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KK~groups of Crossed Products by Groups

Acting on Trees

by Mihai V.PINSNER

et G “be a locally comnact, second countable g£roun

that acts continuously on -some tree X . The aim of thig pa-

per is to exvress the KK-groups of the crossed products by

& (hoth full and'reducedd in terms of the ' XK-groups of the
érOsxed products by the stabilizer subgroups corresponding to
the-getion of ‘0" om X . This will be done by exhibiting

Six terms cyclic exact sequences for the KK-groups of the
crossed’products, which- for ¢ discrete,lare analbguous to
those of J.P.Serre [2%1 for the hdmolog& and cohomology of
G with values in a G-module W . '

The impetus to the present results came from discussions
with J.Anderson on hig joinf work with W.Paschke on the K-theory
of HNN extensions 111 , presented at the i Operator Theory
Conference in Bucuregti. I realiged that the methods used in
231 for the free groups, extena naturally to this general
setting. ' '

Since the computation of the K-groups Qf'redﬁced Crossed
products by free grouns in {237, important progress in the
understanding of the K-theory of discrete groups has been madeLﬂ

On one hand there is the avproach of G.G.Kasparov and
A.annes for certain discretelsubgroups of ILie grouns. They
emphasize the role played by the Iie group, by relafing the

spa

KE~theory of the subgroup to the XK-theory of the former.
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This method is effective for subgroups of solvable Lie groups
L47, 7 y for subgroups of Lorentz groups USl and devends
generally on the positivg solution of the Connes;KaSparov
conjecture.

On the other hand: there are partial results on the X-
groups of free ang amalgamated products ang of HNN-extensions
of groups,

Thus E.C.Iance introduced condition "A" , in order to
use the methods of {283 to compute the K-groups of the reduced
analgebra of certain free products of groups. This has been
extended by T.Natsume {201 to certain amalgamafed products
and recently, J.Anderson and W.Paschke [41 combined the
&bove results with those of L221 to get results for the K-
groups of the reduced C*_algebra of certain HNN-extensions.,

J.Cuntz introduced the important notion of X theoretio.
amenability to relate the KK~-groups of the reduced crossed
products to those of the full ones, in the hope that the.latter
are easier to compute. This is indeed the case for the full
Cﬁ—algebra otr. frew product»groups 0 (M bﬁf this does ndt
seem to work for crossed products by gueh groﬁps. The class
of K-amenable groups contains ﬁhe amehable groups and ig stable
under the operations of taking subgroups or direct and free
vroducts (%1 . Moreover G.G.Kasparov (151 ﬁroved that the
Lorentz groups 50(n,1l) are XK-amenable and recently P.Julg
and A.Valette (447 proved the striking result that groups
acting on trees with amenable stabilizers are KK-amenable.

The results of the present paper show that the methods

for computing the KK~-groups of the full and of the reduced



crossed products by groups acting on trees are in fact the
same, and closely related to the original methods of {23} .
The link with amalgamated products angd with'HNN~exten$ions

of groups is provided hy the results of y2%] y which identify
a discrete group acting on a tree with the fundamental group
of a graph of groups. (The graphs of groups with one edge

and one vertex, respectively with one'edge and two vertices,
vield HNN«@xtenaiops and respectively amaigamat@d products).
Let us also mention that due to the work of G.G.Kasparov
(R4 Y B page 36) the above mentioned results of this paper
have consequences for the strong Novikov conjecture.

The case whenh G dis arbitrary (locally compact, second
countable) seems to be completely new, excépt for the computa-
tion of K of the reduced C%—algebra of SLZ(Qn) done in T247 -
by using the explicit knowledge of the representation theory
of this group. The most'interemting examples seem to be
the reductive groups over local fields with one dimenéional

: ig

Bruhat-Tits building (3] . This¥another confirmation of Tits!

philosophy that the building is the analogue .of the symetric
space G/K , and sﬁggests the. existence of a theory, parallel
to that of Kasparov and Connes, with the building playing the
role .0f G/K .

The paper is divided into four sections. The first one
contains a brief analysis of actions of groups on trees and
the necessary definitions and notations. It is mainly an adap-
tion of the methods and results of P.Julg and A.Valette (447

to0. our purposes.

The second section shows how generalisations of the
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Toeplitz extensions of 1233 €en be naturally constructed out
of the tree X . We show that each subset of edges of the

fundamental domain of X determines two Toeplitz extensions

’W

(one for the full and one for the reduced crossed product),
As in [23] the exact sequences determined in YK~-theory by
these Toevlitz extensions yield the final results, Thig ie
done in the fourth section.

The third section is devoted to the computation of the
KK-groups of the Toeplitz algebres. It will be clear in the
fourth section that the total Toeplitz extensions(correspon-

J.

ding to all edges of the fundamental domain of X ) play a

special role, so it is enough to treat only this case. The
use of the equivariant Kasparov grounu }KC makes the proof
more natural and more general than that in {237 . Moreover one
of the needed homotonies is the one exhibited by Julg and
Valette in 1413].

Let us also mention that we get as a corollary of the main
results, a generalisation of the theorem of Julg and Valette
of T#] : namely the condition that the stabilizers be amenable
18 vedh ned to the condition that they be only K-amenable,

We have havily used Xasparov's eguivariant KKG~theory
(for'triviglly graded ¢ -zlgebras). The general references

for the notations and results used in the paper are 1423, 1o

Z}"

and 1441 . However for the exact sequences determined in KK
‘bf the Toeplitz extensions one needs the results as they appear
in L2%]

I am grateful tqQ J.Anderson for sharing his ingight on
this subject and fof providing me with a copy of J.P.Serre's

book {23} .



We shall denote by il (respectively by Xﬁ ) the set

of vertices (resp. of edges) of a tree. An orientation of
the tree will be defined by svecifying the origin and the

terminus of each edge yejxi, i.e. by a map

1, %% %O : y— ( o(y) , t(y) )

X
An oriented tree will be denoted Simplky by X . The
opnosite oriented tree will be denoted by XOD . It has the

seme vertices and edges as X , the origin and terminus of an

&
edge being reversed. The disjoint union Y = XTAL XOD is
called the set of oriented edges of the tree ¥ . Since qu
: 3 S S R T S 1 :
1s another copy of X~ , the identity map X" — Xon de~-
termines -2 map
‘{ . Y s 3." sy 3—]:

il

such that y # 5 and =y . The oriented edge ¥ is

called the inverse edge of vy . lMoreover the origin and ter-
minus of an oriented edge is well defined, leading to a map

(&) .
b IS e s s ¥ v GOk it )

t(¥) . Finally, the modulus of an orien-
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ted edge yeY is defined by

y 1l ye '}{1
[l e q
y At ey e X
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The locally compact 2roup

At s
acts continuously on both x°

G is said to aet on the

oriented free o X, 1Ff 0

and

LA A 5 - ‘ :
X~ (endowed with the discrete topology) and breserves the

orientation. This mezns that if we denote by

g (g,P) Vi D @ g

43

e X2 (g;;,f_,r') — 2V & Xﬁ‘l

1

: T 0 :
the (left) actions of ¢ on X and respectively on X ’

then

o(gy) = g oly) and tley) =aslyy .

Remark: It is well known that if ¢ acts on a tree,

then it acts

midpoints to the edges of the tree (barycentric subdivision)

so that the group acts without inversion y in which case one

can always find a G invariant orientation.

If G sacts on the oriented tree X y then it acts also

on X__. We thus get on the set Y of orien-

o an action of @&
oD 3 .

ted edges, denoted
GrY 3 (g,y) > gy e¥

which satigfies

t(gy) = g t(y) ,

glyl = levi,

also on an oriented tree. This is done by adding



for every geG and yeY . In particular the MAPS Y v—b ¥

and Ye—»lyl are G equlva%lmnt.

determines a map,

Definition 1. Every vertex PeX

8till denoted by P,

that sends each vertex QeX  , Q £ P s, to the unique orien-

ted edge P(Q) that satisfies

i) o(P(Q))- = Q - @na ' :

ii) t(P(2)) belongs to the unigue geodesic joining Q

P L]

m
=
o

R pone

We shall denote by P XO\\{Piawma Y the map Qs P(Q)

4 3 A :
: the map Q= {P(Q)] .

end by [Pl: X°~ §P} —» X
Remark The map [Pl was introduced by P.Julg and A.Valette

in L4111, The next lemma is egssentially due to them.

Lemma 1. 1) Thé mép X°~4PY3 0 v—» 1P1(Q) € X I8
8 bijection. Moreover Y is the disjoint union of the immage
df P and of the immage of P .

ii) The maps P and P agree on the vertices
that do not lie on the geodesic [P,P'].

dii) If o belongs 48 B, then

g(P(e2Q)) = (&)(@) 7 e(1Pl(g™2q)) = 1gPl (R) and

g(P{g "Q)) = (gP)(Q) . for every Q £ gP .
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Proofr- Part . i) . of “this lemma is obvious, while part

ii) and 1iii) follow from the fact that G maps geodesics

into geodesics.

Definition 2. For every PexX° we shall denote by

the intersection of the immage of the map P with Xi .

5 Fax
11l edges of XL That "podnt? to

g e
A §o)

[

>

: o St :
Thus &P congists of e

? 3 l.e. of those edges of X~ whose terminus is closer to

pau)

dd

P than their origin (with respect to the natural metric on
e
s i
: | 3 S PN e
Lemma 2., i) The sets £y and £pr differ by a finite

mumber of edsges (lying on the geodesic Lpopely.

ii) If g belongs to G , then g(X

Proof: Is a straightforward consequence of the definition

and of lemma 1.

i i e gt : R )
we shall denote by X the one point comvactification
) - o A B > & 2 5 - oy X
of “ £ Bar it will be more convenient to consider the
following two points compactification determined by the orien-

{Lu {-e,+0at . A fundamental

ot

tation ,'.K""L denotes the set ‘K
asvetem of‘ﬂeighborhoodg of +eoo is givan by finifte intersec—~
tions of sets ;Ptliaak , while é fundamental system of
neighborhoods of —@a‘ is given by the complement of finite

o

: : 3 Pex” : : S
unions of sets Kgcj{@QX{V‘. Note that if the tree is finile ',

then - o0 and + ©0 are isolated points.
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Definition 3, "“We shall dencte by C+(K“) the set of
?i>

continuous ‘Punctions fe G(X

that vanish at -o0 . Simi-
i e . e s = 5 ‘.R ..... % ‘ <
lepdy-if K is & Banach space, O (X ,B) will have the ob-

, Ay , ; il e L
vious meaning. It is easv to see that C+(A ) is generated
e ! '

by co(x )

= MR . : : ; < g
Lsuf{ec} , PeX . These latter functions will be denoted by

5

55 T
e

and by the characteristic functions of the sets

»

In view of lemma 2., it is easy to see that the action

of G extends continuously to %ﬁ by defining g(+00) = +o

¢

g(-e) = -e  for every gel .

Definiﬁiﬂn 4. For each oriented edge ye:f we shall
denote by X° the set of those vertices P ~such that y
belongs to the immage of the map P .

Thus X_ consists of those vertices P with the pro-
pert§ that ¥y "boints” to =P .
0 e

Lemma 3. 1) X~ is 'the disjoint union of L, and Yo,

e ; = O )
ii) If g belongs.to G  then g(ﬂv) = ng

Proof * Straightforward.

We turn now to the known connection (see [23]) between
groups acting on trees and graphs of gr upé. Inoprder o fix
the notation, let us- recall the graph of groups associated
o the action of G on: % . (Laa]d.:5:4

: : X s
e shall denote by ¢ the oriented graph BNE e, g

0 %
&9 = g\ - Z{L = G\””‘l



Neoie

with origin and terminus maps given by &
8(#) = oly) and. 8§ = Ly .

We shall also fix & lifting of Z . By this we shall mean

b

the following =

s S AR 0 s L : & g i)
1) We identify & ang. kg with subsets of X and

i X o AL 0 e 2 0
respectively X~ . (In particular we get maps X 3 Prn P e §-cC

g ; ‘
Gk and aveas Te z:iq Xl with the property that

o~

and P (resp. y &and §) are conjugats by

> v

I y

anselewent of G,
2

g s = i ‘
2) We fix for ezch yve X~ an element ¥ €G , such that

¥ ¥y =.5 ., ;
' ot B e | i fai g A
3) . ¥We fiw for esech v e by the edges Nosi ¥ e A

-
2
o

.

such that ' =y =3 and _t(yt), oy Jie ZP .
Remark Usually one takes a particular lifting of & Dby
A ; : : o

requiring that o(y)e £° for every v é Zﬁ‘, and that 3§

togethér with those vy e 2@‘ such that -both ‘oly) ‘and +tly)

: 0 _ :
belong 4o - ¥ be a subtree of X . 5

let GP (resp. G, ) denote the stabilizer of the wvertex

P (resp. of the edge y ). The graph of groups is then defined

ot

- - ; 2 S :
by Gy for Pe LO and- G for ye€ -2~ , with homomorphisms

q"‘) . G‘y Sty (;L(},f) = Gt(yt)
G”{; e fKV AR, (IS(}) UC)(:Y’O).

defined by



fret
it

240 o
G‘:r ( cé/) ) = X’ ol £ B’b é‘“"‘
J 'V» -tl B,‘r t
G- (g) = o ¥
¥ *\ O %y 0

for every gel .

We conclude this section with a final definition.

-

Definition 5. For every P & Z_ (resp. y'e Zn" ) we

shall denote by Xg (resp. X% ) the erbit-of P {resp. of

o : o) .

¥ ). Moreover, for every subset S of X Ceegne ot X5
! e 3
4 ) the sets N7 X

: : 0 ;
we shall denote by Xg (resp. X L P
Ped g

.
(resop. vy X% Yo

we shall denote the space X%\J j~eo,res]
with the induced ftotology.

By _C+(X%) we shall denote those functions fe C(X%)
that vanish at =« eo , and QQ S will be the cha ractoraotlc‘

h 2 3 = ) N o D
function of the set Xs 0 {”T,§J {*oa} (see definition 2.)
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In this section we introduce the Toeplitz extensions
for crossed products (both full ana reduced) by groups acting
on trees. First we shall prove some general facts about
crossed products of short exact sequences.,

Throughout this paper we shall denote by dg a fixed
left Haar measure on G , and by A : ¢ —> B  the corfespon«
.ding modular funetion. If 4 - is.@ C*~algebra ow- #which - @

acts continuously by automorphisms, we shall use the notation

of [l 2nd denote this action by
GxA 3 (g,2) > g(a) e A .

We shall denote by - Gw®A (resp. Gﬁ(rA ) the full
(resp. the reduced) crossed product of & by this acgtion of
G Elﬁl_, Reeall that if CC(G,A) denotes the set of conti-
nuous functions ks G vaiﬁ. - with compact support, then
one defines the involution and respectively the convolution

by

e R BT

‘ el
&

for every te G . If (z, U) is a covariant representation

on & (right) Hilbert B-module # po k@

rE : A —> Ef(g%) ~ 18 & representation of & 5
> &

G 3 g r—p Uﬁ e L(H) is a unitary representation of

G , continuous in the strict topology, such that



for every g€ G and aed , then we shall denote by 7rﬁ(k)&
=)

€ L(H) the operstor defined by

?Eg(k)§ = if Zlkis)) US(F }-dsn
> _
T, isa ;:s-ur@'pr@.sén‘taxtion of C‘C(G’,A) on‘ LK), that
exteénds to a x-representation (still denoted by 7CG } of the
full crossed product. If this representation factors through
'the reduced crossed product, we shall denote the corresponding
representation by zkhr" Similarlf sl 4 f i Ae—rp
is a G equivariant x-homomorphism, we Shall denote by fG
(resp. fG,r ) the induced map on the full (resp. reduced)
crossed products.
We shall also identify the multiplier algebra A (8)
with £(4), where A is recarded as a right Hilbert A-
module [42]. Following Lit] we shall denote the induced ac-
tion of G on A(A) also by gr—p g(x) , and we shall

say that the element xe JA(A) is G continuous , if the

map g —» g(x)  is norm continuous.
Recall also fron1[[24l 7;6.21 y that every xeu(4d)
determines a multiplier IL(x) of both GA sna Goc A

by the formula :
Limjkalt) = ikt

. A 4 { ooy B =
i.e. as an element of g (Gw A) (resp. g\(rmrﬁj Yoo Bl
acts on the dense subset C _(G,4) by the above formula.

(In fact, the above formula gives @ multiplier ofr each ¢ -



completion of CC(G,A) ). Moreover, the map X wa L(x)

i8 a %-homomorvhism. 75

:4.
1f £ i is & G -invariant (3,8 gl BleT  for everv

g& G ) closed two sided ideal, we shmll'identjfy (rth T

(resp. Gviri')' with & closed two sided ideal in G A

it

(resv. Gmﬁrﬁ ).
Lemma 4., Let

0 —» I 2p A Ly o/t —> 0

be an exact sequence of mealg@brag, Suppose that G acts
on' 15 A Bnd - BAF cend thet both i end 9 are G egui-
variant. Suppose moreover that 'q has & completely positive
cross section P with the following pfoperties :

There exists & G equivariant x-representation
P AT —» My (A) and a @ coﬁtinuous projection pe ALlA)
satisfying alp - glp)) & I for every aelhd ;, g& (G ,such

that

Then both sequences

1 ' q
" ("' sl G i Z5T, ‘
O = GXI ~——b GHRA s (XA/] —s O
nd '

.m j

im o Lo
0 —» 6% 1 0% an A et o BAT w0

are exact and both quotient maps admit a completely positive

cross section of norm one.



Proof : It is straightforward that the maps G BTg
et : 8y
G are onto, so let us firs. prove the existence of the
s ’ - 2 -

completely positive cross sections. The proofs for the full

and reduced crossed products being the same,let us prove for

simplicity oniy the second case.
t is easy to see that the map fg ¢ CC(G,A/I) —
—+ C[&,a(4)) defined by
Po(k)(t) = ¢ (k(t))
extgmds to a x-homomorphism ?G,r . Gu(rA/I e gJL(GQ(rA)*,

It follows that the map P . ! GR A/T" ~—= L (Gwx_A)
;T’W

defined by

g, (%) it Po,(X)L(p)

is completely positive of norm one. Yoreover if ketSC(G;AfI)
then
T o= (1 5 2= it =
Y’G,r(k)(t) L{p) fG,r‘h)“(n) (%) D f(}(t)) t(p)_

= 0lk(6)) +pplk(%)) ($(p) - p ) .

Since f(x) f(xﬁ)p e A for every xe A/1 , it follows that
D y(x) € A for every xe A/I, so that the above formula

immlies,cn one hand that

£1)

?G;F(K> 2 CG(G’A) for evefy k e CC(Gyﬁ

-

and on the other hand that



A pe ?G,r (k) = k for every ke CC(G,A/I).

a

This shows that - 4., ~ takes values in G®_A  and that
',.T, :
¢ i A/
A ro!f (k) = x “for every xa;bwzrn/l 5

The exactnﬁﬁs of" the sequences is now easily esteblished :

we have 0 prove exactness only at GwA (resp. at Gb(r& ¥

and this in turn is equivalent to

for every =xe GxA ( resp. X - %

X - ?quG(x)e‘Gxi[

a rqu r( x)6 Gk ol Lor

every xe ijj&), But the above relations huVC to be checked

only on a dense subset, so let ke C (G,A). Then

{kp{‘t’r°q(} “(k)(t)

¥
M) S (el I - pp lale0e))) { tlul -~ o)

‘Since botn k(L) - ¥(a(k(.)))

and  p g(a(k(.))) ( (p) - p)

belong to. C (G,I) , we get the desired result.

‘Remark The exactness of the

8hall need the Lompletelv positive

Sequence corresponding to

_ full crossed products is true in general [28] . However we

cross section in the sequel.

Suppose now that GRZ9®(g,2) > gzel i8 &8 .conti-

nuors-action {on the left) of @

Since the stabilizers Gz of eve

subgrouns, the :estriction of - Gg

) is a left Haar measure on @&
the orbit space G\Z sl zZ > Z
we shall mbreover identify S  wit
fox the getdion of = G ., Fcr egch . . 2

'b"'zé G such that » 'z = 2 , and

on the discrete set 7 .
Ty point ze Z are open
to G (still denoted by
. We shall denote by S
the gquotient map and
h a fixed transversal Sca7

we shall fix an element

)
iR

we shall dencte by 7

Pl



e

se&> , the orbit of

o

We shall record for further use the following vroposition

originally due to P.Green Uel,

Proposition 5, - 1) The following isomorphisms hold

¥

6xC (2,8) 2 @ (6xA)® R(1%(z)):

g€
G C.(2,4) 2 @ (Gx A)® X(17(2,))
: S€S : o

where X (# ) denétes fhe.algebra of compact onerators on ¥,

and where the action of G on CO(Z,A) is defined by

gl ilem) = g(f(g“ﬁz)) for every féeCO(Z,n) , 2eG and e,
ii) If we regard Cé(Ga&Z,A) g 2 sub-

algebra of CC(G,CO 7,A)) , then one may describe the above

isomorphisms explicitely by
[}
CP (k) B Z k-zl Z_” @ QZ‘ 1

for ki&CC(szﬁ,A) and- z'ya"el pabigtyine 2% = 0" =8 ,
A 5

= where e is the canonical meatrix unit dn  F(1°(2 _ ))
Y ; &5

and where K;, o € CC(GG,A) ig defined by
4] ] Pl ) .

for every g&(h§°

4
W : : = i . .
We shall construct for every subset SeZ , 8§ £ o,

two Toeplitz extensions, one for the full and one for the re-

7o TR ST i VR S st o e [P R I T e A S A i DS D, Sl 10 et Syt W L SRt oo Y L7 G- g e 1
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10,

with the exact sequence

0 =~p € (xé,A)

Shs ;‘}‘(.}\AQ,A) ——> A —30

where 1 1is the natural inclusion and q the evaluation map

at + o0 . (see also definition 5.) . Note that q ha

completely vpositive

L{) (a) = %P’r;« f(?’) % P o

where @ (a) is the constant function

for every v e X§ :
Lemma 2. shows that

CO(X%,A) for every

Soge
% ,k)
lemma 4. to get the

0 — GRC (X: 4)

g

0 vaaéruo(xsz)

go8

A

cross section Y , defined by

] g 2

pla)(y) = a
o appears in definition 5.
bl ¢

continuous and thaet

ge.
-~
€2
[
[
2

= i(xzj’s i x‘gup’b‘) : belongs 1o

. 21
L€ C+(AS,A) sy 80 that we may apoply

conmutative diagram

e G A —a O

! b

qG,r

g X e
504)

3 GM.rA-nvO

with exact top and bottom sequences. Applying proposition 5.

& ik
for the set e

with. transversal 8§ &nd elements ¥

y!

v é X%, provided by the construction of the graph of groups

determined by G (s

Toeplitz extensions.

Provosition 6.

i : & 45
. Por every nonvoid subset S5 €& 2

ee section 1.) we get the following

, there

is a commutative dizgram with exact horizontal seguences :



"7 e
: = 5,1 1q g e : :
g -0 (B g @@L (%)) MG—KC% (R5,A) —=> GHKA —20
! | )
2
: e SR s Dt oo ey
0~ @ ((G ® MSOR((X))) 22 E% 0 Xy, A L afw koD
e S B : T =

where ¢
- The vertical ﬂOﬂQTWhlvu” are determined by the projec-

wien from the Tull CTO%S@@ product onto the reduced ones

- The maps i1, and iC % act in the following way <
A § - 3

AT &1 n A g A S & Pl & e -
if k @.(/C(k_‘v,l\&) + > then .:t.(}(l.\.eﬁ:@eyt ’3],!,) = 1(}’?(}.{@@3‘_, ,}_’,z"> &

o7

& : - .
& CC(G'%ngA) ( $' = §" = y ) 1is the function

i k@®e . pilg,2) = 14. (k®e

% A\
T ‘\,’( g ;\A T T

g ,,’H)(glz)
§ )

i\
1;"

p30e(#,, e¥0E) AL8TH a2 eedio ¥
¥ y o

i
o
)
(@3]
N
i

0 e s o otherwise

Woreover, the maps ¢, &and 4, ., have both & completely
\x Mg L . > >

positive cross section of norm one.

Bxample In the case of -the free group on n - generators,
- the graph 2: has one vertex and n edges Yysenes¥y * The

5 . . - . AT . o 3 o 3 & M m . o, ‘i’il'\
extension determined by S = gykﬁ was called in [23] the k
Toeplitz eX tenulon, while the extension corresponding to

b
- L : : : R o o
g = 3 appears in the last section of Tat 1. 3

remark In orier to get precisely the extensions of L23],

PRSI NY

i



U,

one should comnres

88 the above extension with the projection

o a 2 4 e = 5 =

g.5 » 10T some Iixed origin O0€ X . The above form for
L ,L ; 5

the Toepnlitz extension 1}

hiag been suggested in the case G = Z

by B.d.Rieffel.L2g];

s & o S 1»,‘5\ 5 e e
25 e 5= By to nesga

the comnressed

from the above Toeplitz extension to
ed one,

since the latter is a full corner in the
former.
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In this section we show that the K-theory of the Toeplitz

3
algebra }M({%(KL,A) (resp. G TC+(X1,A) ) is isomorphic
to .that of the algebra D <GP ®A) (reso @ (G, 4) ).
. a '{«, 3 9} i I

2 2 ez” Pel
(note that Kéﬂ = X" ) . To this end we shall comstruct the
. B 1l S MG i =
slements KK e KK e
element e K (Co(z ),u+(x )) - pe +(} ),uc(k 7

L] and eventually ﬁrove that one is almost the inverse of
‘the other. Since we are working with KKG y We shall from now
on assume that the group G is second countable and that the
tree X is countable.

* 3 , PR o
we start with some remarks concerning KK theory.

Remark 1. i It-is well koown Shat every G equivariant

%o

¥-homomorphism f : A—»B , or more generally f
where & 1is a right Hilbert B-module, determines 2 class
[f] in XK7(A,B) . The class [f] may be defined by the

triplet (€ ,f,0) °, where the groding of £ ie trivial {ive.

)

the whole Hilbert module € is considered positive).
If g ¢:B—F(F) is another G equivariant m-homomor-
phism, then [f] @%_Lg} is equal to the class of the z-homo-

morphism f@4: AKX (& %3‘-‘) . (Note that we follow the

convention of L137, so that if £ : A~»B and gt B—>0C,

then the class of gef corresvonds to [fjﬁ@g 121

ii) It is obvious from the delﬂ]thna, that

if the triplet (& ,% ,T) representing an element in KX (A,B)
has the provperty that ‘?(A)C.K,(é Voo then e 00

yopve ents the same element. This shows that if we decompose

i & . &’L st Pr '—{’O oD t{?,l (:53(:(:017‘6.1'11{3; to '{;‘he grading)

A— H(E )7_.



s l")
C? <o

then

l(a , P ,'T)] = Z“?b'] i {\HQE S

: o g e
Let us first define the element oe KK (C (J«:‘IO C (..}{ﬂ"‘) ).
: 0 S

To this end consider the right Hilbert G+(Xi)«module

Ry i
1o o (,+(_A

endowed with the product G-zsction. (In accordance with the

definition of right Hilbert modules, the scalar product in

a Hilbert space will be linear in the second variable.) Let

4

e i RS o
EGDEPQKO denote the canonical basgsis of 1“(xo), and define

d. & (KJ) Y 3&(1“(&0) Q§<3+(XQ)) by the formula

v

a(£) ep@f = f£(P) ep @%pr

for every feG (X°), ¥ec (X angt. Bex’

gy o RS _
Definition 6..  The class of d in KK’(CO(XO),C@(Xl))

(see remark 1.) will be denoted by ol.

We turn now to the definition of the element ﬁ% < Bow

each Pe X denote by ,&pc.a the get of edges with one

-
¥
-

S T A e [ St
extreenity - P . Thus

e



If y Dbelongs to E; , we shall denote by ey » the corres-
e ~ ] ok :

vonding unit vector in 1°(B;) . (Again the scalar product
is linear in the second variable). The sections of the fielg

IS}
e

of Hilbert spaces .{1“(@P)EP€VO vothat tend to zero =
el B S

o)

S = s e e i o) Py
infinity, is in a natural way @ right Hilbert CO(X )-module

¥
which will be denoted by E . It is generated by the sections

. 3 G o o ; By e
B for —FeX and yekE, , where e is identif'ied

i Yok

with the section

e = T 0

0 otherwise .

The action of the group G on X , gives the following

T

netural sction of G on B

<

z e = e ‘ .
© Sy.p 57+ 8P .

LR 3
e}
Y g
>l
'1__& "
SN’
¥ i ¥
1=
g
o+
=
@®

We shall denote by '?+ y g

¥-homomorphisms defined by :

t(£) e p = |
(oo ) &y p 1L t(y) = P
f(~o) e - if of(y) = P
AT :
l’{rn(_f) (“'1/' P ot ;

Jg kb

iyl if oy =P L

Since G preserves the orientation of the tree, it is easy

to see that bhoth 4’¥ and % axre G eduivariant.



Let now 0€X° be a vertex and denote by Tya £(C
the operator
¢ P in D/
‘ 5§ (P) ®10(P), P LEP A0
Tok 5)(P) - -

(o) 5 it P =0 "'
for every }eC (x°) (see definition 1.).depe: 0 (XO) is
regarded as a F{llbL i 0 (X )-module in the usual way [ 42, ].
Note that in this case, :CO(X ) is naturally isomorphic to

K (CO(XO)) y 80 that we may consider CC;(XO)C Oz:(CQ(.ZI(;O)).

 Lemma 7. The following formulde hold °
: , Gt
e e | TOTO = 60 , Where Soe CO(X ) ide ithe
usual delta function. ' _
i) 4 (%) = ‘]”__(‘X.O + TOTO ; in particular
’Y’(%)TO—'O and "*’*(?CO)TO=0-
1ii) T - 15, e K(c, (x°),E)

iv) g(TO) = for every ge&G .

L 5
Proof : i) The definition of the CO(XQ)~Va1ued inner
product of E shows that '

< (F(P)p(®) if P 4o
$TolE) Loyl 2 (B) =

i
(@)

o : HE P

so that L TIT(F)l gD = LTSI Nntn e =1
for every ¥ - CO &

$)517?

ii) It is easy to see from the definition of

: > i 0 and .y = [OlP)



The definition of 1;0 (and of course the fact that Foge

a tree) implies that if ofly) = P , then

! if. .y = O(P) =10lPR)
Kely)a=

0 - otherwise
while if tly) = P ) then

0 Af oy = O(P) =koltp)

xo(y) = :
4. otherwise .

Point 1ii) follows now easily from the definition of +_ and
'11.4,, .
119 )-Phieg i85 a straightforward consequence of lemma 1.
iv) Recall from [ ¢4 ], that g(TO)(E ) it by defini-

tion equal to g(TO(gfif VY- s fox every. fe(&pr). It is

sufficient to verify the above relation for £ - SI’ 0

¥ : -1 .
In this case g SP = Sg_‘lP y A

2 if s lp 4o

10l ), g7 te

0 : ir gaps =g
so that

iy “slig?plpe & Bf a0
ginae p)) =

The result now follows .from lemma AEEe

.
The triplet (€,%,1) defining gexx®(c (x1),c_(x°))

% e : s e 0
1s now obtained as follows : the graded Hilbert CO(X ) -module



€ = Eo ) E‘i consists of two copies of E @ CO(XO) .
Eo being positive and E{Q;negﬁtive . The graded G equi-
variant x-homomorphism ¥ : C(Xi)——e L (€) is given by
et @k o here b el reian
defined by 5 S
Y () = 4 _(f) @ £(+00)
and %ty : c(F) — £(E,) by

b (f) = F () @f(-00) .

= | o N -
Finally to describe the operator T e KL (&) of degree

one, it will be sufficient to define T o &o’ 61) )

T being then determined by the matrix

e
Jiganeryt .

For T we shall fix some origin 0ex° ana take the operator
i ¥ 3 *
Io=aly e ] (TOTO + TQTQ) ;
: 2 4 i ¥ m¥,
diwe. e @) = (T8 4+ (1 - 2575) )@ (15 e + (1 - 1¥1f)

for every e&E and e CO(XO) 5
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Lemma 8. The triplet (E ,"P,%) " defines an element

in xx© E L)

Proof : The preceding lemma shows that T (and hence
T) is G continuous and that g(ﬁ) - Pegre Y, for-every
geG . Since T is easyly seen to be unitary, the only thing
left to prove is that the commutator [ﬁb(f),$] belongs

to K E )., for every fe C(%i) y i.e. that

Do () = S RN e K £ E)

for every j?ec(ii). Recall the definition of Yﬂ Clefinition 3.)

and lemma 2., to see that it is sufficient toprove the above

statement for the constant functions, for fe(%xxﬂ). and
for a single function of the type Ky , Pex® . It is easy-
to see that ’?i are unital and that ‘?i(f)é K( €j) for

every fe Co(Xi) y 1 = 0,1 . This settles the first two cases,
For the remaining one, chose P =0 , the vertex appearing

- in the definition of T, . Then

T (Xy)(e ®F) = T((¥_(Xjle) ®F) =
G PR TOTC)“P“(?LO)e Fodto oo T s R

On the other hand

T (X (e @F) = 4, (%) (Tp% + (1 - 1g1H)e )@ (1Fe +
+ (1 = 1eme 0¥ )= (CH (X2 ke (2 - B0l B o

Apolying the preceding lemma i) and ii) we see that



e

i s o e e s AL S e BT IR e T e,

20

Dy (R (e@F) = (1 + ¥ (%y)e )D By ¥

4% :
. S e " m m
"1’1(?60)“1? (e ®F) = (PO§+ "{+(")(,O)e - TyTye ) & o
Again by point ii) of the preceding lemma we get that

(Tef (Kop) ~ B L)) (6@8) = &5

0

which is clearly compact.

Definition 7. The class in KKG(

c+(xi),co(xo)) detar

: Dad .
mined by the restriction of the triplet (&,%,T) to ¢, (x7)

will be denoted by P .

: G
Our next goal is to show that X@B& KK“(CO(XO),CO(XO))
equals QC (KO) {jl&] Theorem 5. and Consequence l]
P 0 2 s : .
i.e. coincides with the class determined by the identic map

4d e CO(XO) — CO(XO) . To this end let us first explicitly

Pt
describe & representative (g ,/&,V‘) of «&P . As usual

we shall describe the grading by putting g-—- 80-® g"L =

yz =./uo'®/u1 with My : CO(XO)—-—-} Ll gi) , and
l ad »;X ‘
V:(S,é) emith o VESEG S8,

Due to the particular form of « , it is easy to see that
s e
one may take as Hilbert CO(K )-modules ¢
T

(12(x°)@c(Xh) @1, & i=o0,1

ew®} : :
the %-homomorphisms from C(X°) to &( )  Deing "



Since ﬂPi are unital one sees that the above module is
: : 2,.,0 . . i
igomorphiec to - 1 (X )@ Ej , via the map that sends
(x®f)R e to p'e @fffj(f)e. We thus take

gi = 12(X0)® Ei iv=t 0,4

Note that g ::gﬁ_; we shall denote it sometimes shortly by

: 8' . The maps y " are obtained by composing the map
= e L)
a@1 : C (X°)—s & ((1°(x°) ®C(X)) ®oly E; )

with the map induced by the above described isomorphisms., (The

explicit formula will be given below).Finally the operator

ve L(2°%) @ € ,15(x9) ®&,)  ie defimed'by ¥ =1lml.
“It will be more convenient to regard the Hilbert module

3' as sections in the corresponding field of Hilbert spaces

o]

over X Recall the definition of E +to see that the fibre

. WO
over the point Pe€X is

G = 15C3RitE) B e

and that the sections 8y B Q,pex® y €Bp and .

y Q,PeXx’ , defined by

eQ,P
9Q®ey PR P
eQ,y,P(R? =
) if R £P
eQ,P(R) =
: ) if R £-P

generate the Hilbert module ‘g'. Moreover, the action of G
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may be described on these sections by

- GQ9Y1P 6 enggy»g? ! € eQap % enggP ik

Recall now the definitions of ’?i . 9CP , and of the

o (definition 4.) to get the following formulsae for

gsets R
A

My o L

i i i o
£(Q) €Q,y,P Pf il P and Q&Xy

/«o(f) eQ,y,P = >
0 otherwise

ML) g 5 = B e

'f(Q) € P if t(y) = P
_ : “y ¥y ; : o
/Al(f) Sy £(Q) SQ, . P if of(y) = P and QEXy
o otherwise

/“1(f) eQ,P = (0}

for every feCO(_XO).
Let us finally record the formula of V { If

Vo€ il 30, 31) = & g') denotes the operator

VO erysP e
™
€q Jo(P)l, P if P£O
VO eQ,P =
o] g e Pe—a ()
4106 et %
then Vei= VO + VO + 1 - VOVO - VOVO 5
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We proceed now to the proof that o@p equa1$‘ 1n (x°)
To this end we shall first colstruct a We ol 5') suzh
that the class of (g,fA,%J is equal.to 1CO(XO) , and
afterwards exhibit a homotopy connecting the above triplet
o (g,/w,?) . The definition of W is as follows :
Let W'e&(g')  be defined by

"Lipiele. HL e
W =
y eQ,P
0 i 0 =P
then W is given by
W=W' +W* 41 wmw*_ g¥p 2

Lemma 9, i) The above defined W.€ & g') is a G
equivariant unitary.
id)oTet . v e (0 (27, G') be the G equiva-

riant isémetry defined by v ( Sé) = ep p , Pex° ., Then
>

for every f‘eCO(XO) .(Here f is also considered as an ope-
rabor in. WO (X)) e Wle (X)) . )
.4
iii) The class of the element ( g,/u,w) in

G 0 Oy ;
i ~t W L, c ; g .
KK (LO(W ),LO(X )) ig equal to 1CO(X0)
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Prool & i) W' |Dbeing a partial isometry whose range
e
is orthogonal to its domain, it is obvious that W is

unitary. The G equivarisnce follows from the fact that

g e PP T Caq,z(Q@N,zr T faQlel(eP)le?

which in turn follows from lemma 1.

s S : £ e .

ii) Liet us first note that W /uo(f)
= /ui(f)ﬁ' and that . Wﬂ/41(f) = /uo(f)W' = 0 for every .
fe'CO(KO). Indeed ; |

WV

o . = e o= g s
W /“o(f) en p = /ui(f)h eQ,y,P = 0 , while

W'/uo(f) ey,p = £(Q) w'eQ,P = :
0 1£Q =P

A1) eq (e, p if Q# P

o} e S R

But if the origin of (2(P)| is P , then Q@ lies in  Xgepy

- \\.
so that we get the first equality. The equality W'/ui(f) =0
being obvious, let us show that /Mo(f) W' = o . We have

to consider only sections e, p Wwith QAP , and we get

™ og

/uO(f) W'BQ,P = /"O(f) eQ,\Q(P)\,P S

Since it is impossible to have both  t(1Q(P)l) = P and

O ° 1 > R < W | -
Q € XJQ(P){ , it follows that /uo(f) W'eg p 0
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The above intertwining relations show that

W/%(f)« /ﬁ}f)?ﬁ = (/%(f)— /ﬁ(f))(l-ﬁﬂw%z~W'%W)

But (1 W ® ¥ being the projection onto the
sugspace generated by the sections € pPex’

&£

e

>4
o)

{egyny ; O(y) =k . QﬁX; } &nd {eQ,Iy,P i t(y) T P’

we finally get

S

(W/uo(f) -~ /ul(f)W) eQ,P =

W 2 W) e. !
(ﬁ/ﬁo(f) /ui(f)J) o0 P Qs

e : * : 5 :
This 1s clearly the same as Vefev so that ii) is com-
pletely proved.
iii) This is a straightforward consequence of ii) once

we rewrite it as

_/uo(f)==w*/u1(f)w O vefevh

Proposition 1o, - If deKKU(CO(XO),C+(X1)) and -
pe KKG(C+(X1),05(XO)) are the elements introduced in
definitions 6. and 7. , then ' :



et
')/}? @

Proof ¢ Let V. and W' Dbe the partial isometries

e 0
appearing in the definition of V .and respectively W , and
éenote by U' the partial isometry ~ V W'* . Since'béth Vv
and W ; together with g’ and e define elenments in
KKG(CO(KO),CO(KO)) , it is easy to get the following properties
55 SRR e
l. U ds - G continuous,
2 Dl il e R (g%) s, S Re0 (X)),
3o LBty —U L (f)e b g ) - apd

i (Ee(Ut) e ® (gt) 5 B=eel B8E (X)) ;

Note next that the elements satisfying the above three
properties form a Cxéalgebra, and that the projections gy ®
and U*XUf mutually commute. In particular, there is 2
continuous path of unitaries -in this C*~algebra, connecting

the selfadjoint unitary

Uy = U' + BVE 4 1 TemE gt

to the identity. It follows that if we define the continuous

path of unitaries wt by the formula

Bio G e W)E(u )

t

tw‘)x i o (Utw')(Utw')* w1

then WO =W and Wﬂ = V . This yields a homotopy connecting

A2 U S
'(g,/u,v) to _(3,/u,w) . The proposition now follows from.

the preceding lemma .
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e turn now to the properties ;ﬁf the element p@t .
Again we shall first explicitly describe a triplet (H,% ,?})
whose class in KKG(C+('15{1'), C+(Xﬂ‘)) in. p@e Due to the
particular form of o« , it is easy to describe _('H,az ,'{J)
formally

lai Ho ® ?‘Z'l s where Hi = Ei@co(xo) (1
i=0,1, (with x-homomorphism d : ¢_(x°) — L(1°(x°)®C (X

g

et (X 1]
‘o

W e N, oy Wieve Gli(f‘) = "{‘i.(f)@ﬂ_ Ll e
o~ 6. Uk : :
U= (U‘ o ) y where U= 00 .

Recall that € =€ =8 @ co(xo) and that E  is

generated by the sections ,' with Pex® and ye EP .

eyyp
It is easy to see that the map that sends

y to .

°y,e. Bg (x%).§ b ey Ol BE

defines & G equivariant isometry from B ® (x° (12(X0)®C+(Xﬁ)}
: ; JO 1N

to  1°(x1)@1°(x°)®c (x}) , whose immage is the Hilbert

module generated by the vectors ey@ ep®%f o with

PeXx° , yeE and feC,(X') . Let us denote this Hilbert

C+-(Xﬂ‘)~module by ®' . By H" , we shall denote the Hilbert

¢, (x')-module generated in 12(;{0)@0{”(}{1) by the ele-
ments ep ® %Pf . This is the immage of
o (A2N®y, (Xo)(lg(xo)®c%(xﬂ-)) under the G equivariant
isometry ghat_sends ,SP QCO(XO)E to a( SP)'S :
(% e 12(X°)®C+(‘:{1) Y

We shall identify 'HO = H'!L with H'® H" . Note

' : T
nextptbat - IO@i@it (X Iec (1) | frewe 1 @0 (X))
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may be regarded as the Hilbert module of sections of the con-

étsint continuous field of Hilbert spaces over —}-{‘l y With
v c) :
fivre 1°(x1)®@1°(x°) CPoan. 1A% b ek i o

-© . It follows that H' (resp ®" ) may be identified

with those sections s , satisfying s(y)e H{r (resp.
s(y)e H" ), where H'  Aresp: H'\; ) is the Hilbert space
generated by the vectors e.® ey (resp. ep Ny satisfying

z€E, and Pe I‘x’i?r (resp. Pe 'fr{; ) 5, with the convention
0 -0 .0 ; :
X = X an X = .

oo d o &

Note that for.every ye_fﬂ y the Hilbert space ?4%

is the direct sum of H:°  and $§§t , where H!°
(resb. ‘H;rt ) is generated by fhe vectors ° eZ®eP.

with the property that o(z) = P. (resp. t(z) = P ) . Let

o a5

s note by e Sp. e h ectors

us de 3 Z,y (resp = ) the vectors
: : .

e 3 esSPD. e . a 1 3D .

2®%5(4) _(r D €, 8 ey (,) ) in the space ‘Z:{y (resp
: o : % : i
in 'N’y G e, - and respectively e, .. are thus defined

f B Lig Y

for every yeg T and every ze X such that o(z)e”}{gi ;
respectively t(z)e X\C; Yy

With these notations let us describe (% » 7 ,U) explicitly

- the action of the group is

g e’ = e° g et = o8
sy 8%, 8Y L 82,8y
-~ the representations N4 o Lm0, dre t

N n t
2o(f) o, o = fl-od &0 , = (£) o . — Flalke

°
©



300 ' t .
R (L) = = f(z) e’ s oemgEde . & ef ,

Ly Y ZyY ’ y
[ ]
T o s argl Shoa g 5 0 5
for every f€C(X") , and where ey . IPG}%T , is the ca-
~ S I o

noniecal bagis in. B! .
:y

- Uis defined by

5 % 5 S

U b= UO + UO + 1 UfUO UOJO

where UO * acts in the following way 3
&0 It oltoln

o = t 7 ; V(PN v .
UO-eZ v Qg UO e, y = 0 ’.'UO Bpn. s )
b 9 9 o ai P D ;é 0O
t - [ s

=P PO

0 et P

We shall construct now a unitary WOQ of( 'O ;;")
5y IR
; o o 0 N f A
such that the triplet (¥ ,7n ,ﬁO) ; W :(W g ) , 8%111
; ~N
represents PQ§M , but is easyier to handle than (H i S
: 4] ; ;
Note first that the only edge =z €X  that has one extremity

in Xg and the other in XO‘»X?_z e v .« In particular,

ke
if 1?ex§ and C)EX? is some vertex, then. t(\O(P)l)E‘Xz -
while o(\O(Pﬂ')Eﬁﬁg as long as {O(P)\ # y . Moreover, the
map 10} maps X?‘\{O} onto the set {z : of(z)e X;—E =
- fz 5 t(2)ex2}~ fy}  if OeX , respectively onto the
; y : v

: 0 L e e 0 e 0

get {2z ; o(z)e Aygu{y’s = b2 t(z)eiy% i O%J{y

(this forces y # <o) .
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It follows that if we fix some origin 0eX° , then the

operator Wi) i€ (;f(‘H{, ® H;;_) defined for every },,ra'"f(l"l“ by
¥ o o

Oiw na s by

(0] t
e - a2 7
Z4Y : % # 5
% % . 0
vr e = 53 = ’1 ¢
0.3 %5 ey’y 1f Z Y cnd. O«:Xy

®$(y),y if =z =y and 09!}{;

t; :
; o o G RN AR e )
0.y ep’y -

e 1fe Paeaf
O,y

is a well defined unitary. Moreower — W, bein
o 9 O’V 5

®-strongly continuous on X~ , we get a unitary

Wy € L(H'®H")

Lemma 11, The above defined W, & L(H' @ HW") hes
the following properties

i) g('v‘vfo) = Wgo for every g£eG . In paerﬁic_ul&r o
is G continuous.

ii) Wy - Woi @ R(H'® K") for eveny 050" € <

Sn e o e o AT 1 ; ' - R .

44 ) Wy 1Zo(f) : ﬁi(f).io ¢ Kt o) . for evers
pag ) - ' ‘

. 5. 8 o e 1

iv) :The cl_ass of (M % ,wo) fay - WK ((,+(.X_ ),C+(X )) |

coincides with P@O(.

Proof : i) Is easy to check from the definition using
the Eaot what  coeliola eyl ) aapaliy

ii) Note first that Z(H'GE® HY) may be
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identified with sections ye—» X e H( #{f@ §")  -that are
3 & L5 2 LY |_f

norm continuous when regarded as functions from Xﬂ to

2 e ) e 1 e e, Tenne 1 e R

Wo v " WO',V is a finite rank operator whose kernel con-
¥ of .

tains the orthogonal of the space generated by the vector

el , » if both o(y) and t(y) belong to the geodesic [0,07,
A N

QT ¢ .“" 1 3 .' 55 O o 8 i
together with the vectors iez,yk and {ep’y§ » with

olm) o ble) capd RS a1l lying on [Q,O‘] SoBub ey i

0
Y ¥y
~while if y 1is close to -eo, then L0,0'] does not inter-

close to + o0 , then the whole geodesiﬁ belongs to X

sect X°
o

o

. Phis. concludes the proof of - dii).

iii) The definitions of WO and i o de=cmel o Amgily

(W qo(£) = Ra(D)g) @2 = o .
- {G(@) - glee))el o irz=y

; e o and oe:xg

W £f) - W e = 4

bl LY e e
+} 9 .

o o0
if z =y and ng.iy

o

0 otherwise

Eloo) - £(-w))e, .

(WO YO(f) -~y 1(f)wo) B = P o= 0
o} otherwise .
~rL
for every fe¢¢(X ;

This shows that the above operator is determined by the

section YV o K& + K; , Where K% and K; are rank one
= L3 :." (% i 7 ' .'O
operators such that Rt =l us . o B o s Og};v

and K; is congtant if (}exg . This shows that both X!
and X" belong to . F L H"© BY) .

iv) An easy com;utation shows that WOU* ( = WU i



selfadjoit. Moreover WOU%' satisfies the following conditions
) WOUﬁ is G continuous
2) WU - g(WUF) e (W' ® ") for every ged
3) [ﬁn(fj' WCU%j € K(H ® #") for every f6.0+(Xﬂ)?

1§

since JO and U both satiefy 1) and 2)- and both inter-
twine the representatidng o ~and Rq - Since the»e}ements
satisfying 1) , 2} mnd 3) form'a c*-2lgebra, we can find
a norm continuous path Jo,113%t = i, e ZIH' 'O %)
wifh end points WOUK and . 1 ,.-and such .that Wt is a uni-
tary still gatisfying 1) 2) - eng 230, Rer every . telo, 1) .

But then the map 'th~§§%U  vields the desired homotopy.

Propogition 12. Consider the ‘exzct seguence

Grmp ) e

and let p@u{QKKJ(C+(Xﬂ),C+(X1)) be the cup product of the
elements introduced in definitiors 6. and 7. . Then @
) Ciw owmeie i B0 .

fp) dw EE e e

it

1) ix'(ﬁ@oc )

i

id) p%(p@ & )

Proof & Pop The proof of Both 4} “and ii) we shall
use the representative (?%,ﬂz,ﬁb) of Ptﬁb( (seé the
preceding lemma ). = '

i)' Note firé%-thét ﬁhé class of thé inqluéion‘ i coin-
cides with the class of the identic map  id : C (X°) —s ¢ (%°)
where CO(XO) is regdrded as a C+(Xi) module. ( This is
a general fact [ 14 ], for if i : JTewnA dis an ideal, then
the mapping cylinder {fé.C(Lo;ﬂ],A) o Plg e I} , regarded

as a  C(lo,1},A) module, provides a homotopy connecting [i7]

o Tl )



4l

; i | :
Note next that 1 (F(@cx ) may be represented by

¢ NS
the triplet (Ht i V(_SCB Zﬂo, W) where

rit 1, : ; 5
Bt ﬁﬁ) 15 generated by those sections g cobuch that
0
1]
Sy € ?%3 $

) : : :
H ¢ Hﬂ 18 generated by those sections’ g. - such i that

-

y
5
oy ¥
.ny e H}f ’ ’
T R =
7o(f) § o= f(z) ez’y
o] 0 o) . Ll
g = ¥ 4] : E /i C ‘\{
Yi(f) ez,y f(z) ez,y~ for every fe 0(4 )
. - :
: . e 1t 2 £ oy
; ~ 0 w‘r* : 8 t 2,y 7( ¥
WE t 1N o y i - S
and W= (W % ) s Where W CZ,y =
0 el oy o

This follows since the orthogonal of L{t‘ (eesp. of 1) s

gontained in the kernel of 'QO[C (ﬁi) ‘(f??p. of Qi]c (Xi)
and W is the compression of WOO ~ to these subspaces. °

Since W¥ ig an isometry whOSQ kernel is generated by
e;’y y 1t is obvious that if we denote by \rscf(Co(Xi), @%t)
the isometry - v( SV) - ei,v S e

Tolf) = Wi, (20 @ veia(s)ev®
which is equivalent to ix(ﬁcafi) = P e

ii) The definition of L shows that p¥(P<®o() is
: S -
the class of the restriction of the triplket (}{,xz,ﬁo) 0

y =0 , i.e. by the $riplet (Ho’w @ Nﬂ.,m’ Mo, oo Dl o s
N
WO,OQ) , where

i3 e 0 't % "
HO"W i }*1900 7 y:‘)o @ Hﬂo :H@o .



¢ O 5 7 2 5 %
Again H! ig in the kernel of 9 while H*" ig in

the kernel of Na so .that p%(/z ®c,) 1is fin‘ally deter-
~ o

quququ

£
Hoas,

mined by (HO o H’I_’ 750 o rZ{L,‘f‘e’) , Where

B moia me o 120b a0l

Lo

e Q. o o
- e B o 1@ @0
'Zo(f) .G'z, £(z) ez, 4 Qo(f) eP,w = £(se) eP,w
~ 0 e - 0 ~ E t
Qz‘l(f) Zyeo ) Shiea. qi(f) $2.6 ¥ £(eo) 2,00
~  ro WE
while W= (,v : > , Where
v 0
S it Pdo
Woe Woe =
Zy 9o Zy 0o P,o0 '
(o 4t Pl
The above formulae show that " p (p@«) is the sum
of a degeherate triplet and of the triplet
2yt 2 rk 0 2 =~
(e @ 1y, @ . § )
o L. =
where ylm(f) ep = T (o) ep rz_w(f) ey = f(o0) ey and
-
e G’ . ) Wit Py 12(%%0 1 20 defined by
’ i B 0
Siie), I B
F Ep =
@i At o Pieale,

Recall now the definition of the element &'e& XK' (C,t) from [44 ]

to see thal the above formulae may be written



A 2
‘1‘ ®

Plp®a) = p*(¥) = (pl@l .

o A i gt : : ;
Since ¥ o= 1, ([44]Pr00031t19n 1.) , we get: the proof. of

i Rt

The next lemma identifies the elements i%(F.) andg

bx(oc).

Lemma 13. 1) Let %, ¢ ¢ ¢ (k") — & (2(xheo (1)

be the G equiveriant w-homomorphisms defined b

() eV®SP A by = P
Pylf) epddy = :
otherwise
o)
£(y) e, @8 p i el P
To(f) e @y =
0 otherwise
for every feCO(Xﬁ‘) . ngﬂ' snd.PeET .,

Then

) S D

ii) Tet A : C (%) —> & e o

e

be the G equivariant x-homomorphism defined by :

'P(f)reQ = f(Q)_eQ

for every :féCO(XO) and QeX° . Then

Pyl et ) =l



44,

Proof v Point Hi) die straightforward, while point i)

follows from remark 1. ii) ~ '@t the beginning of this section.

We conclude this section by showing the relevance of
the preceding results to the Toeplitz extension introduced
in the vreceding section. To this end recall from (4] theorenm 1.

that there is a functorial homomorphism
o :
g ¢ KK (A,B) —» EKEK(Gx A,Gx B)

thet commutes with’the intersection product agnd such thet (in
the case A = B) jG(iﬁ) = Loy « In order %o fix the notetion,
let us -briefly déscribe the constructiona

If & is a right Hilbert B-module, one denotes by
CC(G,E.) the set of continuous functions With compact support,
defined on. & with values in £ . The right CC(G,B) action

and the GC(G,B) valued inner pfodﬂct are defined by

(e-5)(t) = [ e(s) s(b(s™t) as
G

ety At) = j s'"i(e(s)\f(st)} ds
i

for every e,f‘&CC(G,ﬁ.) and t)eCC(G,B) . We shall denote
the completion of CCU},&) with respect to the norm

Y
flell = u<e,e>ll;K g With - Gm& . Note that the formula

for every e 60 (G, Ecand g 5%l defines a unitary repre-
. c i &a ¥ y



sentation of G on GWE . Foreover, if 'TecZ'(é) s then

the formula
Toeolt) = Palt) ; eeOC(G,E.‘) e toe g

defines a s#-homomorphism & (&€ )3 T TG € L (G0 E ) ., such

that

for every T€ (&) 2nd geG . In particular if %: A— ZL(€)
is a =x-representation, one gets the corresponding representa-

tion of the full crossed product, denoted by
?G e e z(GmE).

The map j, sends the triplet L€ ,%,0)e EG(A,B) to

(GME_, ‘{’G,TG) .

Remark 2 It is also known 4em Kasparov,

(see [461 6.4 ?uze ¢ i) that there exiéts an ana-
logue of the above le for reduced crossed products. TLet us
briefly hint the construction.

It is easy to see that if we denote by Gpﬂré the
Hilbert G® B module obtained by comoleting C_(¢, €) with

; . Z 4.
respect to the norm Hel} = ﬁ<ese>\\1~ then we

G X ki B !
T

get U ed(Gw €) and T, ed(6%._ &) by the same
“ g r G;r ¥
formulae. MNoreover if “: A — L (&) is a x-representation,

we get a x-homomorphism



% 2O A —s Z (G .
G,r Gt ﬁ(’Mre)

One cen see this by choosing for example a faithful represen-

tation of Gv(rB on: H, and the corresgponding regular re-—

; D ;
presentation on L°(G)®H ., Then the representation of

tf(Gn<r£ ) on the Hilbert space
g, o D

is faithful ,[031&2,8.], and 69 g—s U, e &(X) is
a multiple of the regular representation of ¢ . (Note that
K x> IJ?“(;})@((G:& E) ®. H) . ) Moreover the same argument
T S DﬁrB .
shows that G»mr%( E) &~ :%((}xxr& Y
This shows the existence of a functorial homomorvhism
G

: KK

j KK(G e ]
JG‘,r ¢ (ﬁ,B) ) f\(fxrj\, KrB)

defined by g . toe,, ] = Liaw ¢, “?G,T,TG,I.)—S E
with the same properties as jG .

Moreover, it is straightforward that if f : A— K (E)

is a G equivariant m-homomorphism, then jG(fj = [fGAl
(respectively jG,r[f] = [fG,rj) where A |
By 4G G K(E ) 2 Z(Gwe ) (respectively

o g gl { i o mo -
fG,r PR A —— amr}a(a) a2 Jd_(axxra Y iy idecbhe w-hons

morphism induced on the crossed products.

R : e : e
Definition 8. TLet A be a fixed separable " -algebrz,

and suppose that G acts continuously by automorphisms on A4 .

Let @ ¢ KK (B,C) — KK®(B®A,C®A) be the map from

Edle i -definition 4.
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e ¥ eXK'(B,C) we shall denote simply by &

G
(resp. *G,r ) the element jcuﬁk(&) (resp. jG,r?qh<$) )1

With these notations in mind, we can state the follbwing

propesition, which proves the claim made 2% the beginning of

this section.

S Proposition 14.

1) e @b dang (x0a ) e 1@ Pa =m0 (3% 0]
T 9)

¥
i1) Pg®dg = leC'+(Xﬂ*,A) v Poa®dg = 1Gmrc+(xi,z\) .

Proof ¢+ i) Follows directly from proposition lo.

To prove 1ii) we shall show that FG® o (resp. '
Po,»® % . ) is the identity in the ring Ke(Gwc (x7,4),
6K C, (X1,4)) (resp. KRGO O (X' 8),000.6 60 ) ),
Applving theorem 1.1 of (23] together with lemma 4. we get
the-following diagram -

5 I St
bLie K&n (B, G & ColxtA)) e 1e KRn (B, Gx Cu&iA)) i%_KKn(5a GXA) s

Lid , Lz o Jid
It _
25 KKy By @XCo(A) == KK (By Gx C, (AN 23 KK (B, G KA —2s

with exact rows, and where the map ?, islgiven by the
cup product with P{}GQI%G « Propogition:12. implies the

comﬁutativity of the above diagram, voint i) shows that
( PG ®0(G)2 = ]3,(} ® d(} _ ; 0 that we finally get thst T

is the identic map. The proof for the reduced crossed product

being the same, we get the proof of the proposition.



In this section we put together the results of the'prew

A

sections to get the main results of this paper.

B

ceding
Recall from section 1., that the lifting of

; ; ul s
provides (for every. e ) ). the homomovrphisms

T g0

Bty %8 (y)
and the elements th 3 X’Q ¢ G . We shall denote by
W' s Wi € Aut(A) , the automorphisms

-4
wy(2) = ¥ (a)
o< — ~4 Lo ]
“igcn = &yo(u)

for every aeA. Since the pairs ( T, O(V) and (0‘_3;, 0(;;,)
are covariant and since the maps Wﬁ: and (TV are homeo~-

morphisms onto their immage, we get the following maps on

the corresponding crossed products:
i -l i

s A ey Gop o 5 : A —s G A
Tyt g b S | B t(y) "
= T S A $ G - il A G A
G"yxo(y Gyw §  —— GO y>p< £ 8 (j"\{ XX‘O(,}/' Gy\?(r e 10(;&3')% .
Remark : Note that since the Haar measures on - GV and
Gp , are chosen as the restriction of the Haar measure of G ,
the maps o and o do not (in general) vreserve these

N y



4{30

measures. This has to be taken into account when wtiting the
explicit formulae of the above maps. For example, if

ke CC(GV,A) - ohben W&;QOQW(K) is the continuous function

ACE T« (k@ (1)) 1 e @ (o)
Tox et (k) (8) = fos e S

0 - otherwise
lioreover

TP :

<2

Pm;1-4(h<A : rP,r: Gpmxﬁ-e~a GNrA

( I’evZO') will stand for the maps induced by the inclusions

Gpa—“é G .

Corresponding to the above defined x-homomorphisms, we getl

e’ @, Gwh — 2 (120NN e (®_, Gph)
» e : Pe
ahd
L @ Gk Z(1%(x°)) @ (6% A4)
Pe T :

respectively

_ = ’
Ll i @, ExA— R 2N e( @, 6% A)
5 y_ﬁz_- A i Pez_ &

and

e



These ﬁ«homomornhisms are defined by
,cr't( @ 2] = L ooy @ wuxe ()
0‘0(’7 @ 5 X},) oy ey ® Ty x ol (%)

7—“(?(«25:0 5‘?) = Yepp®@Tplxp)

and respectively

i _
G-r( @ A Xh) i Z e\,r‘\r ® G.X.v" X‘I‘ O<Y(Xv)
y G: z 34 & u o
-
Gl @y x) =2 e @Tor alx )
3 e o o 4t i J 3 %y o
cly = Foe smpie ),
r Pe ZO \P PP oy P 4
where e and respectivelw e are the canoni-
{ ¥ Zg ’ “ o { P,Q’i

cal matrix units in 52(1?(x4)) and respectively in ;%(18(x0)).
Our next goal is to show the way the dbove x-homomor-
phisms enter into the final results. Let us first make the follo-

wing remark :

Remark 3. If G acts on the Hilbert B-modules & and

F , and We L(€,F) is a (not necessary G equivariant)
unitary, then W defined for ce CC(G,é ) by

Wee (t) = Wie(t))

oy

extends to a unitary Wg_éef(Go<é JG0% &) . If we denote by



t
i
§

Ug and respectively by V_ the unitary representations of

© o q

N nf - L & 2 € N
G on Gm®E& and respectively on G® # , then

V W i o r( W »
for every ge&® . It follows that the isomorphism.
o, : G X(E€) —e G X(#) induced by conjugation with
W (see remark 2. in the preceding section) acts in the fo- i
‘ |
llowing way 1 if e',e"a CC(G,E_? and G g hua'ée,(g),en(g) 5
is the corresponding function in CC(G,ﬁl(E.)) (reecall that f
- is the rank one operator & . (z) = x<yaiz> Vi dhen ?
Xy ¥ : Xy ¥ : “ ;
the automorphism ’C&v gends this function to the continuous
function G383 g +=—»n £y,
ction Gag Baler (2)), 7 a(v¥) wen(a)) & £ (F)
Moreover, the same is true for the reduced crossed pro- §
|

ducts. This means that the above W, defined on CCU},&) =

extends to a unitary W, reoz:’(G:x.rg ,.Gmr?) and that
_ : ;

conjugation with W, : vields an automorphism
\I, = 3
Xy 2 GB8 K(E) —> G%T,.%(?") , whose action on CC(G,‘%( E))
""’ % o i .

codineides with that of ol

In order to state the next lemma, let us fix the following

natural inclusions

Jo P @, Gpmh —p O (Gpxa)® X(12(XD)))

Pes pes’

i : G A —s B

(6o H)@R(1(x2)))
PEY : "

0
defined by

Sen (AT Y s D (v e )



Similarly

1 \ ‘ - £ REOA T~ y',—)-
o CHTE R (6 xA)@x (12 (x1y)
5 Aoy sty y
yez 3"4‘-"2 o

it @ 4 6 A —s @ (0w Dez(?0d)
=Y Ye Z" «.i- }\'GZ < g 3

(see definition Bel)y - lieh -ua moreover fix the isomorphisms

Bt Gl O e _O((;PMA)@:K(],Z(X;))
et ,

: e -Q A ) ‘;w \ 2 0 :
cbr P Ex,C(X7,4) —“”;@ O(‘rplx.rﬁ)@j((l (AP))
Pe .
provided by proposition 5. applied to the set Xx° with trang-—

L, o n 3 ‘ b d
versal . 3~ . Note that - . ama qbr determine elements

of KK , i.e. we may consider

[$] e xR(6wc_ (x°,4), @ SGp% A)
Peg -

i RS
[d’r]e ma((}mrc (X80 0 oOp2 A) .
el
With these notations in mind we can stete the following
lemma, where for the sake of simplicity the subscrivt in the

notation of the intersection product will be dropped (-‘i.e.



\Ji
(e
®

we donote X®YV instead of J!QQ%y). (5ee also remark 1. in

A

- Al

Lemma 15. Let j’G- y i(} 7 QG and q(‘ = be the maps
arising in the total (i.e. § = Z ) Toenlltz extension, and
ﬁ the elements constructed in the preceding section

(definitione 6. and 7. ; see also definition 8. llhen ¢

1) _
["l 2 : 2 et 07 :
Jleliles.eld] = Le'] - ko in
KK(® ,0. %A, ® GoxAi)
yezi Y pesO P ?

il A 1 _
[:Jr]«@[l(; b amilddlo e Te B Te ] un
}’f&( @ ﬂ. v Ly G’:D ”P A) 5 : :

)
[Yle(d ™ ® «y@logl = [Z]  1n
KK(;@ OGPK yGRA)
Pend Ty
Ur]@(ﬁ) IR o @ [‘IG r—\ =1z 1 in
KK(® G A,GK_A) .
lpe_zo.,. 7 ¥
Proof s The proof for the full and reduced crossed-pro«

ducts being the same, we shall prove only the former case.
i) Let us denote by ?ﬁ, ?6 e ;:iziGyp<A
X@C, (X°,8))) & 6= K ®(1Phec, (x%)®a)

>
-——-»x((;m(l &

the nmaps

‘Pt{ @ x,) = @ L‘Ot,y(xy)
el ® T, gplixg)

0 .
here B ) ec (3 :
where Lf*t,y g \eo,y ysvu Gk X(1 ( ®C (i J® A)

are the maps determined by the inclusions



and by the s-homomorphisms

ADda p——n ewv® 8?(?)@ a € 3 (12(}\,‘1)@00(}&0)@;&)
Ok SATe “
respectively

nLAS 5
hoar— o @8 @a e &’.(1“(:{,1)@(,‘0(};0)@@..).

By lemma 13. and remark 2. at the end of the preceding

section it is easy to see that

fLe o ¢ e o
{1 ot N 51 p T S "&i’() . , 2 ? ;1 ; ~ 0 A
Consider now the Hilbert CO(A ,4) module 17 )éauo(x JA)
; ity : E Dl it

with-frdivial action en 15(X"7). Ia this odce

2 {]_ ~ O 2 -:1,,!. 3} O b1 = E
G®(1°(X )®<,O(/£ A e T GKC,O(X ,A) We shall use the
second notation in this case, keeping the notation
Goc(lz(xﬂ>@>co(x°,ﬂ)) for the usual ection of & on  1°(X
The remark preceding the lemma shows that the identity map
gives rise to a unitary

Jas GM(J.?(X{’*)@cO(xO,A)) m_ e 6% C_(x°,4)

1

Conjugation with idC y taking into acecount that y  dis
X 7 5

Y = , o
fixed by Gy , shows that [?tl and respectively [‘f53 are
equal to t?%] and respectively [}fé] s, Where

g e
L 20 %A —» % (1°(X7) @ G:C_(X%,4)) o

2 o(
ye L

2 RO eere (x°,4))

]



dro defineq in the fO]]OUlng way

L A ¥ »-:-O .
18 w{ 3 ‘P'?y . (rym A — Cra((}o(,x yA) ' are the manpsg
deter, Mined by the inclusions Gy_c._,x,, G and by

43 g1 g“t(v)@} ae (;', (}{O)®A re&:pectively
A3 g, go(v)® 2€C (X% 2 A

-6
ot -
504
@
E
g
i

G o,y (x))

ile X ) = (em@ *Fo"y(xy')).

(resp. ‘?O' and Qg‘ﬂ'c Q-O ) are unitarily equivalent,

we finally get
A D e : % =
[JJ®[1G1®/a’G = ey Lo®l) @ [
s ﬁgain . lemma 13, and repapy 2. show that

[J‘OJC@[Q)“iJ@MG@[qG] = T

~

whereg 4. ®2‘_O Ptxﬁ-.;;z(,(c'mp e )@A)) S ) 1((1 (%) & A)

is the map

Ylox) . Syl
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If we consider the Hilbert A-mpdule 1°(X°)®A , first

with the usual action of G (given by the action of G on
y 9
¥%) om 15(X°)  and then with the trivisl actiom ew 1°(X°) ,

then the identic map gives rise to a unitery (remark 3.)

idy c (122)@A) — 19(x%)@ A .

s
Since conjugation with idG sends ¥ to T we get the proof

S e

We come now to.the main results.

Theorem 16. et G be a second countable group that
con hfa‘e Lt
acts continuously on the Oriented tree X . Let A Dbe a se-

3 S : v :
parable C7-algebra endowed with @& continuous G action. Then

: * L
i) If B is a separable C -algebra, then the diagram -

’t 50
KK (s, GHi) oKX (8, @Q,g&) S KKy (B, ® Gpud)
vert Pel’®

St &

Gy oo T ; ’é T
KK (8,6 M 2K (8 @ G B) I ZY (5. © Gpi A) —5> KEn(B,a%A) =0 KK (8, D Gykh)
: Ni=4 3&16 L] p&%ﬂ y&h

B o KK (B,GxA) 2 K& (8, GytA)
21 @R‘

is commutative. and has exact rows (for every ne-%%z)

c : : *® : : . :
ii) If B is an arbitrary C -algebra, then the diagram

7

& _g°® g :
Ky (C%B{i% E‘)&\__g‘g C@ @ym) m) s K}{‘. (@@ «A, g) @.-—-——- ﬂkh(GxA Q)«ﬁ—-—- &K&%gg%ﬂsﬁ)
) X /K\
X Lw oot X #t

1 ?
v v r ; 4
Kg&'(_@&"g’%\@.g{(,“(@gﬁ;&q;\‘@ o omiiciicn ‘;{{(ﬂ(@f;}ﬁg&,&) é———w——-KKn G fy B) & ngﬁ ﬁgsﬁ‘& )
4 Y& peg’



is commutative and has exact rows (for everyv‘neizﬁa).

The vertical arrows are given by the natural projection
from the full crossed products onto the reduced ones, while
3 ore the boundary mans associated to the total (i‘é, S =

= J ) Toeplitz extension ( modulo the isomorphisms inducec by

>
320 ,0x8 >0 ,(GxA® % (12 (x2))) respectively
4 g Z’i ¥ y !

ye L y €

v‘ % ‘ A .ﬂ_
3. - ® 'G,*K'A' — D ((7 74 A (6%) i‘,(“ (pr))) A).
e N ‘Zﬂ' 7 yve 2 v J

Proof: Apnlying theorem 1.1 of [29) to the total- Toeplitz
extension and then proposition 14. we get the above diagrams.
Finally the preceding lemma shows that we get precisely the

maps described in the theorem.

Theorem 17. Tn the conditions of thé preceding theoremn,

we get the following commutative 01u9r7m0 with eVﬁct TOWS .

R RS separable and the fundamental domain @\

is finite :
3
KK (ﬁ,ﬁm&\»——% ({9 <K (8, Gywh) s @ KK (8 Gpuh) MKKﬂ(ﬁ GQuA) —-—*@z}(mﬁ Gy %)

et

| b L‘-'l |

®A) p ® Kk, (8,G % A) el N (s, @xm‘————? éa RNE Gy %A

\ e
KK (8B, ¢ @ KK (8,6
nﬁ?‘ 19{“’&)%3&1' w1 Peg®

:_ 5
e Z ((@ i ) ? (‘Q. "“")ﬂ ¥ o’ Z (( o{j)f‘ (G.'i»"‘?")")) » s p%z“cpﬁ 4 ;gif&

11) TEoB dnd G\\ are arbitrery :

- petl

o Gl

Re (6w A,a);-@ KK (G %4, B) & e C{%}&(,K(& ®A ﬁ){-,«-—-—-"“' KK, (G 4,B) - zﬁi(iﬁbm‘ﬁ\ﬁ)
etV yast " J pei®

s
KK (Gua, B)e— @ KK, (GyxB,E) T D KK (& XA a} T KK (GuA, Eﬂé——' B KK (Gyh B)
yeit

Le: e o B (o, % Fo (e % oY 2l oz
Wheve U.,jiz((f ,gpt,)_(q- ;ﬂ& )) a %ﬁ,’( y ,ofg\ ngxt’ 33 ) '; Peﬁ"’ P
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3
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®

Proof: This follows from the preceding theorem znd from
el
N

the adibtivity of KK Klel theorem 3.1 s respectively from

‘..»{‘
the countable additivity of XK in the first variable L[34].

/

When specialising to K-theory, one can get rid of the

separability condition on A and of the finitness condition

S
on: BN to get

Theorem 18, Suppose: that the second couvntable group
N *
. @cts on the Orientsd tree X 8nd on the O -algebra 4.

Then the following diagram is commutative and has exact rows

L 2 . 5 iy T ; p : . -
_Kw(,ar,m} — ‘%Kh(@yum -—--.—--40 p(;z)iokn (‘QPM a) — K, (Gx#h) MS?Z’KMY( (:;35{,%)

: L ! b

> T, | T, K (axA)2 Gy X
2’:,%‘(‘@24?@@\“”5 7?3»1!(“(63%7&7 ’%QKE’IC&PE"@A) ) }’n(C?p\"A').—-a $14Km¢‘cc:-gv v‘m

Proofs For A separable one gets the above diagram
directly from theorem 16., and then one uses direct limits

to cover the general case.

The next corollary is a sharpening of the result of .
P.Julg and A.Valette of [11] . The case.of free products of

groups is due to J.Cuntz [71].

Corollary 19, If G acts on some tree, then G .is

pel

KK~amenable if and only if every stabilizer is XX-amenable.

Preof: One applies the five lemma to the diagram of
theorem 17. to get thﬁt the map from the full Cxealgebra onto
the reduced one induces &n isomorphism on K-homology. By
theorem 2.1 of ﬁ?']this is equivalent to the KK-amenability

O Ga T



The above results are especially easy to apply in the
case G (discrete) is the fundamental group of a graph of

(‘Y‘L\(“")j +4

ps. This is due to the fact Lzg ]l het G sphe on the
universal co vorlng'relaﬁive to the graph of groups, which is
2 tree whose fundamentel domsin is the inivial eraph of & rovnu,
In particular, (ifrﬁhe groph contains only one edge) we get
exact sequences for the KK groups of crosséd products by
groups that are eithef amalgamated products or HNN extensions.
(see [CILHUE)and a1 )

e conclude this paper by briefly mentioning the results
that one gets for the other Toeplitz extensions. Recall that

: 2

we have worked only with the totdl (i.e. S = glﬁ Toeplityz

xtension., This is due to the following idgt .

- < R b ~ :
ki L 1s an arbitrary nonempty subset, then one

can construct the oriented tree XS in the following way.
: el S = ;
Call two vertices P,QeX S~equivalent . Paer 0 ) Sf
4
the geodesic 1,q} contains only edges y such that

e o = el Tl Eade s e b 2L
3 @é, \ 2 e Ilcat (XS) = £ NS mnd ¥ (1{5) - }'xs

(definition 5.). If we define the origin (resp. the terminus)

30

of the edge ye X= to be the class of ofy) (resp. of sl

. e e 2
e e easy to see that we get an oriented tree

S .

and that G acts on it. Its fundamental domsin is the graph
: . o) . = S

with vertices & Auq and edges S . Moreover the total
Toeplitz extension for X? y 18 the Toeplitz extension of

s o o i = :
proposition 6. for § €¢1l- . We thus cen apply the preceding.
results to get exact sequences for all Toeplitz extensions.

- o 0 .
(Note that if pel /v, denotes the class of the vertex
i R

E&TL then Be = foep o gp ~o P}). In particular

we get the exact sequence of theorem 3.1 of (23],
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