub~R~algebra of R’ whose fraction

i field is F'. By UWheorem (4.1):there exists & smooth sub-R-algebra.
B¢ R’ of finite presentation containing B. Clearly B’ is normal because
Rols’so. Then B! contains the integral closure € of R in §72. By [B] VI,
28, no.3 R’ is & localizeation of € =nd g0 of é’ ﬁoo, In particular R
1s smooth overlR. Since B' is of finite type there exists a finite sub-
R-algébra A of R’ such that B’ is contained in one localization of A.
Lhus R" is a locallzetion of A, 1.e, R! ic essentiglly finite over R.
Now it is enough to note that a smooth, essentially finite algebra is

etale, I

18))

(4.3) Corollary. Let ¥¢§’ be an immediate valued field extension

and -RCR" fheiv i luation ring extension. Suppose that Fe Pl is finite
separable,/¢ R and either
' 1) p=0 (P being the residue field characteristic of R) or,

i1} 'p>0 and For every Ver!, [F(y):Fj=5.

Then R’ is etale and essentially finite over R.

For the proocf apply Corollary (3.10) and Theorem (30012«

(4.4) Corollary. Let ¥c¥’ be an immediate valued field extension,
R< R’ their valuation ring extension, and qcR a prime ideal of height
one. Suppose that R/g. =R’ /gR’ ,[F’:F}qu»,F@gf"separable and either

(1) p:=char R/g=0 or

(11) ‘p»0 and {F{y):Fj{ Dlor every e Bl

fhen R' ig etale and essentially finite ower R.



(SRl anar (838 1 4,

Berithe pioef apply Corollaries
value aroup/|

§ S Alaebrd#q>yalued field‘e’tensygne
Let ¥¢¥' be a valued field eXtenélon with ‘the Same
m the maximal ideal frem R, g<R a prime ide:
| R[Z} , Be=R/q

36D, 2 o

S ReR!
Iet £,u be some 1liftings of f re
T wher

their valuation rinas
z an element from R’ :=R’ /qR’ and £ a monic polynomial from
‘mRhﬁR{zg’

oT/32) @R’ .
NS
Ri=

Suppose that £ (Z)=0 and w:
(MR, Z=11}

resp.R’ and .denote R’:=(R’[Z]/

R[Z] 1
etale

zeR'" is given by 7.

(5.1) Lemma. Then ' .
~ o e > ~

(i) R, R’ avaluation rings with the same value aroup |

extensions of R resp,R’

(ii) R/qR RLZ“W§?1§C§S
PRGN e o g
i) S RICR /aR) s

is a valuation ring extension compatibl

the: inclusionReR’
(see [EGA]

(iv)
with R e RY .
Proof. Using some facts from the henselization theory
. . : v 0 . s
tale ‘the dnclusiong R eR, Rlc R and we soe thal [0
Arevwvaluation wings. Since R B¢
In particular

[R]) we get

or [R]
hold. Remains to note that R,R’
ety

Then R,R’ are

die

v e ol
are normal rings we get R,R’ normal too by the e
&

5 nN ne
are domains and let F,F’ be their fraction fields.
piR in. F resp.

N3

R,R’ are
localizations of the integral closure of R res
a. Remark from [Bl VI §8

> R,R’ are valuation rings (see a
' (552 Proposi@igé Let F<¥'. be a valued field
same value group of finite rank t&€ N, and R &R’ their valuation ring
extension. Suppose that :
ELELEY oF Jown
(ii) for every factor domain R of R with char Rs0 FeFr Bef
is - a separable field extension and it holds [ % schar R for every
§t§(®RR’.
Then R&R' is etale and essenfia}ly finite, :
Proof. Apply induction on t. If t=0 thenh thesveluation is triyia
Rlxk‘; kgk' being the residue field extension of RsR’'. Then ”?Jg

and we have R=]

n
e S ovhis

extension with the



*

et

is a finite separable field extension which is clearly etale.

Supposeée txl dlet qgeRibe d prime ideal of height ‘one and Re=Rya

'R’:=R'/qR’. Let ¥, T’ be the fraction fields of & resp.R’ (qR'€R’ i3 a

/ . =

prime ideal becauge R,R" have the same value group). By (i)' we get

: &
&%

Ef "J<o. Thus ReR’ is etale and essentially finite by induction hypo-

St et : sl
thesis. Using Udeobian criterion [R1V Theorem 1 there exist Z¢R,

feR {7} such that

(1) R’=R

g oy
“mRIAR[Z ]
(2) £(2)=0 and W:=(af/22) (Z)¢nRNR{z]
¢m

Ny ~ v 2 .
bet FT.u Ryy2,Reeilike in Lemma (5.1 Then
: ke o o~ o~ ~s
(3) R'8R’/qR’Z2R/qR
and by Corellamdid) ReR" ia etale and cssentially finite i But Re

od
R'€R’ are also etale and essentially finite by Construction. Then 1t s

enough to apply the following Lemma which follows from Lemma (7.6).

(5«2.1) Lemma, Teot ReR'eR" be two valuaiion ring extensions. Suppose
that RgR", R'€R" are etale and essentially finite. Then ReR’ is etale
and essentially finite.

SRR o R e 2 o
=3 Theorem. Let ¥ ¢ ¥' be a valued field extension with the same

b

‘value group I' of finite rank, Re¢R’ their valuation ring extension and

X the  residue field of ‘R-. Suppose that

(L) sahar & =g

(Li) FcP' is-elgebraic,

Then R’ 1s a filtered inductive union of its etale, essentially finite

sub-R-algebras of finite presentation. Moreover if [F’:Flces then ReR’

is etale, essentially finite and essentially of finite presentation.

: = o i o : = e e £ P
Proof. If |F':Fj<e then ReR' is etale and essentially finite by

AR HRe

Proposition (5.2). Then RER’ is essentially of finite presentation by

the following Lemma which follows from Corollary (7.4).

(5.3.1) Lemma. Let A& B be two domains and q ¢B a prime ideal.

Suppose that A is normal and Bq is smooth and esfentially of finite



type’ over. A. Then Bq is essentially of finite presentation over A,

"Now suppose that LE’:Fl=¢0 , Then express F' as a filtered inductive

“~

union of its subfields which are finite extensions of F, let us say

Ee=U) Fi' As above R@:Ri::R’ﬂ Fi is etale, essentially finite ang

l" 2
essentially of finite presentation. Thus Rj‘is a filtered inductive

"~
- M

union of dits etale, essentially finite sub-R-algebras of finite pre-

/

sentation. Since R’ ig a filtered inductive union of (Ri)iéI we are
Feady., [0
3 (5.4) Corollary. Conserving the notations and hypothesis of

Theorem (5, 3) Suppose that R is henselian and [F’:F <w. Then R’ is a

s

finite free R-module and Lx':gf=[F’:F3.

Proof. By Theorem (533) ReBR’ is essentiallv Einite, i.e0,

R’,_f;CmR,n C for a finite sub-R~algebra Ce R " iens s i guasi-local
because R is henselian and so Ric o ~0hae RL e finite over R, Since

R’ is torsionless as an R-module we get also R’ free over R. The secor
o

statement follows from [B] VI, $8 Theorem 2 because R’ is the unique

valuation ring from r’ dominating R. O



(5,4.1) ngar@, When Riig a veluation ring containing a ‘field of
characteristic Zero then its Integral closure in evéry finite field
extension F' of F=FrR is a finite free R-module by

B{VI §8 Thedrem 2

!
(&

-2

and [0]}%9 no.55 "Der Defektsatz" (see also [Ri] G Theorem 2). Thus our
i G : E :
Corollary (5.4) is¢particularYconsegquence of "Der .Defektsatz".

¢6. Obstructions for desingularization,

The Theorems (4.1l) and (5.3) suggest the introductiom of the following
definition.

(6.1) A valued field extension ?@;?’,or their valuation ring ex-
tensions Re RAigiaalled

(i) a desingularization extension (shortly a d-extensionj}if R’ is

a Filtered inductive union of its smooth sub-R-algebras of finite“pre=
sentation;

(ii)a weak desingularization extension (shortly a w. d-extension) 1if

Rt dg = filtered inductive limit of ‘smooth R-algebmpas of finite presens=
teation;

i) formel iy e desingularization’ extension (shortly a @.d exten=

sion if for every nonzero element xeéR, R’/xR’ is a filtered inductive
limit of smooth R/xR-algebras of finite presentation.

(6.1.1) Remark (i) A w.d-extension is separable.

(ii) Composite extensions and filtered inductive unions of d-exten
sions (resp. w,dior £.4.)'are also d-extensions (resb.w.d. e fads )i

Thus Theorem (4.1) says in fact that a separable dense valued field

extension is a d-extension.

(6.2) ‘Lemnee Lot Eigy' be a f.d. - extension of rank one immediate

valued fields of characteristic p»0 and a=(a,) a p.c.s. from B cuch

§opco
that
-5 o -
(1) a® has a poL.cin B for a certain -sell

-
(2) ahas & pibciin By

(3) a8 ig et @ .5



Thenrailas a pi L, i B
Brogf. Let v ibe a ptf. ofca dn BF andi by pi a? in F. Then
B p - =
v isip Dok, of 8% Cin Pl and so-we liave

S

D 5
prl f?) Yo FerE radli 3

&

P

A

If ¢ 1is a nonzero element from F then: (ca_ ) <0 Les o bic s having o
S Y
Jea o : : . 5
p,ﬁ, inc b i1 8 has enes Thus.multiplying a by a suitable ciwe can sSup

pose v(y)>»0, v(b)s0, v(a,)»0 and 5o we reduce to the case when v,b and

&)
a are from R’,where RgR’ is the valuation ring extension of FcF’.
s

o} S ; o : ; Rl ; .
Denote f:=Y" -beR{[Y]. Since 7%’ is immediate there exists 0#deR

such that - vid)=vifiy)). if £ %L“ otherwise take for d a superior boun

o f (pov(a§+1_a9>)9fé s 8 being not a‘f.s. Now, let Rlii=R!'/AR! b a i1

tered inductive limit of some smooth R:=R/dR-algebras (B eT @f - i nHet

o

presentation and %i:BjW#R’, Iel the Iimit maps, Since vi=y+dR! is & =9

lution of £ in: RY there existia jel aid an element“\f}",ﬁ{‘f:?,i suech ‘that

—

£ (7 j) -0 and ? (y )=V. As ¥ has rank one dim R=1 and so R is henselian

(dim R=0). Thus the map R~%ij has a retraction¥ . Then the element

E;:«g’@j) e a soliltieon of F in R,

Let z be a lifting of 7. It follows if (z)edR anc so
5

v((z--y)P) '=v (£ (2)-£ (y) )3 (d)spv (a

p_*_l—-aﬁ,) fOI‘ a]l S){:G =
2 n

Thus v {z-y)>v(a -a ), p<B ;1.8 Z 18 a p.f. of aidn R (see  (2.3.010 )
-v Nj g

f*l

652, 1) Bemark. The only reasoh tor whiéhﬁwe introduced‘this Lemm
was to illustfate our next Theorem (6.6) on an'eésy exam@le. This Theo
rem will allow us to substitute (i) in tﬁe above Lemma by asking for a
to be algebraic over F.

(6.3) Lemma. Let a=(a,), besan- aligebralic boesss from = v, b

=S e

LEREL
feF [Yja nonzero polynomial of least degree for which (2.7) ii) holds

and Efgjélgf #O} Then there exists an ordinal Z2<& such that

(i) v(f(j)<a§))=v(f(’”(a@) for JeI, F>0»%

(ade) V(f(éf))ﬁv(f(a?)) for vr>e2e,

(iii) there exists an ig¢l such that



o e L)

for every jel, J#1 and for every~f;v(a_Jl~am) such that there exists

i) 1% < g;:/(:{;‘»' with "*( AVA (ay +] -a/;) .
A R % Loy

Broof. Usimg (207 'we @an Tind a 72 satlseyving (1) (1 or (i)
it is enough- te apply the following Lemma which is a glight variation
of [KJ Lemma 4.

(6 31 Lemma. Let f]"”"?m be any elements of an ordered abelian
{ww

group v Eiy...,t some distinct integers and (e ) n a well ordered
i - it ’ ) : / o i

§J{w

monotone' increasing set of elements from [ . Then there exist an ordinal

m

<0 and an integer i, 1¢ig¢m such that

tor all j#1 and 2% with ¥<e for = certain e<@ (depending on ¥).
é =l J f 3

(6.4) Lemma. Let y,a,fpﬁfg"be like in Lemma (6 aa)r e =l aniltmit)

an ‘extension of ¥ andiv ap. of "a in B When

f

(1) v (£93) gy =v (e ) (a,)) for all je x

(1) v’(f(y))bv(f(ap)) torall o5 2.

Proof. By (2.4.4) (f(j)(ag)kwe' J*0 are ultimately p.c.s. "1 either
of the type
= (249 1 when 950, or

= 24 . 20t om0

Usjim; (2.4.3) we have

for o»» 0. Now we are ready by Lemma (6.3).H
3

a . R - = P
t6.3) Proee i iion el 5, F 5,5 %, T

be like in the above Lemma
and v an element from F’. Then Yy Is 3 pile of o 1FF it satietbes the

following conditions:

. ( . . ; o .
(1) vi£ 9 )y=ve ) @) for eI,
Cid) v(f(y))}wr(f(a“)) for alkl §r&z2.
: J >



]

- 21 -

Proof. The necessity follows from the ‘above Lemma. Suppose that

Y 1s mota pﬁf. but (i)- (iii) hold. Then there exisms ?ﬁ>0 (see (213 ]

let us say q?ﬁfz, such that ﬁ?zv(yméy)#v(ah+]~§y)n Since (y~am)7,/&
~ .3 . Y L% < B
15 8. p.¢.95. wa Have
(L viv-a._ 1 ) v e ), ¥ 0

b2 2 IF Fuvia 0+] af) then we get
V(y~af+l)=v(a§+lfaf)<v(ywa§): 3

which contradicts (1) by taking ¢ sufficiently large.

i5)

Now we may assume #<v(a ). Then using (2.4.5) it follows

]

@%1ma§

(2) viy-ag)=7 for all et ¢
By Taylor’s formula we get

(3) fla)=f)+Z £ (y) (a_-y)7
' ol

Using (2), (3), (i) and Lemma (6.3) (see the choice of Z) we have

fora eertain 1>} and all “2¢ . Then v(f(av)~f(y)) does not depend of

Tzg- Since (v(f(av)))vﬂw? increases monotonically we get v(f(y))«
V(f(aﬁ)) which econtradiets (i),

S

P
S

(6.6) Theorem. Let F¢¥' be a w.d-extension of rank one immediate

valued fields. Then
(¥0) every algebraic p.c.s. from F which is not f.s. has a D f
&

B isie i ac o me S B

in

Proeit ot a=(a ) be an algebraic p.c.s. from F which is not

AR e >R <h
9 e : :
e tosiand v a pala of aedlml Multiplying a bv a suitable element

# : 2 : ’ : ;
from F” we can suppose v (v)>0 and V(af)hO,gmm}llke in Lemma (6.2). Let

R< R’ be the valuation ring extension of ¥e¥F'’ and choose a polynomial

feRIY] of least degree for which (2.7) ii) holds. Like in the DEOGE o R

 Lemma (2.8) we can change y (if necessary) for to have “f (y)#0.

By Lemma (2.5) it is enough to show that a has a p.f° in the com-

: A . : S o= e ;
pletion R of R (the valuation ring of the completion-d of £4) . Using

Lemma (3.7) £ is still over R of "least degree Eorowhiichss(2 o7 41 )
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g : : s LAy : : v
p«L. i R ifF thare exists in R a solution of the following inequa-
tions:

\g VRt s e e ) for-all P> 6
(1)

Loy aal v el %

But (1) hac in R’ £he solution y and sb 4 sollution in R of the Tollo-
wing system of equations’

-y 5 : :
2 v s ey, L er o

s

it s still "aselution to (1),

> (1)
B S e S g ements C h
Let (dj)j@lkﬁbi be some elemen from R such that V(dj v(f (v))

(F¢c¥' is immediate). Then (2) has solutions in R iff the fdllowing sys-

tem of eguationg in (Z,Uj,Uﬁ):

§ £3) (z) = dej ,je1 uiod
f’
t

U.U0% =1
S )

(3]

s

has solutions 40 R. Sipge (3) has in R’ & golution induced by v we are

ready by the following

&L ler g«(ol,.n.,gﬁ) be a svstem of polyvnomials in
hol

J)

i e athiaE

~D
T= {1 T ) over R and R a henselian loecal R- lgebra. Suppos

e 05

ReR’' is aw. drextension and g has a solution t:(tl""'tr) imeR A

g oy
Then g has also a solution in R.

S e R

Proof, Let Rl be a filtered inductive limit of some smooth B-al-

gebras (Bi)ieT of finite presentation and*?i:BimmﬁR’; ieI the limit
maps. Then there exists a jJeI and ‘an element t/ «Bg such that g (t’)=0
and @j(t'):t. By henselianity the‘mapuﬁﬂmxaR”g@ rB has a retraccion

: - >
%ao Then the element txij(g ¢ £1) i & salution of g in R &

(6. 6.2)

e o 3 >
(6.7) Corollary. Let & C§' be a w.d-extension of immediate valued

fields (of rankeone sand let F'=(F" v", T be the complete closire of Fre-
s Sy m G b e 17 il '9 Hevrsiies

latively to &!. Then every element from FINF" is a p.L. of a p.c.s.

from F which S stvabscendental over P’ . In particular P! ds @lgebrai-

cally closed iy B,

}ois a weriation of ﬂ?lj Theorem (6.1)



sdEont. Lol vile an edenent tron FosRY By (0 B0 o e s o T

: ) : & i e : .
a p.c.8.la from B lHavha o b, noF e Vel e alsnet foso Thus o i

transcendental over F by Theorem (6.6). Moreover \a-is also: transcender

taliover B as shows Temms: (2.9) . 3

(6.8) Corollary. Let ¥cE! be an immediate algebraic w. d-extensi

et e S .

of valued fields of rank one.
O e s :
Then J¢ ' is dense and separable.

For proof apply Corollary (6.7) and (6.1.1) i).

o

(6.9) Theorem. Let Ffc&F’ beée an algebraic immediate extension of v

B ———

lued Fields of rank eone. Then the following statements are eguivalent:

Quar

s (i) FoF" is a d-extensien
o e o . ’
(i) Fc#' 1s a w. d-extension,

& is a separable ‘f. d-extension,

(iv) ¥<¥F ! is dense and separable.

Proof. Applying Theorem (4.1) and the above Corollary we get
sl (00 > (1 v) . The Tmplieation (iii);@>(ii) is a technical conse-
quence of EP£§ Lemma (9.1) (we do not include details because the me-

thods are completely different from those used hepel. Cleavly (1ii) =

el e trivial - (see (6 01 1)L B

(6.10) Remark. Theorem (6.6) and Corollary (6.9) provide us :a lot

j of examples of immediate extensions which are not d-extensions. For

instance the exemple given in (3.13) is not even a f.d~-extension. In -

(%

‘particular there exist flat morphisms uzémaA’ of guasi~local finqs
(A,g),(A',g/) such that dim A=dim - A'=0, EA,:Q”~A/E§§A’/EI bak AL isian
a filtered dnductive 1limit of smeoeth A—alqebras of finite presentation
(note that this does nokt happen if A/ is noetherian (see E?ZE Corglliar

{2

@7. Smooth algebras over normal rings

The aim of this section is to give ‘the proofs o Lemmas (5.3.1])

dndes(5..20 L) (see (1. 4) and ~a6)) .

Es 1) Lenma. Let A < AL be two domainst the fractieon fiecld ofe b

B a smooth A-algebra of finite presentation .and w:B-—sA’ a morphism of



A-algebras. Suppose that
(1) A is normal,

o~

1) dim(F;ﬁFAB)rtrdeqFF(Im w) .

Then there exists an element b&éB such that

(2) the map BbwwyA’ induced by w is injective.

. 3 i s » IR i
This Lemma: Lo 8 particular form of §P13 Lemma (2.4).

b2 Lemma. ket A be a normal domaln, € a: finite tyge A~algebra,
y=(yl,...,yn) a system of generators Qf C over A, r::n-trdegAC and
.f=(fl,...,fr) a s&stem of polynomials from A{Y], Y=(YI,;..,YH), Suppo-
se that

(1) € 1is a demain;

(ii) £(y)=0 and there exists a rxr-minor M of the Jacobian matrix’

(g;) such that "My is invertible in €.

Then C 'is & smococh A-algebrd of fintte precentation.

Proof, Claasly B::(A{Yj/f)M is a smooth A-algebra of finite nresen-

tation. Let w:B-3C be the map given by Ymgby and F the fraction fleld

of A, We have

dim F & AB = n-r = trdquC

Applying Lemma (7.1) we find an element be¢B such that w(b)=1 and B, %xC.

Thus C is a smooth A-algebra of finite presentation. &

(7°8) ‘Propee filon. Let A be ‘a normel domatin, € a finite type A-al-

gebra "and get a prime 1deal . Suppose that
g g I pr
GE e domain)

ii CL i a free C _—-module.
(A e CQ/A is a free - module

LS

Then Cq is smooth and essentially of finite presentation over A. If

-8

'C@/A:O then Cﬁ,is etale over A.

) be a svstem of generators of € over A,
D 'Z =

Proof. Let y=(y1,...,yn

We have

b

A4

<)



3 j. 5 i £s 7\‘ oS ?
Sl C/A#jiatdyj/zdg§q¢A€}lr g(y)=07j
] = ( £ "‘*.’, o 7 - e =t ar=]
where Y (Yl”'°’Yn)‘ Since §?</A\g C “4{ /A is free over C% there
existes & system of polynemials fz(fl"”"fr)’ L= e rank CLC /A in
%

A [¥J such that

- af
(2) there exists a rxr-minor M of (ﬁ%) such that M(y)dq.
But rank éﬁﬂc T trdegAC and applying Lemma (7.2) we get LM(Y)
smooth and of finite presentation over A. Thus C_is smooth and essen-

“tially of finite presentation over A. O

(5

. (7.4) Corollary..Let A be a normal domain, C a finite type A-alge
= bra and g¢<C a prime ideal. Suppose that
(B Cic a domain
(14) Cq is smooth over A .
Then CG is essentially of finite presentation over A.
(7.5) Lemma. Let ACA'CA" be two extensions of normal domains and
gedlt 3 prime ddeal. Suppose that A% is etale over A’ and essentiallvy
of finite type over A. Then AénA is- essentially of fdnite type over I,
Proof. By Jacobian criterion for etality[R]V, Theorem 1 there
: exists an element zgA" such that
2 A Pt ._4 i
S ‘
e (2)- z is a root of a monic polynomial £ from A[Z] such that

=(2£/32) (z)¢q. .
: nd
Thus 2z is integral over the normalsring A andiseo f:i=Tlrr(z B E
’iﬁj, Pl being the freaction field of A5 Chanéing by %‘we can
also suppose f irreducible over-F’ (wé could avoid this change applyin
from the beginning[I] IIT (8.1)). Since A% is essentially of finite
i Lype oyver I there exigis a'polynomiai Flen'f 7] sueh Ehat w'=£f! (zlgg
and T:=A’[ijw, is of finite type.over A. Express N° as a filtered 1ind
ctive union of its sub~A~algebras of finite tvpe contawning the coeffi-

: §

, e : . fa
cients of f and f/, let us ' say A'= U A.,. Then T is the filtered induc—
iel

¢ s . . * DT 5 & = o
Eive urnion.of Tes=b . Iwl ., 8lnce T is of flniteGvpe over A we gat



1ol TOp A certait iel. Tn Particilar

SRy
({ﬁg‘i; L4
&

+

-

(3) Aqui[z}

Now note that Af 2] is a localiiation of a finite free

TqnAl [zl

@BL) i dlgebea, £ bein irreducible over B, By faithfulla@FLatness
al (TWA’ J q /! £
: e s
we get
§
(4) )

Al =) o
qna’ i’y a 4

RO (B0

(767 Lemma. Let Re¢R’€R" be two valuation ring extensions. Suppose
that ReR", R'eRY dvreictale and essentially of finite type. Then ReR’ is

etale and essentially of finite By peTEoon

Proof. By Lemma (7.5) we get RcR’ éssentially of finite type.
sinee RIcR" 1o cvale we get §%”/R:O (see [R] i Theorem 2). Thus 'the fol=

lowing sequence

0 —» S Rl S

; .‘7 -—3>8¢ - =
> =2Cpu /R ”SiR”/R’ 0

15 exact. But m?”/R = U becagce RPER" 4- ctale, Then 5t R"=0
A :

RI/R D &
and SO~QR,/R?O by Cavthinllo Flatnes,
Applying Proposition (7.3) we get R <R’ etale and essentially of

finite presentation. a

'()
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