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CQHEN—MACAULAY NILPOTENT STRUCTURES

by

Nicolae MANOLACHE

This paper deals with multiple structures on smooth varie-
ties as support, embedded in a smooth variety. It was . inspired by
[2], where several constructions of nilpotent structures are pre-
sented, which led to the classification of nilpotent curves of

small multiplicity in threefolds (e.g. curves of degree 4 in PB(C))\

These constructions were already used in several works (e.g. {3],

il el . ' .

The "new" idea here is to use the frame of alqebraiq linkage
(HehEn UZ]); like in X6), where a method to double a structure is
described. For the case of curves, the main observation is that &
kind of algebraic linkage can be considered, such that the curve
which plays the role of the "Union" of ‘two. struectures neéd-ﬁot be .
localiy complete intersection, but Cohen-Macaulav.

If ¥ is a Cohen-Macaulay structure on a smooth variety X,
gmbedded in a smooth variety P, and E is a vector bundle on X; then
the kernel of a surjective homomorohism IYf“?E (where IY is the
ideal of Y in P) is the -ideal of a "thicker“ Cohen-Macaulay struc-
ture 7 on X. Lemma. 2 shows that all Cohen-Macaulay structures on
a union X of smooth curves are obtained aéplyinq succesively this
method, taking Bils VGCCOI pundles on the irreducible components

of X. The same fact, proved here by linkage, follows also by what



is called in [21 Cohen~ﬁacaulay stratification. We mention that
we found it. independently.

When the dimension is greater than 1, not all Coheﬁ~Macaulay
nilpotent structures can be obtained with this method, the first
example being already with multiplicity 3. The main result of thie
paper is that all locally complete intersection SEructures. up o
mukEiplicity 4 on 8 smooth:-X are obtainable like above, so that
they are given by the sane (or similar) coﬁstructions as those
»described bv Banica and Porster for curves {cf. [2}). We describe
also all multiplicity 3 Cohen-Macaulay structures on smooth support.
However, we note that the ekistence of certain multiple structures
reguires rathér stroﬁg topological conditiong, and 1t is not. an
easy task to give "interesting particular cases" (aélfor instance
surfaces in p? - cf. [8\, [S}f.

The results of this paper were obtained some years ago in
paralel with working on multiple 5 and 6 structures on a smocth
curve B as suppont, and they were presented at the 'INCREST Seminar
on Algebraic Geometry. .

I express my thanks to C.Banica with whom I had useful
discussions on the subject and who stimulated me to study fuprther

muiltiple structures.

In the fellowing P will be a smooth algebraic variety over
an algebraically closed Fieldalk, If‘Y is a closed subscheme of P
we shall denoteX%TXthe‘ideal of Y in P, Clased subschemgs oF Pn
dimension 1 (resp. 2) will be called curves (recp.. surfaces).

In this section, using an adaptation of the definitions

from {jZ], we present some general lemmas.



17 Y2 two closed subschemes of P. We say

that Y1, Y2 are locally algebraically ldnked (ehortlyy- Loaclo) ks

REINTTTON 1. het ¥

(#2) Y1, Y2 are equidimensional, without embedded components;
{2} there exist ap eguidimensional 1.¢:=i1.. (ise.locally com-
plete intersection) subscheme Y of P such that:

(2) IYZ/IfHomO HasiER s

P b= ik
(B) IY1/IY:HomOP(()Y2' OY)

REMARKS: 1) It follows from the definition that dim Y=dim Y1:
=dim Y2:d. ’
o) 1€ . d=1 then the condition {1} is equivalegt to "Y1, Y2

CiMiseurvest il e .Y Y2 are locally Cohen-Macaulay).

1 4
3} If we take Y an equidimensional l.c.i: subscheme of. P

and Y. a C,M. proper subsgscheme of Y . with dim Y =dim Y, then the

1 : 1
subschemne Y2 defined by (A} is C.M,. and Yi, Y2 are l.a.1.
4). In the assumptions of the definition, with YT"YZ €M,
we have the exact sequences (dual to each other):
-1 Lt
e ‘el -
(1) 0—w, Qwy, 0, o 0
1 SEE

which can be written:

: g S g ] )
k) 0 ’ IY/IY.IY_. . Y./IY.’[Y. el @ L~y D

4 1 deid) J

where L.=UJ”1\Y,
J Lot

4) Ferrand method of doubling: taking Y1:Y2 and g-surjectiocn
paldlke pj fno (2) . then ¥ given. by (2} .dis locally Gorenstein (by &

lemma of Fossum), hence l.c.i. if the codimension is 2 (cf. L6X)t

5) From the. exact sequences (1) one obtains the exact se-



|‘ bt i ——ls Ry * ARGt
G125 0 ”ij “f’OY ve OY o 0

and then:

26

’l A
3 H .} —» Pic Y —== Pic Y. —> H
=l (350 — o j

When supp szsuppaY,'then Ij:IY /IY igwa nilpotent ideal in

Oy<and, like in Kj}, we have the following

LEMMA., If 72 is & subscheme of nilpotent-ddeal T in ¥, dim Y=1

and:\J ds the kernel of the map of the sheaves of multiplicative

Li-n

groups 0§ OE . then H E) .

Ao it is-wery well known,if char k=0 (or i ehar k=p and
Ip=0)5then Isj by exponential (respectively by truncated exponen-
tial) - feor any dimenéion O F Y Al particulaf, It IZ=O then x »1+x
gives I=J .

6) ‘If ‘we take YeP only C.M. instead of il catiand Y1CY like

at Remark 3 then Y2 def ined by:{A)  (we shall sall in the foliowinq

2
cally it -has depth 1).

Yolithes Fesidie s of Y,l 1% is-no longer C.M. in geneval {(but lo=

LEMMA 1. Let Y,Y. be Coehen-Macaulay curves embedded in a

1

smooth variety P, Y1 closed proper subscheme of Y. Then the resi-

\

due YZ of Y1 in Y is.a Cohen-Macaulay curve.

Proof. The guestion is local, 80 that we can take A, A,I M

local rings of dimension 1, A, quotient ring of A by an ideal 11

e
and consider A, defined by (0: 11)A:I°' Then. it ds an-easy excer-

cise to show that a nonzero divisor in A is nonzero divisor in
YA e
/ 2

COROLLARY . If Y is a Cohen-Macaulay curvejnonreduced, then

there are two proper subschemes Y1, Y? of ¥ of dimension 1: and

’



a Cohen-Macaulay OY -module, F?such that we have an exact sequence:
1 :

DEFINITION. If we have the situation from the above corollary

v

with P=(0s 11)0 we say that Y is a linking curve of Y1 and Y7

tinthis erderl):

.REMARKS: 1) Given Y{y Y, it ds . not true’dnatea linking -curve
does exigt or. that it is unique,
2y TE- Yodsaa s binking eurve of Y1 and Yz and Y- Is-dlee.d. then

it is also a linking curve of Y, and Y,.

LEMMA 2. If Y is a Cohen-Macaulay curve and X is a smooth
irreducible component of YredﬁY#X,then there is a Cohen-Macaulay
curve ¥'!' ("less nilpotent" along X): and a wvecteribundle E on X,
such that IY is given by an exact sequence:

0%1,/_._ T ,/ . —% E—=0
R XU I T, .
or, equivalently:

0—E —7 0, —% Oy, =y

Proof. This is lemma 1 with Y1=X'smooth, because (0: IX)OY:
:Homo (OX7C§) 185 a s Oynmodule of dimension 1} hence locally
Y % .
free.

REMARK. Lemma 2 gives inductively, in principle, all C.M.

structures on curves whose support is a union of smooth curves.

(It can - be used directly to produce, for instence, triple struc~

tures on a line in @3ﬁdescribed fipeblysdin [7)). Nemely, & X'

is a Cohen-Macaulay curve, E is a locally free sheaf on a smooth



curve - X: and pzly,/ > ébsurjection, then the kernel of

e

= +E defines a C.M. curve Y.
Iy, \7IY"Aﬂ}fF defines a C.M. curve Y
Applying this succesively one reobtains the known fact

that the multiplicity mX(Y)=m(C§ m):zthe mualeiotiéity of the loea |
. E :

Ting OY -

is constahtwith_respect ko xe¥,itor anw.C. .M. striucture
¥ 2

on a smooth X. We call @éY):m(Y) “the mutliplicity of Y" and when

WY )r=2, 3 etc. we eall- ¥ a double,triple (and se.on) structure on o

DEFINIPION. TH ¥, Y1 are C.M. equidimensional subschemes of

P and the residue Y, ovK1 in Y. is CoMeoiwe way Ehat vV e g linking

scheme of Y1 on Y2 (inthis ordexr).

LEMMA 3. Let Y, YT’ Y2 be C.M. equidimensional subschemes of

Py -such that Y1, Y2 are closed proper subschemes of Y, of dimen-

sion dim Y. Then Y is a linking scheme of Y, and ¥, iff the fol-

lowing conditions are fulfilled:

{a) the residue of Y1 ineYeidis O oM.

(c) mp(Y):mp(y2)+mp(A1), where A1=(O: IY1)OY

Proof. Let Y] be the curve defined by the ideal AWC'OY' From
v ) for any = and from (a)

2
):m(O
iEa

(a) Yé ig.C. Mo cfromeate)  mi O
Yé is d closed subscheme of Y2. It Foldows Y2=Yé.

Y. ,x

COROLLARY. If Y1, Y7 are Cohen-Macaulay equidimensional sub-
schemes of P such that they are closed proper subschemes of a l.c.i.
(more generally Gorenstein) scheme YCP and:

EEL s
g

(9 - =
£2) mp(y) m

¥

o

p(Y’l)'an(YZ)

then Y is a. linking scheme of Y1 and Y?.



Proof. In thisicase AﬁﬂiQY & L, where L is invertible on
: 1

Y, and then m_(A,)=m_(Y, ).
1 p 1)

REMARKS: 1) In dimensions greater than 1, even when the
support is smooth, it is no longer true that all G M. nilpotent
structures. Y are'obtained in a process described by exact sequen-
cess

0 W»IY1/I§ wﬁ~IX/;§ B 0

e <
Q=i tiie Sl / B e
leyr Yy IXIYr e

where E;i are Veétor bundles on X orEdl o gt and Yt+1:Y'
For instance, if X=plane, P=P4 take'IX:(x,y) and u,v,w the
homogenous coordinates on X, then IY=(w2x2+v2(ux+vy), wzxy~uv(ux+vy

N

2

w2y2+u (ux+vy) , x3,x2y,xy2,y3) defines a triple structure on X,A

which cannot be obtained like above:

We call those C.M. nilpotent structures on a smooth X which
can be obtained like above, nilpotent structures of typé T,

2} As we are interested mainly in l.c.i. structures Y and
for them we want to know also the duaiizing sheaf, to the éxact

sequence (3) and thée lemma under it we must add the computation
of <JY\XB

LEMMA 4. Let YO be a linking scheme of equidimensional C.M.

schemes Y1 and X, -where X ies rvegulagr. If Y ds-avdic.], stheme

containing YO (locally) and dim Y=dim i then wYA\Xi(IY:IYi)/

{i=0,1) . The linking exXact seguence:

/IY+IX(IY:IYi)3locally3

©

v\/
1A} —_— R —y B 2 ST
g . QY ) ®wx .
L O



gives, by restriction to X, locally, the exact seguence:

B ey :
L e e e Y\Y“’” @ Wy

Ry O
Proof. Straightforward computation.

LEMMA 5. If Y¢P is a nilpotent structure on a smooth variety
X, then mx_(Y) is constant with respect Lo eX (this censtant

will be-called-the multiplicity of ¥, denotad ).

Proof. Let % be the generic point of X. We show that

mij):mg(Y) for any x €X. We have surjections ()X’P*ﬁ Ox,Y and
0

< = OX % Dernote recpectively by R, B; 2 the complﬁzhions of

14 r

the above rings in the topologies of their maximal ideals; thus

we obtain surjections qi:R=%B; p:B —%.A,; where R and A are regulae

complete rings. Then R% k U;x o s ...\JX Ak Lu el ui?
S - 1 iR preeiel

and the map pg can be considered to be the natural projection.

Take s:A - R the section of pg which sends ujeA in uicR. Then,

"B being C.M, and: Bf having finite ‘length, it follows

uT,...,uz)
that fu.,...,u.) is an A-~regular sequence in B, hence B is Cohen-
i g =

—Macauley as an B-module., But A Is regular,-So that B is-A free,

- a d

B¥AE, Then B oo A =Ki(X)o and so m(B)=d=m(B€).

: Suly
THEOREM 1. If X dis5-a smoothVQarletV of the smooth variety

P and Y is a le.C.L. ‘ structare onc X o th w24 o then ¥

israp types TS

Proof. All is:done 1if '‘we show that the residue of X in ¥
is C.Me of type L. This is a local propertys fef any K€ Y we have
{ = =B definds (54
to show that Homg, })O Qx,l (Ol \ &0 x,Y efinds a

guotient of B of type E (here I:IX/IY). With the nmeotationg -from



: : : , 1\

the proof of lemma 5, we have surjections k=k EX et b ”,.,uy"%
] 1 Ll 1 Iy

'y B, B ~> k{1u1;000,u£% =A such that R -+ A 1s the natural surjec-

tion and take s:A =R the natural section. Then W Qﬁ:Spec B %
3

it
ni
ks

—+»Spec A=X is a flat family of p-multiple. points in Spec]<“xi,”.,x

p=m(Y). We shall compute all possible ideals IB=ker(R-7B) and
( Z.-)

show directly that (O:I)B=~i%iw§~ defines a C.M.  guotient of B,
o type L. 5

For this, one method ean be to compute the Hilbert scheme
Q{M of p-multiple points of Spec Szk[{£1,...,xgk (or, equivalently,
of p-colength ideéls of kiﬁx1,,..,xgm ) ~using the faet that-any
ideal.JcS of colength p contains m“} where m is the maximal ideal

of =8 (this can be prdved by induction on |, of: ild}); the exact

sequence’

J ) S
e 1 J
m m

shows that g{u can be realized aé a subscheme in the Grassmannian
of codimension p linear subspaces of A/mu , given by annulation
of- certain determinants. Then we can use the universality of éﬁi
to compute IB.

Instead of that we shall do the éomputations directly for
the family ﬂ~4?X, taking succesively p=2, 3, 4.

For this we need firstly a classification.of ideals of: co-
lengths 2, 3, 4 iﬁ S=kﬂ[x1,,a,,xw® PR k:C‘ahd n=2 these are
classifiea in [SX, but . they are not hard to do over any k, using
the observation that, in the terminology of this paper, any C.M.
structure on a closed point is of type I. As any k-vector space
Confains one of -dimension 1, for ény colength p ideal Y in S there

is. one of colength p-1,J' and an.exact sequence:
i



J
0 -9 =I5 =% =i e ke ()
md mJ " %

Thus, ideals of colength 2 are given by exact sequences:-

I
2 m
0 ~» —= ~— — =k —» 0
2 2
m m
: : ; 2
hence in convenient coordinates, J3=(x1,x2,...,xn)n

The ideals of colength 3 are given by.exact seguences

i i
: 3 2

0 = =i —y k —= 0
Mu 2 mJ >

2

St f o 2 -
hence J3~(x1,x&,..,,xn), or J3~(x1,x1x2,x2,x Xn)’ in conve-

yreser

nient coordinates.
In the same way one obtains changing conveniently the coor-

dinates; the ideals of colength 4:

el 2 sl 20
JA—(X1,X2,...,X“), J4—(x1,x1x2,x2,x3,...,xn) or

20D ;
o= { X et i ; [1C = ave a.ils
Jy (x1, 2,x3, ,xn), if char k=2 wa have also

i)
x % Kb

J4= By RptEay X3,...Fxﬂ)f

Coming back to our family Ej—wX, take firstly p=2. Then

the fiber Yd;Spec S0 (p over the closed point is given by an

o .
ideal of the form (X?,xl,..,,xm), eventually changing the coor=

dinates. This shows that around Y _ , X contains ddeals of . the
_ o = _
. 2 i3 \
rm . (x PR R T e TR wl > a, a cal & ates
form . ( 1’,&2 A% g 1B ta X ) » where a, are local coordinates
onfxz; this shows that I.=(x
Jt

__\,{\_) IS

5 XZ""’Xu)’ in convenient coordi-

nates. It follows (I , hence the residue is trivially

gl =L

of type T.

If-u=3,then YO is given by an ideal of the form

3 : = . : :
T'XW"”’Xu) (recall that we consider only l.c.i.) and the
same procedure as above shows 1B¢(x1,x2,.‘.,xn), iw suitable X

(x



2 ; o :
Then (IB:IA)=(X1,X2,..,,XH) defines a CJM. structure of tvpe T.
D 5n0)

Lf p=4, then the nontrivial case s IYoz(X1,X2,X3,...,Xn)
> 209
and for char k=2 also IYO”(X1X2, X +X2, X3,..5,xn).
Conciider T == - 2 e T el b o (x2+ax +bx +cx2+
YO PSS g B 1 1 2 1

D 8 2 S 3 2 2 o
2+Ex1+qx1x2+hx1x2+1x2, x2+Ax1+Bx2+Cx1+Dx1x2+Ex2+Fx1+Gx1 2
3

2

4 u>.
+Hx1 e . (X1,X2) ,'x3+a3x1+b3x2,...,xnianxT+bnx2), where

a,b,...,A,B,...,ai,bi are nonunit& in A=ki[u ,...,u—m and satisfy

+QX,IY Hex

l\)l\)\)

the equaLlonsof H@ around IY 4Or cqulvalently, are such that
B/po is given:bytanddeal:-of colength 4 in:R /pR o) /pA&LX1,..,Xg

for any p¢Spec A. Making the change of coordinates X =x.*a, X1+

! : 2 2
+bix2 (i¥3) we have IBﬂ(x1+ax1+,...,x2+Ax1+j... 3,...,X \ wglch

show that taking n=2 is not reducing the generaliby. 1f we consi-

der the matrix of the coefficients of x?, x?xz, x1x§; xg in
x1F1,x2F1,x1F2 7F2 EI (F1,F2\ , we see that it is invertible,
hence x?, §X2’ x1xé, Xz can be expressed.in x1, x2, x?, X1X2, x%
mod IB' Then IB can be written

IBé(x§+ax1+bx2+cx§+dx1x2+ex§, X§+Ax1+Bx2+Cx?+Dx1x2+Exé’, (xq,x2)4),
with A, b ,vi e i BB i new NoRnUnits Al aleea e i£ is easy to éee that

2
RpbE R ey Boi T B

+CX1X2, (x1,x2)4). We show now that aB-bA=0. Indeed, if aB-bA#0,

IB‘can be written in.the form: IB=(X2+ax +bx . +CcxX.X

then there is a p¢Spec A such that aB—bAép, hence the fiber of ¢

: : . : . 2 2
over p is given by an ideal (x1+Q(x1+@ 1 2+’{x2, x2+q x1+p A1X7

+K'X§)' not  of colength 4, We may then take F1, F2 of the form:

, where a,b have no

’

X

__,2 = - 7 e nd n s} 2 7
B, =X +e(dx 4bx2)+cﬂ1x2, Fz—x +m(ax1+bxz)+dx 9

{Fs 1 2 1

common factor. If both 1,m are zero, it is easy to see that (IB:IA)*

:(x2 xg) defines a C.M. stracture of type 1, Agsume, Lo

,][ X']er
make a choice, {£0. We show a=0. Indeed, if a#O, taking. the fiber

(&

over peSpec A such that a f%o the ideal of the fiber over p will
| e I{!_f z



i
£
(28]

i

: e 2, e 2 2 4 e
be of the form (x1‘ax1+bx1xz+cx2, dx2+ex1+fx1x2, (XT’X2) ) , where

‘a-is.invertible and d eor £ are not.zero. It is easy to see that

an ideal of this kind cannot have colength 4. Thus, IB=(X$+lbx2+

2 o 4.
+cx1x2, x2+mbx2+ah1x2, (x1,x2) ) and 1,b#0. Then we must have

d=0, m=0, because otherwise localiéinq conveniently we should have

Lk, dy omainvertible and the two.conics x?+lbx2+cx1x2=0, x§+mbx2+
+dx1x2=0 will not intersect 4 times in origin.
: SRSt e T
Thus, we have showed IB—(X1+ax24bx1x2,x2) and then
et : e 4 ' : 2
IB —(IB.IA)—(X1Fax2, X1X2,X2) is of type I, because (IB,.IA)—
=(x$,x2) which is of type . I. (In fact, if char k’2;
e 9 ;
IB_w(x1+ax2,x2), with a new x1).
sl T ¥ 22 T ;
Assume now char k=2 and IYO~(X1X2’ x1+x2, x3,ﬂ..,xn). Like
above, we reduce our computationsfethe caseyIB=(X1x2+ax1+bx2+CX$+

2 DD 2 2
+dx1x2+lx2, X1+h24AXTBX2+CX1*DX1X2+EX2,

(X1,X2)4) where & ,b iy B
are nonunits in A. With new coordinates and coefficients,

- . g 2 2 2 o2 9
IB—(x1x2+ax1+bx2+cx1+dx2, x1+x2+Ax1+Bx2&CX2

above we must have aB-bA=0, hence

4 .
+Dx§, (XT,Xz) ). Like

'=xf+x2

I 2

+m(ax , +bx +ex2+fx§)

R ST 25 2
F1~(x oA blax Abx ) hex SEdx 1 2) 1

=2 1 2) 1 2= 2

where a,b, if not zero, have no common factor.

Dividing by (1+e), F2 can be written, with new coefficients

;, where e 1is invertible.. Substituting x?
an& changing notations we may assume F1=X1X2+

where d is invertible and

: __‘Z
F2—A1

£ F into T
from “2€~IB into F

fm(ax1+bxz)+ex§

1

PR e SRoRE
+l(ax1+bx2)+cx2, 12~x1jm(ax1+bx1)+dx2 ;

the other coefficients are nonunits. Then it is pnot hard to:-show

; ] i 2 2 2
that IB must be of the form IB—(X1X2, x1+ax2, x3,...,xn), where
2

a 1s an invertible elément. Then I (x1, X

:I. = x2 ble X i)
BN 72 g A o S ST

defines a C.M. structure of type T.



§2. Constructions of mnilpotent structures

In this section we give constructions of C.M. nilpotent
structures of type I on smooth support X, embedded is a smqoth P,
mainly up to multiplicity 4 (this includes alljbac i “structures
wp multiplicity 4, by theorem 1) and a construction for a C.M.
structire of multiplicity. 3, nét of type I..Many of the descrip-
tions given here are essentially those from C. Banica and OForster's
paper [éX, butsy, soﬁe are mew, for -example 127 dei.2., 12,70,
in char=2. We shall present them briefly, without insisting on
aspects, as the dimensions of the families of nilpotent structures

we consider.

1. Structures Y such that the residue of X in Y is X. These

are obtained from exact sequences:

where @ is a vector bundle on X.

3 ro=tede alines bundiel{Thig ig Ferrand's doubling).

The exact sequence by which X, =Y is obtained can be written also:

e RO
_ X, %

We have W \ sty @ 1.”'  and the exact sequence:
X2 X X

Bl (1) - Pic X, —» Pic X—s e

; : 2
If xeX then the ideal I iscofthe Eopn a8 1Xyre e X Vs
X,X2 1 n
where x, are a convenient 'system of coordinates of X in xgX

bl e To=dx%

e e zcodim X) .
X 'Xn) Hoco HﬂmX)



l=ds Q=R 08 @ yector bundle of rank 2. One obtains triple
structures X,. The defining exact sequence can be written:

OBE oot wdx-myo
3

22 2
Local structure. IX,X3~(X1 or X

are convenient local coordinates around xeX.

,X, X

3’

SR where x.
%) ) .

= ) b 3 oV
By lemma 4, X3\X (UX(Q E

REMARK. When codimPX=2 then X3 is simply the first infi-

el

nitesimal neighbourhood, X

tads-Q ds-a vector bundle of rank g. Then Hthe codimehsion
of X must be at leagt g, the logal structure of Xq+1‘is of the

...,x ) and we have \X d ® 0

form (s v ai )iy
: 1 Xq+1

q Fqr1’

1.1.0. Here we consider C.M. structures ¥ such that the
residue of X in ¥ is of the type 1.7 above. They:are among those

which can be obtained from exact sequences

0 w»rIY/IXIxzu—a 1 2/IXIX2\—A? I — 0

where T is a vector bundle on X.
In order to separate "nonlinear" equation of XZ we consider

the kernel of the natural map I JI,1., —= IX/Ii which is

2o ih
IX/IXIX . Like in 2 , one sees easily that . the multiplication
2
2 : iz 2 N
map L dIX/IY ® IX/IX i IX/l I, 1is locally (hence globally) an

£ 2 )
isomorphism. In the notations from 1.1, L2 is generated by

2 :
x1(mod lXIX?
Lzaﬁ i 51‘1, —~» T, which is not zero, because otherwise in the
X2E X }\?
structure Y thus obtained the residue of X would be X and not X?,

). We shall make our discussion upon the map



fadet. T is- a - line bundle. Then T:LZ(D). Denote by Y3 the

structure of multiplicity 3 thus obtained. 1t dis given by an
exact sequence:

X

5] i Z 2

Sl ; P 2 ,
0 7£Y°/IXIX9-—-7 IXq/IXI s Ty (D)

where p dis a surjection such that 5o IX /IYIX ~,Eﬁ (DY dis
; ; ) ey

the natural inclusion.

Local structure. In convenient local coordinates, we have

(x2~Fx X.X x2
Y, n Y S ea 2

X3""’Xn) for ‘xeSupp D, where £ is the local . eguation of D in x.

I d.(x?,xz,..,,x ) in points xeXsD and I

3
=2
u)Y;\x L°®w,.

It follows that Y. is l.c.i. only when D=0. Lemma 4 gives

1.9.2% T is a vector bundle of. rank 2..Strgctures Y# of

multiplicity 4, given by exact sequences:

O~-—=~:IY /e

I —
- iy —> Iy /Tgly — T—>0

2 2 2 :
where p is a surjection.

Liocal structure. Consider firstly that L2-»IX /IVIX ~£1§ e
2

is the composition chd L (D)C;T’D being & diviger on X. {(If X is

a curve this havpens always). In a point xé'supp D, in convenient
s 3 -2
coordinates, I. =~ (%
4
T :J(x2~fx D Ko x2 XX x2 o sk 0 where Floisikle
b e % S T e R n
aquation of D in . It ds-clear that, in codimension 2, only the

X X o4

3,...,xn)'arid in a point xe¢supp D

First . cdase. can- eccur:

We note that W \Xﬁ‘nx @)TV only if D=0 (for D70 we have

2
. i .
that the kernel of the canonical map LJYA\X-ww < ol decconicentre
4

ted 4n the points of D.



: 2 ;
In general , the homomorphism L T s efarank 1.on an

open subset of X. Let V be the complement of it. In points XéV

3 2
sbrueture 1s of thef ~o(xD - 3 anc
the structure is of the form IT4* (hT’ x1x2, x2, X3,,°=,Yn) and,
o : S Somd 2 : 2
in a point x eV, IT4 (x1 £x,-gx4, X Xor XyXa, Xor XoXoy X3
x4,...,xn), o

1Teln 3 T.visa veector bundle of rank -3 (Ehissis possible
only if codimPX 36

One obtains structures Y5 of multiplicity 5, given by exact

sequences::

p
0 -1 S/lexz-—ﬁ I 2/IXIXZ._..“--:-? T — 0

where p is a surjection.

&;u
Local  structure. Consider firstly{when restricted to L2,

is the composition L2<«-L2(D)C-T; D being a divizer on X. In a

point xéSupp D, in convenient ceordinates IY Si(x?, X Xy XoXay
5
2 2 g .
- < + B ~
X x2x3, X5 .,An) and in ; point x € supp J'IY%

Xyre

2 : 2 : :
~ Z e T 37 5% L
__(x1 fxz, X %o x1x3, XXy (x2,x3, x4) A 5,...J?n), f being
® (‘Q(‘_OV\.L v
the local equation of D/filke above, consider(that p ig-of rank -

‘é\*\v——""—\"’
outside a smaller V. The structure is outside V of the form

ol

il =(x3 X 53X 37

2

i e Efra et araia el
o S e

IY5 (x1 fxz 9% 4 hx4,

(B e

Similax to T1.1+2, the canonical surjeekion LOY,\%aLOK & T
5 &

x4,,.,,xn)‘and in V of the form

2
Xa% KR X

XyXor XqXgy X X,y (“2, Xqy x4) ; X5’°“"Xn)'

v

has the kernel concentrated in the points of D.

| DS

Of course, one can continue thig types of structures, taking

greater ranks for T.

1.2.0.-In this subsection we.deal with struectures Z . such



that the Tesidue of x in 7 je of “the type 1.2,

among thoge which can be obtaineg from an exact Sequence:

Where M jg a vector bundle on X. Like at T30, we want "tp
Separate" the local €Quations "of degree 2l For this one take.
: 2 ; : 2
the kernel IX3/IXIX3 IX/IX + Which jig IX/IXIX3 « AEO compute
this, observe that the multiplication E® ECiIX/IX @)IX/IX =)
“7I§/IXIX factors through SZE; bl it B Surjective ang rank s4p.
: 3

=rank (I2/I o hence I2/I I ﬁZSZE. Thus - we have a cano-
2SN X3 X =% X3

nical map q:SZE-7M, which ig not zero (by the drgument uged

already above) ,

REMARKS: 1] the codimension jg 2/ E reduces always the
! Y

Conormal bundle V=1 /I2 1 because T =12
e X3 X

2 ). Ihn 82E we have the (geometric) subfibration given loca )%
1y by [&:{ae$+beTE?+ce§\b2~ﬁaczq}, it ej,e2 is any basis of g
(A dis the Subfibration of ”perfect Squares") - ws shall Organize

Our discussion upon A r like in [2},where'there 18 treategd the

(T a s a ling bundle on X that the imaée of
@:82E~ﬁ:M 35 of.the form MA=D):, where p 1S en effective.divizor
on X. Assume char k#2. Then K=kef% is-n Subbundle of S2E and
above g Point xex it intersects A In twe lines of in one line
(ices g is tangent EONJ o The locus of XeX above which L B

i

=two lines 1ig open. in X ang AX:{xeX\AYﬂszone line} is closed

D : ; : ; 2
given locally, i ¢ :8°g =¥ MI=M(~D) ig the application ?(e1)=€

4

Med 136850



W(eﬂez):m' %(e§>3n, by the équaﬁion m2~4fn=0.

gggﬁl structureg OCbserve that we can assume AX#X, be-

‘ srgen, = Gt

Cause jif Ayrx then in Points %¢D we should haye IZ of the

3 ; ;
1,xsz,x;‘,xys..,x ) and the rezidue of X in Z4 would pn

form (x
be of the type 1.2, Then Axis L Aivizor on X and the local
€quations of g&X show that ywe have AX=21Q7(M’)~C1(E)), or

‘deg.szz (deg M'~deg'A2E). In the pointg Hex, x#D, x¢A the

X

: : 2 2

ideal IZ4 18 of the fqrm (x1 aXTXZ’ x2 bx1x2, X3”“’Xn) where

a,b are Noninvertipje elements, 1¢ We Pass teiipn completion,
7R G 2529 ] : ol e

fhen IZ’X—~(X1,x2,x3,...,xn), in Convenient COOrdinates,

In points_xéD, xG-AX yin Convenient local coordinates,
2 2 e . S
o/ 5 e : c ¥
IZ ay (XT,X1X2,X2 in,XB,...,Xn), where f ;s the €quation of A:<
dn-ox
In pointsg xeD, X:¢AX ¢, in Convenjient local COOrdinatesg
2 22 .
Iz4i(x7x2 9%, x ax1x2, Esmbx, x X X '
where g jg the €quation of p In % and a,b are Noninvertibije
elements, 1f We pass to the completion{iX 7 18 with ney CoOr-
2 4
4
dinates, like above, but a=h:=0,
USSR = 2..7
In POintg xe»AX, X¢ D we have IZ «(x1 gx3, x1x2,
4
2 2
,’,

-x1x3, x2x3, X3, x4,...,xn), where g jig the €quation of

x§~fx

DAn % ang f that of Z&X

M) L (B0 an e, @, \xtﬁwx @ m”
4

. : o)
ﬁssu@g_ggy chgg»}:2. T locally q>;S“E~5M(~D):M' is given

?):a, %” %4€2):§, <§(a§):c then the locus of the pointsg

by (e
XeX where b2+ac:0 is'invariant and denoted in“the followinq AX'

Like above, we have IAVEZ(CT(M’)"CT(E;).



e
WO
!

Local structure. In the points x%D the ideal IZ is of

r) -~ "} 4
the formalaT- 20

Z4 1 Z,x1+ka2,x2,x3,,.,,xn) or of.the form
by T V.(x2+ AX. X, Xo+pux, X o e S X et the polnts
24” 1 e oE ) sl 2 i R s o e o =
x& A, in the first case’Q is invertible and in the second 1+ Ap

s invertible; so that 2, is lewc.disdn points x%D, x¢wﬁxa

If xeh

%7 then in the form a) } is the local equation of

A % in x and in the form b) this equation is 1+Aue Consider

now x¢D. Then IZ is .of ohe of the forms:
4
: D e e 2
a') (x1+gx3,x1x2,x1+Ax2,xz,x1x3,x2x3,x3,x4,..,fxn), or

bt) (D am e Sl i R Eb x2+ux X x2x % x2 S IR x2 X . sl
J= i TS ) Ep L e e T i R Gl

where X , respectively A, 1, have interpretations related to BIX
like above and g is the egquation in x of D. Thus we see that Z4

het rsen d o ra TR aB=0, A;X:O. A necessary condition for the existence

(@0 Bz o Bea e e 1 Z4 ig 246

=2
|\ 2
MZ41X Wy @ keraaclioaia. g

1(M)mc1(E))=0. By lemma 4 we have also

4
(B) Consider now that the image of LQ:S2E—ﬁ M is IC & M,
where C is closed subscheme of X. Then the local structure of Z4

is like above for points xéc and in the points ©f € it is-of the

form

(X2

]Tax4 X

1

2 2 0%
X2“b§3,X2“CX3,X1X3,X2X3,h3,x4,.ﬁ.,xn)

e : Do E ¥
Note that also now, lf.locally %(61)~€ ,(?(eqez)ﬂm, P(ez)—n,
then the locus where m2_4ln is zero does not depend upon the
choice of €41 €y

It is not difficult to describe other C.M. structures

e

taking M vector bundle of greater rank, but we shall not give

such details here.
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