INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL
PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

A DUAL GALOIS THEORY OF RANK TWO FOR NONSEPARABLE EXTENSIONS OF FIELDS

by

Angel POPESCU
PREPRINT SERIES IN MATHEMATICS
No.63/1985

fled 23685

A DUAL GALOIS THEORY OF RANK TWO FOR NONSEPARABLE EXTENSIONS OF FIELDS

by

Angel POPESCU *

Oct. 1985

Department of Mathematics, Civil Engineering Institut,
Bucharest, and

Institute of Mathematics, University of Bucharest, str. Academiei 14, Bucharest 70109 - ROMANIA

A dual Galois theory of rank two for nonseparable extensions of fields *

by

Angel POPESCU

Abstract In this work we extend the classical Galois-Krull theory for separable and normal extensions of fields, and the Jacobson theory for finite purely inseparable extensions of exponent 1, to general normal extensions of exponent 1 (the maximal purely inseparable subextension has exponent 1).

A. Distinguished algebraic extensions

Definition 1. An algebraic extension of fields K/k will be called <u>distinguished</u> if it is possible to find a purely inseparable subextension $L/k \subset K/k$ with K/L separable.

Proposition 1. Let K/k distinguished algebraic extension of fields, k_K/k the maximal separable subextension of K/k and K_0/k the maximal purely inseparable subextension of K/k. In this case $K = K_0 \cdot k_K$, and K/K_0 is separable. Conversely, for every purely inseparable extension N/k and every separable extension M/k the extension $K = N \cdot M/k$ is distinguished.

This work was supported by ICMAT - Bucharest, as a part of the Research Theme 6,1985.

<u>Proof</u> Let K/k be a distinguished extension of fields and L/k a purely inseparable extension with K/L separable. Every $x \in K$, pure over k ,is pure over L, so that $x \in L$ (K/L is separable). Hence $L = K_0$, the maximal purely inseparable subextension of K/k. Now we examine the diagram

We conclude that $K/K_o \cdot k_K$ is pure and separable, and $K = K_o \cdot k_K \cdot$ The last part of the Prop.l is a direct consequence of the Def.l.

Corollary 1. A separable, a purely inseparable, or a normale algebraic extension K/k is distinguished.

Proof. Nontrivial is the fact that a normal algebraic extension K/k is distinguished. But this appears in [3] as Prop. 12, \$7, Cap. VII.

Proposition 2. Every algebraic extension K/k contains a maximal distinguished subextension $K_{\overline{d}}/k$.

<u>Proof.</u> It is sufficient to take $K_{\tilde Q}/k$ as the maximal separable subextension of $K/K_{\tilde Q}$, where $K_{\tilde Q}$ is the maximal purely inseparable subextension of $K/k_{\tilde Q}$

Remark 1. Generally speaking $K_d \neq K$, in other words, there exist algebraic extensions K/k that are not distinguished. This is the case in the following exemple, sent to us by the amiability of S. Iyanaga-it was constructed by a referee of one of my previous paper.

Exemple 1. Let p be an add prime, $F = F_p$ the prime field of characteristic p,t,s two independent variables over F. Put k = F (t^p , s^p), K = F(t,s,x),where x is a root of x^2 - tx + s = 0. K/k is normal of degree 2 p^2 . Consider now L = k(x), and $M = k(x^p)$. M/k is the maximal separable subextension of L/k. F(t,s) is the maximal pure subextension of K/k, so that $k(x) \cap F(t,s) = k$ is the maximal pure extension of L = k(x). If L/k were distinguished, we had $L = k \cdot M = M$, a contradiction. We conclude that L/k is a subextension of normal (distinguished) extension K/k, which is not distinguished.

B. A Galois type correspondence for distinguished subextensions

Let $K/k\sqrt{a}$ normal (algebraic) extension of exponent 1, in other words the maximal pure subextension of K/k, K_0/k is of exponent 1, and k_K the maximal separable subextension of K/k. In this and the following section we consider, as a nontrivial case, all the fields having characteristic $p \neq 0$.

For an algebraic normal extension K/k we denote by $\mathcal{D}_{K/k}$, the K-liniar space of all k-derivations of K, and by $S = \mathrm{Aut}\ (K/k)$. It is clear that $K_o = K^S = \left\{x \in K, \ \sigma(x) = \kappa, \ for every \ \sigma \in S \right\}$.

For a K- subspace of $\mathcal{O}_{K/K}$, \mathcal{A} , denote by $N(\mathcal{A}) = \bigcap_{K \in \mathcal{A}} KerD$,

the annulator of \mathcal{A} , and for a subextension L/k C K/k denote by $\mathcal{A}(L) = \{ D \in \mathcal{D}_{K/k}, D(x) = 0, \text{for all } x \in L \}$. A K-subspace of $\mathcal{D}_{K/k}$, \mathcal{A} , will be called <u>arithmetically maximal(A-maximal)</u> if for all other K-subspace \mathcal{B} of $\mathcal{D}_{K/k}$ with N(\mathcal{B}) = N(\mathcal{A}), and $\mathcal{B} \mathcal{D} \mathcal{A}$, we have $\mathcal{A} = \mathcal{B}$.

Corollary 2. If \mathcal{A} is an A-maximal K-subspace of $\mathcal{D}_{K/k}$, we have $\mathcal{A}(N(\mathcal{A}))=\mathcal{A}$.

Proof. It is clear that $\mathcal{A}\subset\mathcal{L}(N(\mathcal{K}))$, and $N(\mathcal{K}(N(\mathcal{K})))=N(\mathcal{K})$, because we always can find a derivation $D\in\mathcal{D}_{K/k}$ with KerD = $N(\mathcal{K})([2], Exc. 3, pag~185, and~an~extension$ of it using Zorn's Lemma for the infinite case).

For a derivation $D \in \mathcal{D}_{K_0/k}$ we denote by D^* the unique derivation in $\mathcal{D}_{K/k}$ which extend D([3], Chap.X.Th.7 and consequences). Note that the application $D \longrightarrow D^*$ is K_0 -liniar and we can view $\mathcal{D}_{K/k}$ as a K_0 -subspace in $\mathcal{D}_{K/k}$.

Definition 2. The set $G(K/k) = \{ (\sigma, \sigma E), \sigma \in S, E \in \mathcal{O}_{K/k} \}$, with the multiplication rule

(1) $(\sigma_1, \sigma_1 E_1)(\sigma_2, \sigma_2 E_2) = (\sigma_1 \sigma_2, \sigma_1 \sigma_2 E_2 + \sigma_1 E_1 \sigma_2)$, becomes a group, called the Galois group of rank 2 of extension K/k (supposed normal):

Definition 3. The set $G'(K/k) = \{ (\sigma, \sigma E^{\mathbb{N}}), \sigma \in S, E \in \mathcal{D}_{K_0/k} \}$, with the same kind of multiplication (1), becomes a subgroup of G(K/k), called the dual Galois group of rank 2 associated with K/k.

Lemma 1. For $\sigma \in S$ and $E \in \mathcal{D}_{K_o/k}$, we have $\sigma E^* = E^*\sigma$. Moreover, $G^*(K/k) \cong S \times \mathcal{D}_{K_o/k}$, where $\mathcal{D}_{K_o/k}$ is considered with the additive law of composition.

Proof. Let x be in K and $f(X) = a_0 + a_1 X + \dots + X^{t}$, the minimal separable polynomial of x over K_0 . (K/K_0) is separable. Denote by $f^E(X) = E(a_0) + E(a_1)X + \dots + E(a_{t-1})X^{t-1}.E^K(x) = -f^E(x)/f^*(x)$, and $\sigma E^K(x) = -f^E(\sigma(x))/f^*(\sigma(x)) = E^K(\sigma(x))$, $a_i, E(a_i) \in K_0 = K^S$. The last part of the Lemma follows from the association: $(\sigma, \sigma E) \longrightarrow (\sigma, E)$ and the commutation of $\sigma \in S$ with E^K , where $E \in \mathcal{S}_{K_0}/k^*$.

Definition 4. A subgroup $M = (H, \mathcal{A})$ in $G^*(K/k)$ is said to be closed in $G^*(K/k)$ if H is closed in the Krull topology on $S = Aut(K_K/k)$, and \mathcal{A} is an A-maximal K-subspace of $\mathcal{O}_{K_K/k}$.

For a subextension T/k of K/k we denote by $\mathcal{N}_{0}(T) = \{D \in \mathcal{D}_{K_{0}/k}, D^{\#}(x) = 0, \text{for all } x \in T\}, \forall (T) = M_{T} = (H_{T}, \mathcal{N}_{T}), \text{ where } H_{T} = \{G \in S, G(x) = x, \text{for all } x \in T\}, \mathcal{N}_{T} = \mathcal{N}_{0}(T \cap K_{0}), \text{ and by } \varphi(M) = L_{M} = (Fix H \cap k_{K}).N_{0}(\mathcal{N}_{0}), \text{ for } M = (H, \mathcal{N}_{0}), \text{ closed in } G^{*}(K/k), \text{ Fix } H = \{x \in K, G(x) = x, \text{ for all } G \in H\}, \text{ and } N_{0}(\mathcal{N}_{0}) = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K, G(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}, D(x) = 0, \text{ for all } D \in \mathcal{N}_{0}(K/k), \text{ fix } H = \{x \in K_{0}$

THEOREM 1. Let K/k be a normal algebraic extension of exponent 1 (K_0/k is of exponent 1). With the above notations,

the maps ψ and φ establish a one-to-one correspondence between the distinguished subextensions of K/k and the closed subgroups of G'(K/k).

Proof. Let L/k be a distinguished subextension in K/k. We want ψ (L) = H_L X \mathcal{A}_L be closed in G'(K/k).H_L is identified with the subgroup of Aut (k_K/k) which leave unchanged the elements of k_L = { $\mathbb{X} \in L$, x is separable over k }. From the classical Galois-Krull theory follows that H_L is closed in the Krull topology on S = Aut (k_K/k) = Aut (K/k). Moreover, \mathcal{A}_0 (N₀(\mathcal{A}_L)) = \mathcal{A}_L , from \mathcal{A}_L is closed indeed in G'(K/k).

Let $M = H \times \mathcal{X}$, be a closed subgroup in G'(K/k). It is clear that $L_M = (Fix H \cap k_K) \cdot N_o(\mathcal{X})$ is distinguished in K/k (it is the compositum between a separable and a pure subextension of K/k).

Let us remark now that $L_M = \{ x \in \text{Fix H,x is separable} \}$ over $N_0(\mathcal{A}) \subset K_0 \}$. For this, we have $N_0(\mathcal{A}) \subset K_0 \subset \text{Fix H,}$ hence $L_M \subset \{ x \in \text{Fix H,x separable over } N_0(\mathcal{A}) \}$. Now let x be in Fix H, x separable over $N_0(\mathcal{A}) \cdot x = \sum \{ i \in \mathcal{N}_i \}$, where $\{ i \in \mathcal{K}_K \}$, $\mathcal{N}_i \in K_0 \setminus K_i \}$ is distinguished). $x = \sigma(x) = \sum \sigma(\{i\}) \cdot \mathcal{N}_i = \sum \{ i \in \mathcal{N}_i \}$, hence $\{ i \in \text{Fix H} \cap k_K \}$ (we may consider $\mathcal{N}_i \in K_0 \setminus K_0 \}$). Now, if $D \in \mathcal{A}$, D(x) = 0, X beeing separable over $N_0(\mathcal{A}) \setminus D(x) = -f^D(x) / f^*(x)$, with $f(\{i\}) \in N_0(\mathcal{A}) \setminus [\{i\}]$, where f is the minimal polynomial of X over $N_0(\mathcal{A}) \setminus I$. It follows that in a writing of $X = \sum \{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$. Of $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$ of $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$. But $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$ is $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$. But $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$ is $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$. But $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$ is $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$. But $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$ is $\{ i \in \mathcal{N}_i \setminus K_0 \} \setminus I$.

the two writings of x to obtain $x \in L_M$.

Let L/k be a distinguished subextension in K/k.We shall prove that $\underline{L} \subset \mathcal{QV}(\underline{L}).L = k_L.(\underline{L} \cap K_0)$, from Prop.1., and $\mathcal{QV}(\underline{L}) = L_{H_L} \times \mathcal{J}_L = \{ x \in \text{Fix } H_L, x \text{ separable over } N_0(\mathcal{J}_L) = N_0(\mathcal{J}_L(\underline{L} \cap K_0)) = \underline{L} \cap K_0 \}$. If $x \in \underline{L}$ and $G \in H_L$, G(x) = x, hence $x \in \text{Fix } H_L$. L is distinguished, x is separable over $L \cap K_0$, so we have $x \in \mathcal{QV}(\underline{L})$.

Now we prove the converse part Ψ (L) CL. Let y be in φ Ψ (L), in other words y \in Fix H_L and y is separable over N₀(\star L) = L \cap K₀. Write now y = \sum ξ ; η ; , with ξ ; \in k_K, η ; \in K₀ (K = k_K·K₀). In this writing we can consider η ; free over k. We have now y = σ (y) = \sum σ (ξ). η ; so ξ := σ (ξ) for all σ \in H_L, and we conclude that ξ : \in Fix H_L \cap k_K = k_L. In this way y \in k_L·K₀·But y \in k_L·k = k_L, so that y is pure over k_L and over L. y is also separable over N₀(\star t_L) = L \cap K₀·so that y is separable over L. As a consequence y \in L.

Let $M = (H, \mathcal{K})$ be a closed subgroup in G'(K/K). We shall prove now that $M = H \times \mathcal{K} \subset \mathcal{V} \mathcal{G}(H, \mathcal{K})$. Let \mathcal{G} be in H and $X \in \mathcal{G}(H, \mathcal{K})$. $\mathcal{G}(X) = X$, so $\mathcal{G} \in H \mathcal{G}(H, \mathcal{K})$. Consider now $D \in \mathcal{K}$ and $X \in \mathcal{G}(H, \mathcal{K}) \cap K_0$. X is separable over $N_0(\mathcal{K})$. But $X \in K_0$ implies X is pure over $N_0(\mathcal{K})$, so that $X \in N_0(\mathcal{K})$ and $X \in N_0(\mathcal{K})$

Now we shall prove the converse part $\psi\varphi$ (H, \star) C (H, \star). For this, let σ be in H φ (H, \star). The aves unchanged the elements of Fix H which are separable over N_o(\star). Let x be in Fix H \cap k_K. H is closed in the Krull topology on S, hence it will be sufficient to prove that σ (x) = x. But x \in

Fix H \cap k_K implies x separable over N_o(\mathcal{A}), so that $\mathcal{O}(x) = x$, and H $\mathcal{O}(H, \mathcal{A})$ \subset H. Let D be in $\mathcal{A}_{\mathcal{O}}(H, \mathcal{A}) = \mathcal{A}_{\mathcal{O}}(Fix H \cap N_{\mathcal{O}}(\mathcal{A})) = \mathcal{A}_{\mathcal{O}}(N_{\mathcal{O}}(\mathcal{A})) = \mathcal{A}_{\mathcal{O}}(Cor.2.)$. We used the fact that N_o(\mathcal{A}) \subset Fix H, and the eqality L_M \cap K_o = Fix H \cap N_o(\mathcal{A}). For the last eqality let x be in L_M \cap K_o, x is separable and pure over N_o(\mathcal{A}), so that x \in N_o(\mathcal{A}) \cap Fix H. Conversely, for y \in Fix H \cap N_o(\mathcal{A}), y \in K_o, and y \in L_M, since y \in N_o(\mathcal{A}). With that the proof of the Theorem 1.1 is over.

C. A Galois type correspondence for arbitrary subextensions

Lemma 2. For a subgroup H in S and a K-subspace \mathcal{K} in $\mathcal{D}_{K/k}$, $M = \{ (\sigma, \sigma E) \in G(K/k), \sigma \in H, E \in \mathcal{X} \} \stackrel{not}{=} (H, \mathcal{X})$ is a subgroup in G(K/k) if and only if $\sigma \in \sigma^{-1} \in \mathcal{X}$, for all $\sigma \in H$, and $E \in \mathcal{X}$.

Definition 5. A subgroup $M = (H, \mathcal{K})$ is called <u>admissible</u> if H is closed in the Krull topology on S, \mathcal{K} is an A-maximal K-subspace in $\mathcal{D}_{K/k}$, and if we can find a p-base $\{c_i\}$ of $N(\mathcal{K})$ over k_K such that $c_i \in Fix$ H, for all i.

Remark 2. M = (H, \star) is only a notation. Generally speaking M = (H, \star) \neq H \times \star if we work with $\mathcal{D}_{\mathrm{K/k}}$ instead of $\mathcal{D}_{\mathrm{K_0/k}}$. It is not difficult to construct extensions K/k with G(K/k) \neq S \times $\mathcal{D}_{\mathrm{K/k}}$.

In the following we denote by $\mathcal{A}_L = \mathcal{A}(L) = \{D \in \mathcal{D}_{K/k}, D(x) = 0, \text{for all } x \in L \}$, where $L/k \subset K/k$, and by $N(\mathcal{A}) = \{x \in K, D(x) = 0, \text{for all } D \in \mathcal{A}\}$, \mathcal{A} being a K-subspace in $\mathcal{D}_{K/k}$.

THEOREM 2. Let K/k be a normal extension of exponent 1

(K₀/k has exponent 1). The maps $\overline{\psi}(L) = (H_L, \mathcal{L}_L) \subset G(K/k)$, with $H_L = \{ \sigma \in S, \ \sigma(x) = x, \text{for } x \in L \}, \ \mathcal{L}_L = \{ D \in \mathcal{D}_{K/k}, D(x) = 0, \text{for } x \in L \}, \text{ and } \overline{\varphi}((H, \mathcal{L})) = \text{Fix } H \cap_{\bullet} N(\mathcal{L}),$ establish a one-to-one correspondence between the arbitrary subextensions L/k C K/k and the admissible subgroups (H, \mathcal{L}) in G(K/k).

Proof. If L/k \subset K/k, $\overline{\psi}(L) = (H_L, \mathcal{K}_L)$ is admissible in G(K/k). For this we write $L = k_L [c_d]_{d \in \Lambda}$, where $\{c_d\}_{d \in \Lambda}$ is a p-base over k_K . H_L is closed in the Krull topology on $S = Aut(K/k) = Aut(k_K/k)$, and \mathcal{K}_L is an A-maximal in $\mathcal{D}_{K/k}$ (if $\mathcal{K}_L \subset \mathcal{B}$, with N(\mathcal{B}) = L, every $D \in \mathcal{B}$ is 0 on L, hence $D \in \mathcal{K}_L$. It is clear, using Lemma 2, that (H_L, \mathcal{K}_L) is a subgroup in G(K/k). Morever $c_{\mathcal{K}} \in L$ C Fix H_L , so that $\overline{\psi}(L)$ is admissible in G(K/k). But $L \subset Fix H_L$ \cap N($\mathcal{K}(L)$) = $\overline{\varphi}$ $\overline{\psi}(L)$. Conversely, let x be in $\overline{\varphi}$ $\overline{\psi}(L)$ = Fix H_L \cap N($\mathcal{K}(L)$) \cap Fix \cap N($\mathcal{K}(L)$) \cap N($\mathcal{K}(L)$) \cap Fix \cap N($\mathcal{K}(L)$) \cap N($\mathcal{K}(L)$) \cap Fix \cap N($\mathcal{K}(L)$) \cap N($\mathcal{K}(L)$) \cap N($\mathcal{K}(L)$) \cap Fix \cap N($\mathcal{K}(L)$) \cap N($\mathcal{K}(L)$) \cap Fix \cap N($\mathcal{K}(L)$) \cap Fix \cap N($\mathcal{K}(L)$) \cap N(\cap N($\mathcal{K}(L)$) \cap N(\cap

We want now to prove that (H, \star) C Ψ (H, \star) for an admissible subgroup (H, \star) in G(K/k). If $\sigma \in$ H, and $D \in \star$, it is clear that $\sigma \in$ H $_{Fix}$ H \cap N(\star (L)) and that $D \in \star$ (Fix H \cap N(\star); let now σ be in H $_{Fix}$ H \cap N(\star (L)) and D be in \star (Fix H \cap N(\star)). For $x \in$ Fix H \cap K_K C Fix H \cap N(\star (L)) we have σ (x) = x. Since H is closed in S = Aut(k_K/k) we conclude that $\sigma \in$ H. Write now N(\star) = k_K/m with $m_i \in$ Fix H (H, \star) is admissible in G(K/k)). D is 0 on m_K/m and D is 0 on m_K/m fix H m_K/m 0 N(\star 0), so that

 $D \in \mathcal{A}(N(\mathcal{A})) = \mathcal{A}$, \mathcal{A} beeing A-maximal in $\mathcal{D}_{K/k}$, and we have proved that $(H,\mathcal{A}) = \overline{\Psi}\overline{\varphi}(H,\mathcal{A})$.

The last Remark For K/k purely inseparable, finte and of exponent 1, the A-maximal K-subspaces in $\mathcal{D}_{K/k}$ are exactely the restricted Lie algebras of Jacobson [1]. When K/k is infinite, purely inseparable, and of exponent 1, the A-maximale K-subspaces in $\mathcal{D}_{K/k}$ are exactely the closed (in the fine te topology on $\mathcal{D}_{K/k}$) K-subspaces which are closed for taking p-powers ([G1], [G2], [OS]). It is not difficult to prove that when K/k is normale with K₀/k of exponent 1, every A-maximal subspace is closed in the finite topology and is chosed for taking p-powers. The converse part of this affirmation is also true. All this facts we have proved independently from [G1], [G2], [OS], using another tools.

ACKNOWLEDGEMENT

We wish to express our profound gratitude to Prof.N.Popescu for having encouraged us to publish this note, and for a long time of initiation in the Mathematical Trues.

Departament of Mathematics,

Civil Engineering Institute, and

Institute of Mathematics,

University of Bucharest,

Str.Academiei 14, Bucharest 70109,

Romania

REFERENCES

- [1] N.Jacobson, Abstract derivations and Lie algebras, Trans.Math.Soc. 42 (1937).
- [2] N.Jacobson, Lectures in Abstract Algebra, Vol. 3,
 D. van Nostrand Company, 1964.
- [3] S.Lang, Algebra,
 Addison-Wesley Publ. Comp., 1965.
 - [G1] M.Gerstenhaber, On the Galois theory of inseparable extensions, Bull.Amer.Math.Soc.70 (1964), 561-566.
 - [G2] M.Gerstenhaber, On infinite inseparable extensions of exponent one, Bull.Amer.Math.Soc.71 (1965), 878-881.
 - [OS] M.Ojanguren, A Note on Purely Inseparable Extensions, R.Sridharan, Comm.Math.Helv.44 (1969),457-561.