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C?— estimates for certain kernels on local fields

by

Dan TIMOTIN

1. The purpose of this paper is to extend to the
casevof n -dimensional vector spaces ovér a local field K the
~‘results proved in [8] in the case of R?. They concern neces-
sary and sufficient conditions for certain kernels to givé ri=
se to operators {on LZ(K")) belenging to Schatten-von Neumann
classes (for the theory of Schatten-von Neumann classes, see,

for instance,[l]); Though the main ideas are the same as inv
(8], ‘their actual application needs several adaptations to the
‘- new -context,
| In order to present the results, we have first to
establish the notation and toﬁremind some facts from the theory
.0f local fields; the basic reference for this topic - ds {71,

Let K be é local field; that is, a locally compact,
non-discrete, totaliy disconnécted_field'with the valuatio%¥/We
denote by Q={x€K,(xlsl}, §i={xeK,[ﬁl =l§,}i=[xeK,lx(<l§. T da
known that there exists 'Feyl, such that}4=ﬁ§] (this g will
be fixed in the sequel). The residue space -Slﬁq is a finite
field; let Q be a complete set of represeﬁtétives for it, If

o

card Q=q, then the 1Eé§e>bf K" in (0,0s¢) under the valuation |- | is

the multiplicative subgroup of (0,=) generated by q; also
=]
lpl=a ~.

Now, deéfine on KU, | x|l = max |24l xeix\ dis an
: lg<ig¢n

ultrametric valuation on K"; that is, x+—»|xl 1is a norm and

|x + ylgmax {Ix|,lyl} . We will denote by ﬁifixexn,lxlsan?;



w F oes
Sk={xeKnr \ X\ = q—k};tﬁk will be the characteristic function of
B .fyzﬁﬁKn) will denote the space of finite linear combinations
k . S
of characteristic funetions of balls,
The Fourier transform on K" is defined as follows:

let X be e fixed character on K'that is trivial® on 3] but is no

trivial on }ﬂ“l. Then,  For fesLl(Kn)

AN SRR
- f(><>——=&f(§) X(x¥) ag
e K“
The standard properties of the Fourier transform
can be found in [7, chap.III].
... Caution: the sign |.] is used to denote the valua-
tions on K, Kn, as well as the modulus of a complex number.
The author thanks Dan Voiculescu for many useful discussio:
2. In the sequel we shall recapture the main result

of [8]. We shall consider operators given by kernels of the forr
A
L) A(x,y)f(x-y)

where the main condition imposed on the continuous function A

is its p—homogeneity:

(2) | A (px, py)zA(x;y), . x,yeK" = : :

Further restrictions on A will be stated when nece:

sary.

Let us introduce also the equivalent of Besov spa=-

gLy -kn A 1
ges: ony Ko If Rk(x)rq 'éLk(x), then Rksék; we define, for
pig3l, s R

° S

Caass . n e ? ‘Sk. oo ?
Bog = Bog & I=ifes e e, Rk__l)“f,z et |

keZ

These spaces appear in [7] (actually, we use their



L
]

"homogeneous" versionj.

Now, let T(A'T) be the operator whose kernel is
A(x,y)?(x-y), and T(A) the operator whose kernel is Alx,y). The
supplenentary conditions on A which will appear below will tend
towards establishing, for a fixed s, the equivalence "T(A,?)

o W ;
if and only if eB TV,
’ f
Lemma 1. Let E:{(x,y)eKnxKn . |x«y\=l}} and

X(x,y) the characteristic function of E. Define

i

a (B) = “T(XAJUCJ

Then

' otz bl
2@l < coap )-ligll
4 41
The proof is similar to that of lemma 1 in [8].
The functions Yy, are given simply by %k%_éi“ @k‘l
Also, with a proof similar to that of lemma 2 in

{8) , we obtain

- Lemma 2. Define

ay(8) %= sup SIA(yw‘t.y)f 2ay
felen ¢
Y
,,,Then, S
I T~(A,\f’)uclg C.a,(a) )\af\l .B:/;

In order to apply lemmas 1 and 2, we state the fol-
lowing result, which can be proved by methods analogous to those

ind [ - T, 9.
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Proposition A. Suppose §,7&Kn, K(x,y) is a kernel

defined on (S+731)x(zz+ 331); and T(K) is the operator correspon-

ding to K; suppose also 0&)%. Define
: = :
M XKl =max {sule(xPy)lp sup lhi ]K(x,y+h%«K(x,y)l§
XeY X,Yeh

Then, if [IKlices, T (K) ecs,’ and

AT < C KN
C..'t

We may now state

Theorem 1. Suppose A is continuous on (KnxKn)\iO},
satisfies (2) and, moreover, on B= @(x‘,y)eKnxKn, max { Ix1, ly!}:l%

we have

(1) B,y <C lx-y!”

650) ]A(x,y+h)-A(x,y)l$Clhl“

where °<>-S , 1¢pg2.
Then there is a constant C (depending of course

also on A), such that
ﬂT(A'(f)“C < cp “‘f”én/l,
P [d3

. Proof. We shall suppose 1l<p¢2 (otherwise the proof

is simpler). Consider the analytic family of kernels

(3) A, Geoy)= [ e 2oyl J"‘*A(x.y)

max (1%, 1yl

defined for 3‘-2-35Re A {®p.,



We will use interpolation between Re A= %; and
Red=up.
P e ‘
For ReA= o the estimate isrother straightforward.
If \yl= qk>l, and |tl=1, we have, using condition (i) in the

theorem:

\a, (y+t,y) | = — bl“(g 1T~\A(y Loyl = |
. o
= *‘X(ﬂ ‘A(P(}/«%t)FY)l °<( jk'“::
-—"-‘5.{-‘ _%(M?*h)

]

=

Therefore, for |tl| =1,

S\A(y+t,y)fzdyxc + g '\A(y+t.y)lzdy=

e iz 1
=C+ J_ klA(y+t,y)] 2dy< clis Z a” .q—nk.q—k_(ecp-n) )< oo
k1l (yl=q k31l

whence az(A>)<oO.

Suppose now ReA=wp, We have to estimate a, (A )=
=“T(XAA)h; - where' XiiS the,characteristic function of the
set E ¢ KPxk", E=f(x,y)llx—yl=1§. -

We shall need some prélimiﬁary notations. Suppose.

o0 :
e n - k » : . . S
x—(xl,...,xn)eK « dhen x. .= 2:'p Xip * where xing, that is,

k=k
i ik belongs to a set of g elements. Moreover, in this case
|%[= max §ix. \%-'q m_1n§kl§ : Deflne, a function (:K"—» K" by putting
. = =
k(X)=(X ,...,X ) 'wherex Z: pkx., (in case k.>~1, we put
1 i K=kj ik

ii:O). Then U(K™) is a denumerable set of elements. Define
] ={0} and, for k1, 5 ={xédKn)\ hlqug.
[¢]
Then k(K ) = L)B

k 14
: k=0
is less than g L. Also, |x-yl=1 is equivalent to «(¥X)=+«(y) and

and the number of elements in Zk

\iF-lx)ik(P~lY)o If B(x,e) denotes the (closed) ball of center x



and radius t, then,for fé,L(Kn),we have B(f,l) (n'§+‘£§l)m

se ) B(§+p§,q”l), and we.may wri & the set E as a disjoint unior

feo

Uy — 8+ ¢}, o hads . a )=
?Ql(Kn) gl’(eg :
forny .
=L L N sl gihae g, a0 )
k=0 §g;k Lqu ? P? X f»??
i

. ) = - = X =
Denote kg, ¢ B(3+pTea xB (S e a ), i e

let us estimate ”T(X} f'lAA)“c (the edtimate below is actually
[4 4 7]

valid for k31: “Jo can be treated similarly).

Recall that AX is given by'formula (2); however,

when (XIY)€E§'3r7 » we have |x-yl=1 and max([xli\yl)=qk.

Also, by homogeneity (relation (2)), we have

\A(x,y)[=[A(pkx,Fky)\gcjpkxjpkyl =C.‘q“k¢'<

and, for lhl<1,

\bU A Gy +h) - AGx, v) | = (8] 7] A, B+ h) -A¥x,0"y)] <

e 4 =k

< C e og .[hl%:c .

(since (X'Y)EEg T “implies \pkx[=(ﬁky\:1, we have applied
P )¢
(i) and (ii) in the hypothesis).

By Proposittiion A , we have

ket

C

I .T‘xﬂnz’»% [ e f
)

"and therefore

HT(A>HQ e Zif Zfi ;E:: qwkx(p"1>q— <
!

< C ankq‘kmp Zob ey



St
(by_the condition'u7§).

To end the proof, consider, for‘%ﬁ'sRekxxp, the
analytic family of operators j:, which associate to the functio
‘ ; A -~ -
T the operator Q(Ak’?)' Tngn, for Re)=‘%ﬂ s %\maps 525 into
02’ while, for Rel=«p, it maps Bgl into Cd. The desired conclu~

sion'follows by interpolation.

3. We shall now treat the reverse problem. We rely
on the folleowing lemma, whose proof is .similar to that of corol-

laxy 1. dn [8]f

Lemma 3. Let A be sore locally integrable kernel
Sedm g : . 2l e s e i
on K xK'; suppose of,«'c¢f(XK)..Define the function a bxe it

Fourier transform
A S > ]
a(u) = (W\ Alx+u, )= (x)dx

Suppose supps, sunpx+supp«'cﬁcé}51] Ix|¢R3, and denote by
P,P’' the projections onto Lz(supp«), Lz(suppo<+ suppr}, res-
pectively. Then, for le¢psos, :

el

T

B prr e,

tall, < e
L P

where C depends on the multiplier norm (in Ll) of «'and on the

~ uUniform norm of e

The following proposition, which we will use in the

‘Ssequel, is an immediate consequence of [5,3.Corollary 2]
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£3

; e
Proposition B. If meB,) (K'), then Bels (B b
refote mds a multiplier in all Lp(Kn),.lgpgm.~

We may now state the theorem.

Theorem 2. Let A be continuous on KnxKn\{O}, sa-

D P

tisfying (2). Suppose that:

(&) there is «>v% rSueh that
: e : -
| A Gxth,y) -AGx,y) [€CIyl™ | for |x|=|yl=l, |hi<1
(il) for ény ueKn\§0} ,» there exists xek", such
that

Alx + u,x) # 0
Then
: 12 N oa
llLfHB/F = C“T(A'T“c for: lep<
PP s :
Proof. Let Fm{uekn,\u\:li; LetSZj be a finite open

cover of F (we may choose it to. be open also in Kn), D_j open

n
sets dn-K Sfol' wiee [njlzl-, such that Re(ij(x+u,x))>O

J
for ueﬂj, xeDj. Take gécg 525- ¢ Such that'{ﬁ%{is still an open
- cover of F, and choose Nj o e F(R") - Ppesitive functions,
. ! ' '
such that :

(i) uﬁ(u)>0 for u e_SZ;

(1i) supp o% - .Szj‘, and supp xjiD

3
(the possibility of this construction follows from (i1} in +he

statement of the theorem).

Define now functions bjk by

B w =0t 7w gA(x+u,x)o<j %) ax



1t ng, Pi? are the corresponding projections, then
we have, by lemma 3
~kn(l-

1
_") ' \" ; : o
P ﬂij?<Aa7>ij“C

(5)  lbv,lgcq
J\L;f
| i ®

(Note that C depends on the multiplier norm of MB ¢ and can be
chosen therefore iandependently of k and j).

Denote
0y (W) =t (875w \ 2 (xbu, ) o, (9™ 50) ax
Jlesie R Xl R
... A change of variables yields
~kn =k

: ' A -~ ~
Now, define_&,\rk by YSZZKS%O) \Vk(u)mY(p u)
Note that supp QP' supp<}c:sj. Also, for lu| =1, |v|<1, we

have, by condition (i),
0 (utv) -0, (w| el
[Souv jolwl&cvl
and therefore

[$ tarv) -G w¢ c. v ™

{

. A
~But we have Re y>0 on S, ,.and therefore =~ satisfies a similay
3 .

estimate on 81:

l ‘,4T (u+§) -

It follows easily, since %L is supported on Sqv

that it belongs to B:ﬁ(Kn), and we may apply proposition B to

conclude that it 1 a mnl+inlicyr Arn anwy TP rplly



w4} -

From (5) we obtain

e Eear ~kn (1-p) (Zl\\p’ @ F.
WP s e, Tt

whence s : ¢

s kn P )VF
q -l{‘fé?’\ff},h C(}Ziink TAIP “CP

Therefore

|

<

il o
6y si2 a xe it e e T 7 o owin
e 4 *khf keg § Jk ok

: cllT<A,7)HZ
F

since P! and P P are disjoint for|k,-k,[suffi-

i
r', 1 R el ]
jkl jkz jkl 3k2
ciently large (depending only on the sets Dj),
But, since 7L are multipliers of uniformly bounded

K
norm in Lp, it follows that s

Il x \yk_ > |l T*(Rk k- 1)”

and, by (6),

I ‘f“g“@ < C“T(A,f)HC
PP P

4, Flnal remarks. l. The results preeented apply
in pafticular to commutators of multiplication operators with
"singular integral operators of the type considered in £ ,VI.4]
(this is the analogue for local fields of the commutators consi-
dered in [4],[6]).
2. In a recent work ([3]), Janson and Peetre

extend the results of [27 and [8]; by combining their method



