TUT | ' ' ~ INSTITUTUL NATIONAL
“ INSTITUTUL | NST |

DE i ' PENTRU CREATIE
MATEMATICA - e STIINTIFICA SI TEHNICA

ISSN 0250 3638

STABLE RANK OF CX—ALGEBRAS OF TOEPLITZ OPERATORS
: ON POLYDISKS

by
Gabriel NAGY

PREPRINT SERIES IN MATHEMATICS
No.66/1985

BUCURESTI i }U’ﬁﬂ/



e

s’

STABLE RANK OF C*-ALGEBRAS OF TOEPLITZ

OPERATORS ON POLYDISKS

by

Gabriel NAGY*)

Novembne - 1985

)
* Depantment of Mathematics, The National Institute 4or Scientific and

Technical Creation, Bd.Pacii 220, 79622 Bucharest, Romania.



STABLE RANK OF C#—ALGEBRAS OF TOEPLITZ

OPERATORS ON_POLYDISKS

by

Gabriel NAGY

o

In [3] M.A.Rieffel introduced the notion of topological
stable rank for Banach algebras and obtained some results
concerning this invariant for Cx-algebras.

R.H.Herman and L.N.Vaserstein show in [ 2] that the stable

rank introduced by Rieffel coincides, in the case of Cx—alqe—

“bras, with the usual algebraic one.

Since for commutative Cx—algebras which have a manifold
as spectrum.the stable rank can be recoveféd from the dimension
of the manifold, some of Rieffef?results.formulated in terms
of ideals, quotients or crossed-products (which we shall use
here) are generalisations of weil—known facts from classical
dimension theory.

In one example from his paper Rieffel.shows that the stable
fank for the Cx—algebrafy’of 1—dimensional'$éeplitz operatorg
(i.e. on the disk) is equal to 2. This result seems to suggest
that the algebra‘}ﬁ, viewed as an extension of khe algebra
¢umr) of continuous function on the 1-dimensional torus, is a
sert of a ﬁnoncommutaﬁive disk".

Here we show by stgdying the stable rank for Cx—algebras

iy; of n-dimensional Toeplitz éperators (i.e. on polydisks)



that this image of a noncommutative disk fails at the test of
“tensor products, in the sense that the stable rank for the
algebra Cr; (which is isomorphic to the tensor product of n
copies of 3') is not equal to the stable rank of the algebra
of continuous functions on the n—polydisk., but is close to
the stable rank of the algebra of continuops funcions on the
n-torus.

The paper has two sections.

The first one contains the notations ;e use and some
preliminary results which aré due to Rieffel.

The second sections contains the estimates for the'sta~
ble rank of the algebras (Y;. Oﬁr determinations are precisé'
for even numbers n and with approximation of 4 in‘fhe odd case.
~Wé obtain more than this, naﬁely some evaiuations for the
stable rank and connected stable rank (in the sense of [3]) of
the  tensgr product:of ‘the algebras S; wiﬁh a-eclass of commu-
tative Cx—élgebras (0of continuous functions on multidimensio-
nal torus).

‘ I would like to express m? gratitude: to Professor

Dan Veiculescu for the useful discussiens In weiting this

paper.

We begin by recalling some definitions and results fromiﬂ}
For a unital Cx—algebra;A and a natural number nf}i we

consider



o ._ n - - B —_
Lgn(A)~%}a1,...,an)CZXi 3b1,...,anLA s.t.b1a1+...&h%1%}

For any Cx—algebra A we denote by X,the Cx—algebra with
adjoined unit. '
* :
We denote by ’S; the C"-algebra generated by the Toeplitz
operators T? , with- continuous symbol @ on the n-torus
-~ ‘ , . :
= {(zi,...,zn) € Cn] |21]é...=1zn}:1.}.actlnq on the Hardy

2("E”n). It is well-known that we have an isomor?hism

TH‘:T@ S @3’ ‘where TAstands for (5; .

n-times

space H

We denoty by XK the Cx—algebra of compact operators on a
separable Hilbert space. Then we have Tr= {?‘f +Klag€C(7r),K€}L}
and defining p:3{~¥7 CET) by b(T? +K)= ¢ one obtains the

Toeplitz extension (see [1]), namely the exact sequence

) At eni DG

For a CX—algebra A we consider the topolegical stable rank efAA,

defined in [3], as. the deast integerin 74 (@n ease it does not
exist we put oo) for-which Lgn(g) is dense in A" (if A is uni-
tal we can replace E'by A). According to EZ] this number coin-=

cides with the usual stable rank of A, denoted by sr (A) which

is the least integer n71 (if it does not exist it is again

taken to be oo ) such that for any (ai,...,en,an+1)€ H%H{(A)

s sEhere-eiist bi,...,bne A such that (a,+b,a ..,an+bna ) &

4= A Rl

élgh(A) (if A is unital we can replace A by A). For a unital

n+1

Cx—algebra A we denote by GL(n,A) (respectively GLO(n,A)) the
group of invertible elements of Mn(A) (respectively the connec-
ted component of the unit in GL(n,A)), for amyam 4. “Por a

Cx—algebra A we denote'by csr (A) the connected stable rank of A,

defined in [3] as the leastvinteger nf}i (Lf it does not exist



put csr(A)=o0) for which the action of GLO(me) on Lgm(g)
is transitive for any myn. This actioh is by leftvmultiplica—
tion, considering Lgm(33 as consisting of column vectors .
According to Corollary 8.5 of [3) csr(A) is the least number
n such that Lgm(X) is)connected for.anyln}rL (Bgain if A is
unital we can replace A by A).

We introduce the notation msr (A)=max (csr (A) ,sr(A)) for

any € —alqebra A.

Corollary 4.10 of [3] shows that

2) msr (A) &sr(A)+1 for any Cx—algebra A

By Theorem 6.4 of [3] we have

f T it s(B)ed
(3) srA@K = {

2 if sr(A)#1

REMARK. From inequality (2) it follows that for any

stable Cx—algebra A we have msr(a) £ 3. An obvious conseguence
of Theorem 7.1 .and Corollary 8.6. of [3] is that,; for a unital

Cx—algebra A, we have
- (4) o msr (A @ C(T TS sriz)

If J is a closed bilateral ideal of the Cx—algebra A,
with our notations, by Theorems 4.3, 4.4, 4.11 of E3} we

have
(5) mak(sr(J),sr(A/J))ésr(A)émax(sr(J),msr(A/J))

An easy consequence of the definition is that fer any two

Cx—algebras A and B we have



(6) sr (A @ B)=max (sr(A),sr(B))
EromiProposition 3.5 of [3] we have : ®
(7) sr (K) =1

Example 4,A3 of [3] shows that
(8) sr(T)=2

4, DROPOSITION. Let n be an infeger, m 721 dhen

01 : 2n

(@) sr(C (T ) )=mesE(C T ) )=ngl

2n-1

(10) n=sr (C(T Il merlc T LS

PROOF: We shall apply Pronosition 1.7 of [37] which states
that for a compact manifold X we have sr(C(X))={éi%w§] + 4
where by [1 we denote the integer part. This formula leads

to the equalities

sr(C(Trzn))=n+1 and sr(C(iTzn_i))=n

Thie: 'second part of (10) follews frem (2) . To prove Ehe

second, part of (9) use C(T2 M= c ("™

) @ C(T) which by

(4) gives msr(C(7T2n))é'sr(C(rfzn—i))+1=n+1.

IT

We begin this section with some formulas similar to

(5) and (6), but concerning the connected stable rank.

2. LEMMB, Let A~B be Cx—alqebras and J a closed bilateral

ideal'of A; Then



(1%) csr (A ® B)=max{(csr(ad), csr(B))
.(612) csr (A) £ max (csr (J) ,csr(A/T))

PROOF; (141) is obvious. The proof of (12) will be along
the same lines as Theorem 4.11 of \3] With no léss of gene-
rality we may suppose that A is unital. (this discussion is
made in Rieffel’s paper). If max (csr(J), csr(A/J))= o
inequality -(412) is trivial.. Let us suppose that
max (csr (J),csr(A/J))=m L. Take n7j m. The.natural surjec-
tion A —> A/J will be denoted by A > X i— % = A/J and the same
notation will be kept for the surjection N (B) == M (B/T) .
Choose (a

qree

% ,an) € Lg, (A). Because n Jcsr.(A/J), the exists
G, € GL® (n,A/J) such that '

a,l 1

= 0

GO. . = :
an 0

G,s being in cLl (n,A/J), has a lifting G ¢GL°(n,A)) .(i.e.
G=G_) .

The property of GO can be rewritten as

a‘l 'l
5 0
G =55 ° é‘ Jn 7
] 0
n

so there exist j,l,...,jne_-J such that



a,1 'J,l+i

i
G. : = é
4 Tn

>

The left action 6f GL(n,A) on Lgn(A) takes Lgn(A) into itself

as shows Proposition 4.1 of[3] , and so
(j,l""lr j21° o Ijn) G.Lgn (A) -'

Now if C is an arbitrary unital Cﬁwsubalgebra of A we have
Lgn(C)=Lgn(A)f}Cn. (Indeed, the only thing to prove is that
Lgn(A)f\Cni;Lgn(C) and this follows from the fact that
(ci,...,cn)G_Lgn(C) if and onlyif Cici+"'+?ncn is invertible
in C or, eguivalently, in A).

By this remark we conclude’that
& '1 x g > ~
(G qb ,32,...,7n)Gan(J)

Because n7csr(J) we can £ind HEGL® (n,J) such that

Do
Jo 0

M o =
1 0

and so

a{f1 / 1
0

HE . : =
a 0



}“\f;\‘*\\\\\\;\\é—\-\_ﬂ_\\M ,j ; A8’ ke

and because HG 6;;;7;75>\it follows that GL®(n,A) acts trasi-

* tively on Lg_(a), this proﬁefty\?aving place for any ny m.
This shows that m7 csr(a). \ﬁn*\\
O.E.D.

We shall work later with "msr", so we combine this lemma

with (5) .and (6) of Section I and write shortly

(43) msr (A @ B)=max (msr(A), msr(B))
(14) ms (L) Smax (merld), mse(@/T))..

To obtain estimates of the stable rank for the algebras
of type Tilgg C(Trks we shall COnsidef some exact éequences
similar to = (1).

Let us define inductively the following sequence of
ideals of the algebras ‘I;. Put J4=J( end I 0 S+

‘+Tn®}<_ for any njd. '
Assuming that I is a closed two-sided ideal of :T’ '

n

Jn+1 will be a sum oﬁ two closed two-sided ideals of fr;+1

and so will be itself such an ideal.

3. LEMMA. For each nfyi we have an exact sequénce

: pn . n
(@5) 0 e ;Tn —> G ) —=0

PROOF : We proceed by induction. The case n=1 is mentioned
intSection I (1) Suppose that for n we have the exact sequence
(@5). Tensoriﬁq I"term by term" the exact sequences (1) and
(A 5) - with éuitable Cﬁ—algebras (all of which ére nuclear) we

obtain the following three exact sequences



p, ® 1ldr-

0 =3 @F—TF , 2T TH @T— o
: el :
0. =2J .8 "K"’*”“'Tn @K ———-r-3‘-~—~—~—$5~~-~=» c(ThH @K~ 0
14, . 0. ®p '
‘ G ) ,
0 —> MK~ oY &F = D) & o

»;/

Defiivie B gt g c(g™ @cm by

P +1=(1dc(,ﬁm) ®p) o (p, ®ld ) =p,, @.p

~7
Pn+1 is obviously a surjective #-morphism and because the

second of the three exact sequences is actually a Urestrickion’

of the first, we have

~ e ~ =1 : =
Ker Pn+1—(Pn(é’ldj’) (Ker(ldCCVJU ®P))=

2 -1 S _ : g =
-(p, ® 1407 (T @V=7, ®T+ T, BKIp4y

and so we obtain the exact sequence
v"\J

D X :
3 £ hetk 3 et
o> —sF o, I Lo ecEl 0

~ "
Finally we compose P_., with the isomorphism
! €

St @ O = ST - D

The following lemma will be useful for computing the

stable ranks fdr the ideals Jn

4. LEMMA. For any n7/1 we have an exact sequence

(16) 0 =3 @K —> dpy —> 0, ®@CM) ® €T @K —> 0



PROOF: Again we tensor "term by term" the exact sequence
(15), from lemma 3, with suitable _Cx—alqebras and obtain the
: ; ®

following two isomorphisms

e /o @Ko ool
T, XA, @K =c(TH @K

-
since J_ 1=J}1Q§qr4-jr1CjJ{, the only thing we have to remark

+
is that W@ TIOT ®@K-7 ©K .
; Q.E.D.

5. PROPOSITION. The ideals Jn have the following proper-

ties:

(A7) msr (J ) &3 for any n)

(18) msr (J_ %) C(‘"u”k))g 3 for any n,k 1.
Furthermore

(149). msr (J,) £2,

(20) msr (3, ® C ()% 2

(21) msr(Jz‘) 42,

PROOF: We proveA (17) and (18) simultaneously by induc—
tion of n. For n=1 (17) is trivial since J,1=K and by the
remark preceding Proposition 1 we will have msr(J,l) L,

(48) is alsb trivial since J, @ C(".Wk) is also a stable
Cx—algebra. Suppose _(17) and (18) hold for n. Using Lemma 4

and (13), (44) from Lemma 2 we get the inequality



: msr(JnJri) émax(msr(Jn R X , msr(Jﬁ@C(’ﬁ‘)), msr (C (T) @ X))

Since the Cx—algebras I & K and C(‘"ﬁ“n) ® X are stable, their
msr’s are not greater than 3 (by the Remark from Section I},w.
The only thing to app}y is now the inductive hYpothesis,
namely (48) for n, and what follows is inequality (17) for
n+1.

To get (18) for n+1 we tensor the exact sequence given
by Lemma 4 "term by term" with C(’-ﬂ"k) and obtain the following

exact sequence (modulo some obvious isomorphisms)

k

090 @ C ) @K""PJn_i_,l@c(’ﬁk)__.}(Jn@C(;nk-{-fl)) ®

®(C(.«U11‘l+k) @I‘Q =50
and by (13) (14) from Lemma 2 we have

msr (7, ® c(TX)) & max (msr @, ® (T @X), msr @, ®c(”"‘k+f1? W

n+k

msr (€0 - ) G K

Using exactly the: same arguments as before we get. (18) for n+i.
To prove the additional'propérties M9y a@2a) (24) let us
remark first that by (7) of Section I sr(X)=1 and so by (2)
of Section I mér ) £ sr ) +1=2, thch proves (19).
The proof of (20) uses the samé arguments because by
(10) c.)f Section I we ﬁave st (C(T =1 and by (3 of Section
we have sr(}{@C("ﬂ"))=’l. Finally, to obtain (241) we shall

write down the exact sequence given by Lemma 4, modulo the

isomorphism K@K =X, )that is



(22) 0> K>J, - XK®C(T)) ® C(T) @K —> 0

By Lemma 2 (43), (14) it follows that

msr (Jz)émax (msr (JO ,msr (K& C(T) ))42

6. THEOREM. The sequence of Cx—algebras. (Tn)n‘}i

the following properties

L
(239 sr(uzp)—msr\( 2p)_—p+1 for any p1

£ 3 ' ‘
(24) p+izsr(y2p+‘l msr(qz g <..p+2 for any pZ‘l

(25) sr((yn & C(Tk) ) =msr (Tn & C(""ﬂ"vk) )_%}5+1 foriany n, kv 1

such that n=k (mod 2)

26) B (or (T @ (TN <mer (T @ ceTh))¢ niked

for any n,k 7/1 such that nf/;t“{ik (med: 2),

PROOF: Using Lemma 3, one inequality from (5) of Section I,'

and (14) from Lemma 2 we get
Sr(C (Tn)')'é sr (’Efn)émsr (Tn) < max (msr ), o ™))

For n=2p using Proposition 1 of Section I we obtain

o

f( 2 s 1 7
p+1 £ sr( lzp) Cmsr( J2p) smax (mseldo e el forsany o

Since msr(sz)fgp+’l (this follews from (21} for p=1 and

(17) for p7/2) the preceding inequalities imply (23 )'.,
For odd numbers n, n7,;3 we obtain by Propesitien 4 of

Section I p+1&{sr(¥ )(msr(/r2 ) £ max (msr (J 5

2pd 2p+'l

msr(C (:’U"‘Zp-f-ﬁ) ))

s



By Proposition 1 of Section I and by Proposition 5 we have

max (msxr (J

il - ;
. ,msr (C (T “P )).)i\max(3,p+2)=P+2

for any p 71 which gives the inequalities (24).
Tensoring "term by term" the exact sequence from Lemma 3

with C(T?k) we get the exact sequence

b =>1 @S T @) - e 1> 0
and as before we infer

. + . : ; ‘ -
sr (T2 )12 50 (T @ (T51€ wsr G p@ ety &
£ max (msr (I ® C (T%)) ,msr (€ (TP)))

For n=k (mod 2), or equivalently if n+k is even applying

Proposition 1- of Section I we have

n+k

B e (T @ oM S mes (T s@ el <

. +
< max (msr ( Jn® el Tk __m_n k+1)

Now by Prb?osition 5 (if n=k=1 we use (20)). we have

n+k n+k

i

max(msr(J}lég T )), +1 and so from these inequalites
we get (25).

For nﬁ%k (mod 2) arguing as before we have

ln+§+4§ Sr(?en<g{C(TTk))- msr(<yn_§§(3v‘ g

Ntk ))

< max (msx (3_ @ C(TX), msr(c(T

- + ,
< max(3,n §+3):n+§+3

and so we obtain (26).
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