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Abstract

For systems of conservation laws [ (1.1), (2.1), (3. l),
4.1)] one discusses.the manner in which the number of space
dimensions and/or the number of equations. influences the
structure of the set of éoncepts/restrictioﬁs connected with
the linearized wellmposedneés (see also [1],[3] ~ [8]),
Moreover (seeb[4],[8]), the remarks ofgé Fshow that in adlabatlc
gasdynamics 2D in space, it is possible to formulate, for certain
equations of state, an (exnﬂnentlal) criterion of linearized sta-
bll1tv/well posedness. This criterion doesn’t work (for instance)
for equation of state (4.3). In such a case the possibility of
linearized stability/well-posedness should be studiéd by

starting directly from the solution.
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1, LINEARLZED PROBLEH YOR & uihdf% CONSERVATION
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1.1, Wording up of linearized problem

Let us consider the Riemann problem

(1) §%+2%§Q~$O, 00 X<ooy L>»0
u, o X O
(1.2) u(x,0)
: e b faysanten O U,
T i
where u, and u, are cons tents, u, # U, s and £* # 0 on a certain domain

in which u tekes values.

4 discontinuous solution of (1. 1) satisfies, at the p01nts of a
discontinuity line, the relation
(1.3) T[] =D fu]
where [f(u)] = f(ur)mf(ue}, [ul= b uevand D denotes the speed with
which the discontinuity propagates,

't is well-known ([7]) that (1.3) is a necessary condition and

»

then we have to impose additionally to the piecewise constant solution

0]

of the Riemann problem, according to the method of characteristics,
the conditions of determinacy (through initiel data and jump relation)

(3. 4) f'(ur)<D<f'(u@).

We call (1.,4) the entropy conditions of Lax (CEL).

1

In the perturbation theory we sna*l present hereinafter in this
paragraph, the afore e~mentioned (discontinuous) solution of (1,1),(1.2)
plays the part of the “zeroth or den®,

Let £ be a parameter of the'problem, small in comparison wifh the
cénstant states adjacent to the discontinuity and also small in compa-~
rison with the magnitude of .tne jump through discontinuity

D) : Ous tutimann |

In a2 perturbation theorv. to the initial dats
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_ ae,(x) for x<0
. 0
(1.6) uo(x) =
: = -
uﬂﬁx). for x>0

the hereinbelow solution corresponds

€ :
5 (“,t) for x-Dt-w(t)< O

gl
Gl ule, t) = . =
: ur(x,t) for x-Dt-v(t)>0

The data (1.6) evolVe'according to the equations

€ ;
—&UZ £ Dae ity €
e a(ue) o 0 for x = x=Dt-¥(t)< O
ou, g U, 52
e a(ur) =t for x>0

where we denote a(u)=f'(u), and on'a line of discontinuity the Jjump

relation

‘g, £ ;
o) . -fdE o 2o (ul“ “a )
X=0¢ X=0= 1x=0 X=() e
obtained from (1.3) is satisfied, By mapping
(1,10) F=x-Dt -¥(t), t=t
(1.8) passes into :
' ok 2 ot -
- U, + [a(Ué) ~D]—= U, = {6}, = fomi X0
ol 2Xx DX
(210
< d = ? SlJ‘ 3 g = -
iU e [&(U ) - ﬂ] ] =y G e Ur siimer x>0
Dt 0.x 0%
where

€
; U(x,t) u(z,t).
For separating the first order in € we u“all assunme that er
2 g
UrO‘ Ue‘ U , ¥ depend smoothly on €& , then differentiate (1,11) and

(1.9) with respect to € and take into account
i ]
[Uéer(xﬂt) S AL | ¥ (1) £ =0

8 (85,5

- (x5, & [w(t)]’ < (%, &

c%aQ

~O €50
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ionoring, im (1.11); the dependence of x on ¢, It thus results

i e i

gRL e

;—;U &égrjezo, =0
Gl - e -
;zur+ & ;;UTZ(L x>0
(1g) AU, 2 8,0, + [u]¥', for =0
where &é,r = %(ug o) = D, and
el iR ) = ﬁo(i)., xe [R; ¥(0) = 0

The equations of the following (allowed) orders are obtained si-

milerly,

DERTNTITION 1.1 'The problemA(l,12)ﬂ(lcl4) is called the lineari-

zed problem associated wi th the 710@ ann problem,

1.2, Determinacy.

Since we have ignored - to separate the first order in € -the de-
pendence of ¥ on ¢ in (1,11), in the solution of the linearized problem-
depending on the nature of initial data-secular terms will appear,

VS Mjg
Therefore, as w~v3how through the theorem 1.1, the method described
iR 5 8 "llﬂe&rLéL“" ~ at the first order din & - the problem (1.8),(1.6)

only for certain classes of initial data,

Let us consider the class of initial data
: L o~ 0 = . 3 : :
(115 szi_ﬁogﬁeo and U, are smoth functions with compact support }

and, correspondingly, the class of functions u(A,t) with the properties
(a) for each xe¢lR, U is a Laplace original (abbreviated fo) with
respeet Lot ;

- o~ -~ . ‘- 3
(b) for each t <*s= , U, &and U, are smooth functions with compact

14
support with respect to X.
Let us denote
(Aeed0) - = {b y | U with the properties (a) and (b), Y is gg:}a
For data in Eb we shall seek in & for the solution of the lineari-

zed problem, We shall thus suppose a certain type for time growing of
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the solution, and the study of the problem will show that this as-

e

sumption is Jjustified,

dpplying the Laplace transform to (1, LQ), (1.15) end putting

o0 ..-

_§(73w) = L{f] = i Fomot dz, we find
e
al, e :
by wma +0U, - U, = 0 for z<0
¢ ax ¢ _ 0 ;
(1517) * S Rew>0
& iﬁl+w§ . =00 cfom X >0
e d;i ! i O
% % =
(1,318} 4,0, = &,U, +o[u]¥y for %=0

The solution of the system (1,17) can be represented formally ¢
(1% G e S i
Up(0,@)+4, J,uO(E)e da¥ |e yfor <l

(1.19) U(E,®) E
(w/a ) ] ~{e/a )

0
& X
¥ o o . -
Ur(O,w)+Arl'§’uo(§)e = as |e for 2e 0
0

-

s 4

In order to divide, formally, the considerations denccrning the
well-posedness of linearized problem into parts reflecting the exten-
sion corresponding to the passage from § 1, through & 2, to §¢ 3 and
4, we shall introduce hereinbelow the concepts of determinacy (through
the initial data and‘jump relations), evolutionary conditions and
stability.

In the context of § 1, the exposition of these concepts is tri-
vial and will be used onlj to support the analogy considered at page2

Let us take | '

‘(.}.29) 4,50, 4,<0

in (1.19) and put, QorrcspOndingly, the coefficients of exp[;(w/&g)ij

and exp [M(w/ar)i] equal to zero
l w/éﬂie)g

by g Ug (%e
b

x

i

dasg

(w/4_ )%
q(i)e $e

3¢ Kt é
‘ Ue(Oﬁw)
C1.21)
l

i

..‘{.‘ ¥
U,.(0, )
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The relations (1,21) are called relations of determinacy, The

conditions (1.20) are called conditions of determinacy. If these con-

ditions are fulfilled we say that the linearized problem is determi-

nate,

We shall use the two relations (1,21), together with the relation

: ] * 3 3
(1.18) to determine the three uniknowns Ué(O,w), U.(0,0) and y(«),

The formal procedure described hereinabove becomes (as we shall
see immediately) effective if the data are, for instance, in €2¢

Carrying (1,21) into (1;19) we obtain

_ o _Go(i = &yt <0
(=20 Bty =4 I =i
a. ke - a8ty x>0

o T
From (1,18) we find, by (1,21),

O : o
5 ¥ { o AT il A ne & - <]
(a0 -m[u] Yiw)= Jt“euo(”“ér)-“r uo(uurr)] e dr

which gives
(1.24) v(E) = - = [ ¥ (z)dv

From (1,22} and (1.,24) we see that for dats in f; the solution

of the linéarized problem does not contain secularities, On the other

hend, if ﬁo(i) = cos kX in (1.24) then for each t < e we have

lim v(t) = E{(4,-4_)/ [ult and so, for lk| & O, the nonlinearit
é T b1 b y

k-0

slinks even from the first order and the procedure of isolating the

linearized problem is not justified any more (in the absence of its

i

uniform validity) for t~0 (€77), Something similar happens wherein

the data do not tend quickly enough to zero when |X| — , because’

-

in that case the Laplace ime

ges L [uG(mﬁgzil and/or Llyo(m&rr)] 10

(1.23) have a singularity in « = Q.

Ee

REMARK 1.1, (i) From (1.5) we can see that the picture of fig,

1l b camnnot be obtained as a limit - when lupmdpl-w» 0 = from the



picture of fig.l1 a, 4 relation can be established only between the

¥

zeroth orders of the two pictures because the small parameter of the
perturbation expansion which leads to the linearization in fig,l o)
is free of restriction (1.5).

(ii) The deté*minacy conditions (1.20) (associated to the first

order of the perturbation theory) can be transcribed

(1.25)  alu)<p<aluy)

and so they coincide with CEL (see (1,4)). From (1,24) we see that
if these conditions are fulfilled the evolution of distortion ¥ de-

pends on the data on the whole X axis,

1.3, Linearized stability, Linearized well-posedness

e g e o e ey e 2 ™ el « 03 et 4 S .
‘DEFINITION 1.2, A solution =~ consisting of U and ¥ - of the li-

nearized problem is called stable/unstable if it is kept bounded/

grows boundlessly when t —»ee , We say, correspondingly, that the dis-
continuous solution considered for the Riemann problem is (linearized)

:
L3

. stable/unstable, The linearized problem with data in the class KO

said to be well-posed in the class K if (it attaches to each element

in KO a unique and stable solution in K, that is,) it is determined

and stable in X,

THEOREM 1,1, If the conditions (1,20) are fulfilled then the li-
nearized problem with data in fb is well-posed in the class €,

4 iccording to (1,22) and (1,24).P

REMARK 1,2, The hypotheses of the theorem 1.1 do not impose on
the value uy, and u, but the ordering restriction U, < Upe

2, LINEARIZED PROBLEM FOR A SYSTEM OF CONSERVATION LAWS,

1D IN SPACE

2,1, Wording up of linearized problem

&

0

Let us extend now, in case of systems of conservation laws, the

g5

results of § 1, The Riemamn problem takes then the form
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i u : :
Lol .S*C e aflu) _ O, coochcoo oy B0
; . U, for E<0
(233‘- u<x70)
U, for X >0

where u and £ are vector functions with n components and u,, u, are

£

‘constent arbitrary vectors, U, # Uge

In 2,1-2,.% we shall suppose that u,, u, are sufficiently close
in R* and so related (see lemma 2,1 here in below) that the solution
Riemann problem should contain only a j-shock ([7]) together with

the constant regions adjecent to it, This solution satisfies, at the

points of the discontinuity line, the relations (analogous to (1.3))

3) C o [sw] =1 [v]
It is well-known ([7])) that, on the considered j-shock disconti-

nuity, the determinacy csﬂditions CEL (1.4) can be extended as ( A

' are the eigenvalues of matrix a(u) = (°f; /Bu 1)

s (u )<D<7\ (u,)
(254)

kjnl{ug)<33<?\ (u,)

Jnl

in the perturbation fheory vie shal} present hereinafter in this
paragraph, this (j-shock) solution plays the pért of the "zeroth
order",

According to [2] and [7] we can formulate

;ggggwg odet Beds dn (2.1) . Gives Up as_alstate on the left,
the set of vectors . which‘cam be joined (as states on the right)
with u, by a j-shock lay, in & conveniently close neighbourhocod, on
a (unique) smooth curve
@.5) - wa S e n

93 KO,uS) = 0

” M1 : 5 S .
which is C ~ with respect to &, u_. and for which

5]

(i) u_ is not a singular point
7 L=



!
(aa) e

de |€=0

J 00,
[:D)_(u) o gr&idu )\j(l.l)] uzus

(1i1) D(O,ug) = A (u)

(R is a right eigenvector of matr

In the followin

5

i P ey £
g we shall prese

1

odn oLt

a(u)).

2t -
and choose the length of R so that R-gr&duﬁj =l

Let € be &

Ggern ol

The expressions (1,6) and. (1,7) and the notations of

nt (2.5) (given g, U ) a5 1 =
small parameter of the problem, characterized the

32
S

—
no

@
N

LTS

11

sainme

1 have a

vectorial enalogue here., In particular motivating as in 1,1 we find

for the linearized problem the following form

(i2it)

(. 208)

(2.9)

with 4(u) = a(u) - DI, I

‘ji‘v

iw

N\
S
¥l

—2: ﬁf o+ Al" -2:
2t X
L ‘\1" o 3 /Tu e
boUn = 4,0,

U(z,0) = ¥y,

ad

Uy =0

U =0

r

Tulv!

%

the unit matrix,

£

T o1

ZeR ; w(0)

2.2, Determinscy. Evolutionary conditions

i
©

We suppose that the matrices ﬁ@ and 4, are nonsingular and have

distinct eigenvalues, A;<A,< ., <7 ,

We shall use here the classes fovana.%’introduced the same as in

S

Using the Laplace transform in (2,7) and (2.8) we find

k2 0)

il

—x.
du, >
gl =~ 1
s é
azt

-y .X>

3 :

'LUT' o X ar
o { 1 g

ek @ U_ﬁ -~ U

X

0

=

Tor

for

for .
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i &
The systems(2,10) can be put in the form
I s - =L sl
(2.12) gl PU A5 P cwli = o =ik U
dx :

Since the matrices 4 and P have the same eigenvectors and the ei-
i A
genvalues 7 of &, the eigenvalues » of P and the eigenvalues A of a

. are related by

0 2 - 3'\ A
(‘—-c-ﬁ-)) : i it 7%\"; g :'L e i Sk D

it follows that the solution of (2,10) can be (formally) represented by

= i & CIJE C()::
B . T oy AlueDe i A (), J =D
Z%R{LemIW)w)uln%'[uoﬁ)e }~ kel
(2 14) U("'Q))—"< : w¥ w5
Plae $ o % - - = A
Bk o B oo O UL L ELIED
Z; Rr{LﬁUf(O’w)+lr‘“r /;uO(E)e a?}e , S
=k 0 :
(2.15) . 2 T =4,0 + w[u]¥ f' x =0
. 5. Ao = he'e’- u s or e

where R,L are right/left eigenvectors of A4,

Let us extend w the formal procmuuro introduced in 1,2 (uee
(1,20)~-(1.24) ). YWhen 2. (ue)>-u/% (u )< D we shall annul the coefficient
of exp {= [wﬁ/(ki(ug)»Dﬂ} /GXp{w[wi/(hi(ur)wﬂﬂ} in (2.14) obtaining for

a given 1, 1<€i<n, a relation of determinacy.

DEFINITION 2,2, We say that the linearized problem is determined

if the number of linear algebraic equations - having ¥ and the compo-
nents of @e(o,w), ﬁr(o,w) as unknowns - of the system which consists
of determinacy relations and Jjump relations (2,15) is equal to 2n+l,

Since at the zero and first orders of the perturbation theory a
determinacy relﬂtlon associates to an approaching (convcr gent) charac-
teristic, we can 9331ly prove

THEOREM 2,1, The linearized problem is determined iff the condi-

Tiohe CBL (2,4) hold,

If (2.4) are satisfied then we hawve to pose inm (2,14):



L3y

- 12 -

j . SR Ltle5 =D
e (L w) R "Te e / xJ ( )O dg
sp«cueeaoeiaaooealo : MJE
o n : h1(u£5~b
; Z'U (\/"A’))“" “".Lleﬁcxe f"&l ( )e - 4 dE :
(2016) \ ) Q)E
ki ' e e A (u)=0
Ty / e Lt ~ e -
i&,dr}o,m) Lo JL%#E)G as

@ 6 ¢ & € D 6O © &6 ¢ @ & C ¢ B & O C g -
wE
\u =0
J

J' e
L .U (0, w)~ lf us(%)e ag

The rel 3tlons(2 15 dnd (2,16) make up a linear algebraic system

of 2n+l equations for 2n+l unknowns, Ue(o,w), U (O w) and W . &ftoe

an eas ;~—alrangenent, taking into account that (A-D)L=L4, we can
2.16),
give idwfﬁwjz) uhe form

J % T J
G . ~ I LS -,
Ifg rg(O,W): Le*[o U.O "LRJ(U£) wi}]f} (2] d'E—- gz
n oa e =
1,000, )= - ( RERRET
: U REDE 6
G2} : Ibﬁf(o,w)z Lr‘j U{ [3 (u );ﬂt}e “Fdr= e
o]
e i G
LI.,UI,(O?CO): f u){ B (uljwo7z}e = g,

. ;
UI‘<O’[\‘J) = -.’,,. é} Ue((} ‘d) =+ GJ.EL [u]] q)

We shall use the lemma 2,1 in order to prove

é&iﬁﬁ;ﬁ,g, If in the problem (2.1), (2,2)'ue and u, are linked

by a Jj-shock and are conveniently close, then for the system (2,17)

there exist @ unique solution,

©

a8
it

. %*
4 By expressing, from the last n relations & i Ur(O,m) with

o oy o H :
respect to Ug(o,w) and ¥ we can find Ue(o,w} and ¢ Trom the systenm



(2,21) lim
. E,->O
18 n
Sil’lCC‘ IJe, e e e ,Le
-shock
(2. 22)
The fact that

results from (2.19)
REMARK 2,2, It

(2.6) we have [ul—0 -

Zero - udd[IU ll =iy H

[z

kl_" )
I

are independent we

pmd ulE ) -ulo)

3

find from: (2.21) that for

lhn[lj(ur) e i 4, #0

£90

- Tor &
for u, nd ur

22). b

and (2,

is easy

ﬁur~ugﬂ —> (0, the matrices ée.

“~s

6]

u~¢’o,

to formulate

an

and A_ become

i

th ough, usually, 1?1

1alogue of remark

o

does

singular and

not tend

of n+l eguations
: —3{’ 9 '
¥ : IJe‘.Ug(Osw) = ge 3 kz;},..,,n
(2.18)
g o 8 8
ol T AT =
1,'1:‘&.? L;g(}e (09w> WY er;f {EU]} tgr’ ED*'.}.., o e o9 J
carm&% ' : : 3
The proof¥Yto an end if, denoting by A the discriminant of the
system (2,17), we show that 48 # O when [u] # O and u,, u, are close
enougly,
According to lemma 2,1 we write
(2.19) A =% ay
where
J J J
el Lgo ces Top o
>3'¢& e & @ 8 6 & @ G’.'O.
n n n
o : I 0
_.‘el ,_‘ez .uen (,
Ak . i
(2e20> A ~1 7 a“‘lf l "'l Ua(E)“’u\O)
B (L e e e S (b Aok Lol :
"00‘ @ 8 2 0 ¢ & v @ e ¢ ¢ 0 9 6 & O
Lo e e il ot a@-u)
JP( u.e 1 _u t; Lg r) e s o v} ‘ ..,é n I“I" _é
% 1ok
and we have, when L R = Sik’

a

conveniently close - we have A # O,
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DEFINITION 2,3, The requirements of lemma 2,2 which guarantee

that U, and u, are linked by & j-shock and that a unique solution

exists for the system (2.17) are called evolutionary conditions.

e ey 1

In the context of § 2 the set of evolutionary conditions contains
the determinacy conditions CEL together with the (possible) demand
that U, and ., should be close, Lrow (A2 und (1.24) it appears
that in case of a single conservation law 1D in space, the evolutio-

nary conditions come down to determinacy conditions (see remark 1,2).

2.3, Linearized stability, Linearized well-posedness

According to lemma 2,2 we can exXpress

e | - B =
w@:bej’uoim[%j(Ué)mD]t}e “”ﬁi+,.e+be£ uoiu[ﬁn(ue)—xﬂz}e “Tdz+

Q

= S =
(uf ~€ﬂr}@.w2dz+e..+br£ uo{~[3j(ur)“lﬂr}€3 T

e

1(-: -t

o J .
oo [ Hf-Dylup) -Dle} az+ 5;1 b, ¥ f-[r(u)-D)<}ax
o i o

PN
no
.
n
S
St
-€
PN
o
S’
i
i M s
o

It is easy to formulate an analogue of definition 1.2,
h}

We shall now extend the theorem 1,1 by

THEOREM 2,2, If the evolutionary conditions are ful 1filled then

inearized problem with data in ﬁg is well-posed in the class ¥,

—

the

4 iccording to (2,24) and Haar estimates (see [3],[9]). P

% LINLARLZED EQUMQJA FOR A SYSTEM OF CONSLRVATION LAWS, 2D

CY A fl \
1\T \OJ—)A

5.1, Wording up of 31n sarized problem

.

Let us now extend, in case of two space dimensions, the conside-

Wal] £
ons-of ot 2,

(w,

rat:

Instead of the problem (2,1), (2,2) we have here



Sl

(3.1) ou - ofly) . 9elu)

= Q
et X ( ?y
. 0l for x<0
= 4
)oa) ul(x,y,o0) ,
., for ot

where u, f and g are vector functions with w components and ué, u,
are constant arbitrary<vectops, Uy #H

In 3.1 - %3,% we shall assume that U,y U, are convehiently close
in B and so related that the solution of the problem should contain
only one shock together with the constant regions édjacent e 1t

-

On the shock linm the jump conditions

(3.3) o] 3% + [etw] 3 + [ew] 20

are fulfilled.

REMARK 3,1, In case or steady and normal shock discontinuity, tne

.possibility or such a solution/the nature oI dcnands formulated above

)

ig similar to that presented in § 2.
The small parameter & of the problem has to be characterized the

Proceeding as in 1.1 and 2,1 but using instead of (1.10) the

mapping
- & - e :
(Bad) - = Gom = =iy t) R E ey s

we find for the line afléed problen the LCLlONng form

D~ ~ ~ -

2T, + 4, T, +bluy) =T, =0, F<0
: T 0% 2y
(660
' 2h e 2T syl oEo e
L0ib) | AT = k'ﬁ + [u]pzmv'+ [ﬁ(u)] ijl o = =0

S ST ‘e 6 .B'E O» _bfy__; s <2

) , Ul 7,00 = ﬁo(ﬁé,:}), ¥(7,0)

with notations similar to those of §§ 1,2,
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%.2, Determinacy, Evolutionary conditions

We assume that the system (3%,1) is utvlcu1J hyperbolic with t
time-like which means, in 2D, imposing - in either adjacent region
of aiscontinuity ~ the condition that for every A, vy €RR we are able

to rind n real distinct roots «w(A,v) of the equation

£5.8) : det[w1-+ﬁﬂ‘%bv]r

Since the discontinuity is nO“ﬂuL, we' shall consider solutions
gf the form

(3.9) [ uz,7,%), ¥ (7, t)] e~ I%I [1(%,%), ¥(D)]

L) > e A
Capring (3.9) into (3.5) end (3,0) we obtain
? pd 3 ~ : ~ -
e % - lxb, U, = O, X<0

£¢

(3:10) '() ~ “_’ 'a ~ & ~ : -
: -;E Ul’ o ar ;;’:E U‘I" o ldbl’bl" = Q, x>0

T AU, = Aeﬁé + fuJv'(t) - iu Jg(w) ]y for ¥ =0

Using the Laplace transform we find, as in (2. 00) - for either
system (3.10) the form

5.2 : e L

i
HJ
(G
&
L)

where

(3.13) st Do gl e
to which we add, according to (3.11l), the jump rﬁlatlons
Geal AU, le% +{wu] ~ Lx[JLU]}‘V for X=0

A - .
bs cin 2.2, We denote by A the eigenvalues of matrix P, Using the

remark 5,1, we can prove an analogue of the theorem 2,1,

THEOREM 3,1, The linearized problem is determined iff the con-
ditions
’ % ( % (
Re A.(u Re A -
Re r)>(3>*‘ i ug)

Pe ; (u£)>(J>JK,AJ l(ur)

are fulfilled for some index Jj, 1< j¢n.
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o 17"”

..... 1 . ) 1" . P A
i (/,ﬂj) hold then J 18 the number of the elgenvalues A for
: i AR e gl yie . e : e
which we have ReA>0 10 the right-handegd Eerleon of QlSCOﬂtanltye

: ; ¢ A .
Since the eigenvalues A depend on w and o )

s J.might depend on .

and «

&

THEOREY S ([6]), The number Jj is independent N o and o

4 If the number J depends on and «, we can fing (wb’°<o> so tha

A A : ’ : -
Re'%(ub,ac) = 0. The eigenvalues 2 can be determined, according to

(543} by

(3.16) det [wI +24 - ieth]
with the restriction Re w>0Q imposed by the Ia Laplace transform, in
(wo,xo)} (3.16) gives

det[F e T +(Im%)&-ab3::0
h

and, since tne System is hyperbolic, we ave (according to (3.8))

Tn{iw) = we @ = Oifor every Im%eﬁ%and xelR, P

REMARK 5,2,

td) dn analogue, easy 4o formulate, of remark 2,2 works

AL DL Lo

&)

b

n case ot g steady and normay shock lemma 2.l keeps valig

(according to the remsrk J.1: the formalation of the analogue of

lemma 2,1 depends only on the nature of f ip (B 208 lenin 2

can be easily extended (however itg formulation depends on the

e na- .
ture of g in (3.1)),

1ii) The aeherJlnqcy COPQlt ons (3,15) together with the {pog-
sible) restriction (mentioned in (i1)) <that Ugs. U, are close, con-

stitute the set of evolutionapy conditions,
e el Sl i/

B Linearized stability, Linearized well-posedness

DE?iNITION 5.2, We s8y that the. discontinuous solution conside-

reuYﬁn able if we can Tind, at least for s value of e R, a soly-

tion,(?.@) - Qonsi&ting of U and ¥ - of linearigzed problem

which
grows boundlessly when t - ee |, The discontinuous solution is calleq

haatd b‘%l/
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A
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stable if the solution (%.9) of the linearized problem is kept boun~

ded, for every «€ R, when t -re=.
To prove the well-posedness e 1Lewr zed problem we have to
show again that this problem is voluplouhwy and stable,

From theorems%,1 and %,2 it appears that the pac ssing from 1D to

2D keeps unchangedithe form/the nature of evolutionary conditions,

O the other hand, the szao;?xtj result oi theorem 2, 2 cannot

be obtained any more wnLLnouL a new r@striction. Indeed, the {aar

estimates (see [3],[9])show that the stability of selltion of linee-

rized problem depends on the stability of ¥, In 20:lbe distribution

of singularities of ¥ depends one«, Let ¥ = [d(w,«)/L{w,«)]| be the
expression’ obtained accordlnU to the analogue of lemma 2,2, The func-

3

tion g (see (%.1)) contributes by I(w s ato tha stability conditions.
When o= 0 this contrloutm on vanishes [io rether with the depen@oace'
on-?; according to (3.9)]; Llw, 0) has only one zero in @= 0, How-
ever, when « # 0, it is possible - depending on the form f and g in
(3,1) - that some of the zeros of L{w,«) be placed in the region
Rew>( thus 'prllg instability even for data in R

wa At\LRK. §

(i) In 2D we require stability for all «e R, peticularly fer

)

= 0, Then we shall take data in &

(ii) When o # O we have to rind the conditions for which the ze-

ros of IL{w,«) are all placed in Rew<0O, This is the new restriction
we mentioned hereinabove,

Tn the context of pasdynamics it can be shown that these condi-

tions do not depend on « and are related, as we have already mentio-

ned, only on the form of £ and z in (3.1), This form depends in its

w2

turn on the equation of state considered. Such eriteris of stability

.are given in F4] and [ 8 ] (se [ 5] for magnetodynamics). A stability

criterion removes the exponentially uns table evolutions.



' sibility of (nonexponential) stability. Such a study is pres

: , : p SERCINEN
(4.,3) p = »Q-gyexp-g i’}

Lo

(1ii) For certain equations of state, the condition Rew<0 can-

ok

not be fulfilled strictly, under stability POQLL”GM@ntS, by the set

,«4

of zeros of L{w,x). In such & case, when (a part of) zeros of Ilw,«)

&

are placed on the line Rew= 0, we have expli citly to stu&y the pos~

nted

{J

'im— : 4‘&

The schema 5,1 compares the facts on A e

4. LINEARIZED PROBLEM FOR THE SYSTEM OF CONSERVATION Lalis,

2D IN uigvu, OF - LDIABATIC GASDYIN&IICS

4,1, Wording up of linearized problem

Tet us now rema ke the considerations of § % starting, in adia-

patic gasdynamics (with the usual notations), from the problem

2len) ?(yuz) cokpuN) o 9D 0
2t 2 X Y % :

(4.1) 2
2le) oaleuv) 2lev
2t 2 X Y 2V

3 (olor 3:2ev?]} + 2foulir 20200} + Liguir FunPy) =

o

(Dol 840 Fonin il
- i et o
(4.2) (p,u,v,s)tmD = S _
; \Y}f),u ,Vz,wz) .I?Or X}O
3 @ iy e 1 : ) PO - > . ) o ha) ___ ) T 4 * . %
togetner with the equation ol state e = Col = %:T - which we shall

write in the form

The Jjump relatjon on discontinuity line have the form
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oy one'equation

5 determinacy
conditions

A

(152000 or (15,25)

Y

evolutionary]
conditions S

stability

s

: data in ZO‘

N

well-posedness

o

§ 2 | 1D, systems

determinacy conditions S

(<}

> 7
¢ 4 2:49)
N
(possible)new restriction
- ‘the requirement of con- 7
venient nearness of u_,up N
evolutionary :
o > <« data in .
conditions |7 S 2‘?0
N
e
[stability i
e
Y
iwell-_posednesg‘
: ; 4
&3 2D, systems
5 determinacy conditions (3.15)
/ i
: ; dataiin e 0
the requirement of convenient., :
nearness of u,.,Up !
\‘/
new restriction
; the singularities of
& 5 S .
evolutionaryi—s3 <= % should be in Rewsl
conditions R '

| stability |

%wellwposedness
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(12 + [e]2 + [v] 2 -

[yL}._]j ;;% * E:p -*i* gug:ﬂ %E: [gmv:ﬂ
(4.4) %

[ov] 5% + Eguvﬂ fi [p + ?V2j1§§ =0
[ofr 322 ] 2 + [oulir 32?312 + [vfie 3o ] -0

and, in the adjacent regions of discontinuity, we shall use - in
place of (4,1)4 - the concave extension of: (4,1)

v e
(4.1)4 "'""Tt: g8 =0

where s = ¢3 is the entropy.

Given (pl,ul,vl,sl) as 8 state before discontinuity, we can fl nd
(pz,ug,v2,82) on t@e curve of states which can be related with
(pl’ul’vl’sl) by & steady discontinuity. In case of a normal discon=-
tinnity for this eurwve the lenmg 2.1 18 valid,

w@Jshall write the problem in a dimensionless form by taking the

cheracteristic values
: 1 e o G : 5 2 - 5 0
[t] = gga Ll = L iTei= 2o ful = cos [p] = 8505, [8]l = ¢, ¢ “‘Y'?

and denoting

U - u}.. % ,V z‘:‘}; , —}Eg :‘{5._ : pl e C:};

¢ n Ll geiie R TER

(4‘05) / 5 *
; : 121 d Vv o S
st R e e
5 SR e T R s

(furt herno e we shall ignore the labels of perturbations which corres-

>

pond to the region after discontinuity).

The zeroth order of the Jjump relations gives

- e e Y 5 = e e o
(4‘0) i‘;.fz:g"iﬂ’ 'P“““‘?::i'.ﬁ(lmmlm) g .L4.‘ ) m" (Lnlp""l L.P) = ’? Ia. (.Lw’lt‘ - Il ).

srom (4,6) we can obta:?_n, in particular,

«

G ) : (Yél)ﬁz — (v+1)MM + 2 = O

For a normal discontinuity we have M = O and, for & 4-shock, O<li<l,
o)



In this context,

(4.8

where

(4.9)

=

and

4.10)

where

(dsdl)

4lso

(»

where +/~ labels

- DT =

systen (3,10) may be written

<
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“re

ax %
for x>0
“:é,_ -+ .3“)’ - j«p = O
T
B o 3 W
Lo 4 ) = (
'f)' = ?‘4* S
, the relations (3.11) become
S =a..5 +a P +a, .0 +a,,V b ~i«c, V¥
L TR T
= ey G e B 45 N{ &) 4 o~
D, =8595 Agggnfu25“mﬁqptv b w’ 1d02v .
, for x = 0O

Y. =8.,-F +a,.p +8n.u +a.,V +b, v it Co¥
Mgty B ‘Bap« e 3

i ter/front side of discontinuity and we have
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3 1_2
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- (0} E
i g[g mﬂim e M_] - 1mv = re - ds
2 0
M™=1 Id M

: oo e == gy : ? -"‘2
(4,21) L(3) = 2°5[r(@) +2] + (1 - w2 - ge)

For the considerations which follow it is convenient to put

oa Bl G s GElee. o o0 Rl e
I‘Jl(a)) = W [tﬁy,L - ?IQJ.“‘L& ) e 2}-&'. ] + o (3—"‘;}‘? )"‘ 21‘»’1 C()[G(Cd) - l‘)&):]
R . L0 =D o
I\Jz(w) {[ﬂ w0 L1 ;] e a0 }*i* 2 «2(3}%‘;2)

e SRR e e
Since l<‘{<-% s for I1<1 we obtain easily from (4,7)

RS e e

(4,2%) U = T(LM) > 2 > 2t >0
‘By seeking for the roots of Nz(a), we shall remark that the

diseriminant A is strictly positive :

A

il

= o 2l
[«ftaaty] 2 {[as 5 (102 -204]2 - [(2;;.21. 5 (14%)) % ]} =
(2M%%) 2(1-10° )ﬂ(g-Mg) = B (2=%)2 (1427 (1 - u)

[bJ (4, 7)] l g[ocm(l-r’ )J‘*‘;O

H

Then we have
2y
5 = WZ) - = @ [G(w) - 1nw]
(4’524> e P :)\
L{@) ' (@0 +w )(w‘*'rw )

where
e G
(ae: [2m2~§(l~j“)+2m5} l, = LAU/B”x~§(1~1 )= 'ﬂ}7f2
= : o lde 172
..{ Prag?y (AL 2 (Yﬂ) s
5 =

e oo (2IM-1)° - N2

ML) 1/2

G, = {Caad] s [22 - 30ad) - a8]}1/2

end, according to (4,23), in (4,25) the expresaions under the radi-
cal are positive.

REMARK 4.1, The gasdyns mic context related to (4,3) has the
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following peculiarities
: S :
- We do not restrict U, ang ug to be close
Gy b X '3? g
- for. every ch, the singularities of w are all placed on

and Flo) = L [£] then

e l ey t

b 17

(s-iit) £ (2 “‘“") ds } at
1-K

S i 'n" T
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However, let us remark, sccerding
e
i o B
~v[tor(w?+1) 2]

e i
i [.L (P ((0 ‘;"l) 5 2“] i [ i’(v) @ : dv =
- :

]
"3
N
<
Soee?
D
i
]
=
£
e,
sa
Ny
C
Bt
ps
N
L
@
b4

By lemma 4.1 it follows LdSLly that

N
B
5 ]
D).
o
P’
e
£
N
c}_

e 5 & A2
!«Kl»lezttL!E¢&t£~ e ]
o »} M: g T, - : = ‘ i C‘ ‘
- i v ARl ]1[ 2 . *] as
e ; ¥ :

2 o
)nt (x i

)

loe) 21C 1 e

The expression of ¥ then tomes, using the tables, from (g.28,
&4'024) 3, (40:“‘-9) g Zs‘—‘\)) Qfld (4‘928)0
4.3, Linearized stability, well-posedness
The linearized problem (4,8) - (4.1%) with data
i i ) ‘lu.ﬁ, (L 4818

trom % is well-posed in the class ¢,

4 From (4.8) it appears, using (4.28), that for dats in f. Y
_ ; 5

k)

ey ot . - fid + 1 e e
and ¥ are bpundc}, The theorem then follows

Nt

by the Haar estimate s(EﬂI)

5. THE (EXPONENTIAL) INSTABILITY CRITERION OF NYQUIST AND ERPENBECK.

i TR e b ey b L e SO o _,

To complete the picture given by the previous pu? 2graphes we
add here & review of the important paper [4].

For the case of general (dimensionless) equation of state

B =0 0B

VoS
U
<
e
A

e
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the'expression (4,21) ftakes the form

\¥P

= = i T e
(5.2} Llw) = §12-u(H-10) oT %’3} w [ (@) + 0]+ (1-i i )

Lot us Gescribe, first, the correspondence established by

(5,2) between the complex plenes o and L .
We set a)»;a,L,AD (i8) and consider the arithmetic determi
: o : o . o
nation of the function a(m) = el [M°2" exp (210)+(1-1")
imaginary axis of the plane w ,

B e
between the points + 1 [(lwma) /‘/uj* n the axis Rew= O (for the

afore-mentioned cut we shall consider the points Rew= 0O+) ‘we fin

the folloy j“, expressions forl«lmz Tk &
5.5)
-7 {21410 110 ¥ 5aT
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§
ot
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£
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i
e

vn!

3 (142) GE10 = 2RV ivud o-t(Hi-
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gT 2

where (the dimensionless) ¢ = 1, By noting

(5.4) ' g

1) For the dimensionless equation of state (4.3), p=lg u%p[Y\“-
. pie '
PLelV Gt 2amt o ]..,

i

el From (4.7) Bnd (5,20 L0 theh results
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WE ean prese ent the previous eXpressions as

& &

( :
= LaR1em s, (0)+ F5(1-00) (-0 BE_(7) +(1-i0%)

& 4 ;
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whereg the

: 1
1) B (p)sr+(r? -

A

(

are described in fig.Z2.
ext, we discuss some.facts of the rrespondence bu’wmen
LEMMA 5.1,
iy 3 :>O then Re L(w) has on the axis Re w= 0 either two
or 8ix 20108 symmetrically pleccd with respect to the origin.,

(ii) If F< 0 then Re L{w) has no zeros on the axis Rew= 0,

4 1In tng case F>0; v we shall consider first
b

the situation

‘\‘T]

(5.8) e Ml L)

and analyse the following circumstances

I“_):)’ J..&OL "g')
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wnere (@ LCo*m11( - o ‘the 1 ufe 2 a§+(r) ig a convex pynction which
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*ion'withffiaite Timit for T el s Thereiore 1L the right pracket of
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he results of lemma et corresponding -to 5.,8) and (2
ely are

Given sizn © we thus have for he L{w)

one Zero in

in the circumstances Sy

S e e s s inotie CLFCDJSt&nCQS Sqpp9 2

; (e
three zZ€ros of which one 11 r<*w~w~mmw-¢n thie
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L circumnstances S 3
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another description of the results of 1uund 5.1 is presen-
ted in fig.b.

According to 5,0) we can depict Im 1lw) aain fig S

1,et us now consider in the plane w the contourYdepicted in
fig,7 whose senicircular part has a sufficiently large radius, &4t

the pointsof this arc we have

= - o g e
L(w)m;g?%lﬁm)r exp (2i8).

The contours that corr respond to ¢ in the plane L according
- ACLLT 2 a -8 o s o R e S B
’LO Cl‘ Gl x_) L,ufle,u ‘.)?Ll, s )l’ 1 0147 0235 L)lr' 3 ».J22’ WAy are QI‘&){)&/IALJS\

~7

I ERg e

T

ve can now fornulate the (exponential) instability criterion

of ~ﬂcaouvwﬁ

THEOREM 5.1. The- linearized problem 18 C\poﬁhﬁhl 11y unsta-

ple if F<O.
4 Let W be the number of zeros of the function L{@) in Rew > ¢

iccording to the argunent principle it appears that ¥ = 0 if F>0

s ik

say that the 1inearized problem is




e o = - s s = - I

- B2 -

+tiellv stable. The possibility of a JOU"QX)OJ”HEWG3 inetability cen-
i o o

2
.m_w.‘ ot 745

not be excluded generally. The theorem 4,1 shows that for the (usual)
eq'dth n of state (4,3) the linearized problean islgigggg.

(ii) The requirement >0 cén be presented, taking into ac-
count (5.4), as the demsnd

D
eobl £ ol

. ~ which ought to be added to the Weyl (thermodynemic) assumptions in

order to delimitate a class of,equations of state for which the ex-

ponential instability of the linearized problem is removed.
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ABPENDIX: The Haar estimates (see, for example, E9])

YU

Let us consider the system
(1) == g + A == g + B,g =0
with A and B, constant matrices Esee (230 3l /04, 8, (4.10)].

The eigenvalues A],..;,Rn of matrix A are neal and distinct.

Let P be a matrix which diagonalizes A :

=1 ;
(2) p ‘AP=D=d1.ag{7\l,.“,7\n}
and put v=P“lq;‘Multiplyinq (1 by Bit borthie Bt weoting
: 2 2 - Ty
(3 ) : *é-“E AV D;g’; v+ Bv = 0 ’ B=p B.].P

Let us ‘take the point (F,9), 950, Byyintegrating (3) along

the characteristics we obtain

=

_.l
© s - = %
Bijvj(Xi,t)dt, l.él\_g, g=P “g,

7
(4) vil’(g,»z?=gi[xi(o ;‘%ﬁZ)}Jj‘}%

where the points EXE,?) andfgi{xi(O;E,Q),O] are in. gorrespondens
ce as belonging to the characteristic_szi(t;g,v).

Let now [kl,xzj be a compact interval of the real axis.
We denote by D% the closure of the intersection of the determina-

cy domain.of this interval with the strip 0 <t < @i and put
H= e i w(@)l , [ lvy] < max b
‘ QéDvL l<ign &

Let R(xg, tR)é:";D71 be ‘a‘polnt et which | wl@ils reaches ithe
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value: “H . Deneting

_ nq” : = ma>‘< SU,R igi (X)} ’ Koi=max tB-L l
[Xl'x2] 1<i4n XG{Xl,x2] i J
we obtain from (4)
e e el = B g max v, (R =
Tlien -
‘tR n
= max|g, (R,)- [ * (T B, .v.)dt[< lg) +nyKH
: : e
j %y, x,]
and further
Hf‘-c("Z)”g“ ¢ C('7Z) = "I’:“H;Z“R Eor ’)Z_<}1~I7\:

When %>(1/nK) the procedure has to be repeated. Let us ad-
vance, in this case, by strips of breadth 1/2nK. and parallel to

axis t=0. In such a strip C(9)¢2 so that

(5) HE 2 gy <2 ligy
Lxl,x2]

where the constant lgll majorizes the initial data (on a given in=

.terval).

The mentioned procedure can be applied directly to the pro-
blem (4.8), (4,.14)l because the determinaéy domain of the interva
vx<:OL L0 issthe whole region X< 0 it =0, L stlevinitial dats
are bounded, then from (5) the solution (corresponding to them,

in the domain of determinacy) is bounded.

To study the mixed problem .(4.10), (4.12), (4.14)

o

need, moreover, the expression of ¥. In fig.8 we depict, in such

a ‘ease,. the ourverwhiech) carries the: initial (ﬁb) or boundary (V)
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data and its domain of determinacy. The procedure expounded abo-
ve keeps valid if one makes certain minor and obvious modifica-
tions related to the estimates corresponding to the points of dis

continuity. The boundedness of solution depends now, moreover, on

the boundedness of ¥ andy ',

The estimate (5), and the analogue estimates which corres-

pond to the mixed problem, have to be regarded as Haar estimates

because they allow to evaluate the solution by means of initial

and boundary data.




