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" Rigidity properties
RIGIDITY PROPERTIES OF C W"f PACT LIE GROUPS

MODULO MAXIMAL TORI
Stefan PAPADIMA

1. Introduetion and Statement of Main Resulis
When ftrying to undersmnd the topoldgical symmetry of homogenous
spaées of the form M = G/K, where G-and K are compact connected Lie groups of
the same rank, one is quickly led to concentrate on the cohomological aspect, for
several reasons. First of all, the cohomology algebras (for’ characteristic zero
coefficients ) have nice convenient descriptions in terms of invariants of Wey].

groups [4]. Next, it is known that, for two such manifolds M and M, the set of

 homotopy classes of maps between their rationalizations is in natural bijection with

the set of graded algebra morphisms between their rational eohomology algebras
(see the proof of Theorem 1.1 [10]). Moreover since they are i-connected finite
formal complexes [24], it follows, again by [24], that the knowledge of {M iUy }

l

of rational cohomology morphisms, offers the homotopy classification of maps
between M and M', up to finite ambiguity (see also [101, [22], [16]). Various kinds 03”
applications are possible, see e.g. Corollary 1. ’3 and Theorems 1.4 - 1.6 below.

The main aim of this paper is to begin a szys;tematie study of cohomology. :
mltomor[;-}.w.k,mq of such M, both cver @ and over %; here we shall be concerned only
with the case K = T, a maximal torus, which is the most natufa.’s to start with. In
’the_ last decade much work has been done in't‘ne direction of determining the
rational ecohomology endomorphisms and/or‘; automorphisms of complex flag

manifolds M = G/K = Ulngt... +n§ ) mod Uln) X... X Uln, ), see e.g. [10], [19], [17]
and their references. The methods were based more or less on dire¢t comput tations
using the special features of the coh omological 5;‘€.s‘ua‘:ture of complex flags and

complete results are available m‘.}y in a fev‘ particular cases (up to our present

knowledge).



For M = G/T, G eompact connected arbitrary, we obtasin a complete and simple
eseription of the cohomological symmetry (both rational and integral). Qur
method relies on the relationship between the invariants D? the Weyl group m'a(;E the
geometry of the Stiefel diagram .of G and it was inspired by the results for
classifying spaces of [2]; it has the advantage of working umf,orm}y and of
minimizing the computational effort.

The proofs of the results on cohomology autormorphisms occupy the next
section. In more detail, recall that the Weyl group W acts on the Lie algebra V of T
and preserves the integral lattice = (more on notations may be found at the
beginning of é;:?). The classical description by Borel [4] of H*(G/T4F) in terms of
invariants of W in the polynomial graded algebra on P@ﬁ" implies that the g’é‘aded
algebra automorphisms of G/T. over E" may be identified with those F - linear
automorphisms of imﬁﬁ”f whose polvnomial extension preserves the ideal f,enerated
by the positive degree invariants of W (Proposition 2.1). Obvipus examples are the
elements of the normalizer of W in GL(% ®IF); when F = @, this normalizer

coineides with the admissible automorphisms of {2]. Our first result establishes that

there are no other cohomology automorphisms of G/T.

: o : . e e
i.1. Theorem. The group of gr‘adod algebra automorphisms of H"(G/T; )

3]

2
is antiisomorphic to the normalizer of W in GL( | XF),F =R or.Q.

it

For convenience we first give the proof for F =R, and then deduce the

result for F = @ in a straightforward manner.

1.2. Theorem. The group of graded algebra automorphisms of H Mla/T:%) is
antiisomorphie to the group of automorphisms of the root system of G.

The result over !’ is also derived from our knowledge of the picture over .

T

. Corollary. The group of homotopy classes of self-homotopy equiva-

lences of G/T is finite.

Proof. By the above theorem the group of integral cchomology



autoimorphisms is finite. On the other hand we have seen that there are only

finitely many homotopy classes of seif-mapg inducing the identity in rational

We chose to say that M = G/K {or M = BG) has the rigidity property with
respect to some question related to,its topological symmetry if the answer may be
formulated in terms of the corresponding Lie theory. Exampiesa what is the
structure of the group of self-homotopy equivaiénces of MO,? -For M=G/K a
eomplcx ,fl'ag manifold, in all known cases this group turns out to be generated by
grading automorphisms (which act on each }IZi(IW; Q) as / i;id, for some nonzero
A < Q, and which come from I‘robemus self-maps in positive characteristic Lie
theory, by [3]) together with the rational automorphisms coming from‘_the action of
the normalizer N (l() on M. A subtler question was formulated, for M = BG, in {’2}:
which self-equivalences of M are defined after €inite localization (for a finite 1-
connected complex M the answer is: all of them, see e.g. [16])? By [2] this sixbgroup
of the rational automorphisms of M=BG may be identified -with
NGL( r‘(@ @)(W)/V\?. _

_The second aim of this paper is to improve the rather vaguely formulated
d.efini'tion of the rigidity properties. Th eorems 1.1 and 1.2 sbove may be considered
as typical examples in this direction. We ‘shall next state in precise form three
more examples of rigidity (theorems 1.4, 1.5 éy\d 158 below). and later give the
proofs‘as applications of our results on cohoméiog_f;y automor*ph‘isms (in sections 3,4
and 5). . '

The main application is devoted to geometry. Let M be a closed 1-
comnéeted Riemannian manifold and let f be an isometry of MQ.A gecdesie curve ¢
is called f-invariant if it is nonconstant and there exists a period t such that

fle(x) = olx + 1), any X. When f=id one recovers the classical notion of closed

geodesic. The question of the existence and of the abundance of various kinds of
geodesics is a central problem in Riemannian geometry. A major development in
this area is contained in the paper [25]; they pointed out the relations nD% ween



-

the ration 11 homotopy properties of M and the existence of closed geodesics on M.

Further refinements of both Morse theory and rational homotopy theory involved
here led to the conclusion that the nonexistence of (many) f-invariant geodesics
imposes severe restrietions on the rational homotopy properties of f. The following
result in this direction will be strong eﬁoug’n for our present purposes (subtler

statements may be found in [12], [14], see also 3.4). Denoting by [T (M) ®) @]f the

fixed points of the obvious action of f, one has:

Theorem (see [12], [14], [13]).

(i) If there are no f-invariant geodesies then dim{ 77 (M) ® Q}f

(ii) If there are only finitely many geometrically distinct f-invariant
geodesies then dmw[“"’cdg( M) ® &z}]fj\:fi. |

Using this approach, strong existence theorems were obtained in [13]: if M
is  odd-dimensional every isometry . has an invariant geodesie; if
dim T, (M) @ @ =00, every isometry has infinitely many invariant geodesics..
Thevse leave still open the case M = G/K, K a ¢losed connected subgroup of maximal
rank. For K =T we are able, by computing the rational ‘ndn‘rotopy fixed points. of
the self homotopy equivalences of M, to obtain a complete solufion of  the

existence problem for invariant geodesies on M.

1.4. Theorem. Let f be an isometry of M = G/T (for an arbitrm'y metric).
(1) dim{T %% @ @1 > 0.

;
(if) dim[ff}”g ) R & @] >4, unless M = (S U(n)/T){ n=2or3,and f* equals

the cohomology automorphism corresponding by the isomorphism of Theorem 1.2 to

the root system automorphism given by

alvy, e oo v ,v9 = (a0 vw)?.x (vedyeos Ay )

where ng are automorphisms of the corresponding type A] or type A2 root systems,
and (in the /’\2 case) they are subject to the condition that CPREORER n“'wuw" the

nontrivial automorphism of the Dynkin diagram; in all these cases
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£
dim[ Ty (M) B @1 =1.

This result is the best one can hope, see 3.4.
Section 4 deals with fixed points of transformation groups. On M = G/K

r

(whe{-é rank K = rank G) there is a natural free action of the finite group N(‘( Z)/K.

For K = T, by using our knowledge‘o; cohomology automorphisms of M together
with a computation relating Lefschetz numbers fo rational homotopy fixed points,
we deduce that this natural action represents an upper bobzmd for the free
symmeiry ;>f M. This result helps to make more précise in -this case the general
result, conjectured for M = G/K by W.Y.Hsiang [20] and proved in [3], which states-
thaL any circle aetion on M must have a fixed )omt this becomes an immediate

consequence of the theorem below (by locking at the action of a generator of the

cirele).

1.5. Theorem. The cardinality of a group acting free-ly on G/T does not
exceed the cardinality of the Weyl group of G. 4

This result will be proved in a slightly strengthened form (Theorem 4.1).

By Sullivan [23] a homotopy type M may be deseribed as the collection of

: 3 _ ;
its localizations §1v1 E) a primej together with the coherence information

B S : 7 .
pr‘ov;ood by the rationalization maps (M > M . The simplest. situations arise
SEgna e
» Yn . Ian)
when the collection of the lc alizations f;;h'f)j already determines M. Thus, a
A ~

homotopy type M is called generically rigid ({111]) if the genus of M, defined as the

set of homotopy types M' with the property that '1\"1;)‘3‘3- i\ﬁp , for all primes p, consists

of M alone.

1.6, Theorem. G/T is gener ically rigid, for any G.
This result is-entitled to be called a rigidity property (in our sense) by
more than philological reasons. The method developed in [11] indicates that, for a
1-con nected fimte formal complex M, the generic rigidity is a conseguence of the
)

fact that the group of self-homotopy equivalences of Mc* . to be denoted in the

hy E (M), is generated by rationalizations of. self-homotopy equivalences
o 4 55 o ¢  Eley R



which are defined after inverting at most one p rime. When M = G/K, this in turn is
a direct consequence, via etale hff)?“m)éfi)’t'ﬁy theory ([8], [9]), of the rigidity of }JJO(M),

We mean by t is generated by self-maps which come from the purely

inseparable the corresponding Lie theory. For K =T this rigidity

property follows from the detailed description of rational echomology
automorphisms of M given in 2.8 and 2.9 (see the proof of Proposition 5.1 and the
remarks preceding its statement}); the basic arguments for establishing the rigidity

of EO(M) are extracted from [2], propositions 2.13 and 2.15. As far as generic

rigidity is concerned, we follow [11], obtaining a little more (see Theorem 5.3).
2. Cohomology Automorphisms

Let G be a compact connected Lie groupr and let T be a maximal torus. By

classical Lie theory (see [4]), G/T =G /Fl’ where in addition G1 is 1~ ccmnected

- (and its Lie algebra equals the semisimple part of the Lie a geb of G). Therefore

we may and we shall indeed from now on w’)po«;e that G 11, 1-connected. We can

- g

= : ]
further write G = | ;Gi as the produet of its simple components. Denoting by V t
Lie algebra of T and by P the kernel of the exponential map of T, there.is a .

3 ° . N ~ 5 <53
corresponding product splitting for T, V and'{ .

{5

iy

The real vector space V is end

A

owed with the weud an metriec coming
from the Killing form of G. This choice of metric provides a ea'noni(:&l isomorphism
te
F P4 . . 5 . S . .
V=5 V¥ and an euclidean structure on the dual space V© (everything being

& A %
» ¥ V® the root system (in the

e«C«a

compatible with' the splittings). Denote bv
axiomatic sense of [21]) consisting of the roots of the adjoint répressnta‘tion of T in
the Lie algebra of G (see [1]). The group N (T)/‘T is ecanonieally isomorphic to the
Weyl group of this root system, and both will be denoted in the sequel by W (see

-

again [1]). The decomposition of G into simple components corresponds to the

*, into irreducible components; similarly, the Weyl

nroduct. It will be convenient to normalize the
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A

[E8d

metric on each component of V (V = || V) in order to make gll short roots of the

3

corresponding (¢ 1” have length equal to N2 {for types A, D and E we consider that

i s BB ) 5% R Y 43 s s - E.o e 3 RO o bt 3 SO | 1’
~all roots are short). Denoting by (, ) the resulting metric on V and byt V=2V

the cor “”pOHUmO‘ isometry we obtain a root system (gLV which is xsometrica}ly

isomorphie to 2 ©

and whose Weyl group action on V corresponds to the adjoint
action of the Weyl group of G([11).
Recall next from [4] that, with characteristic zero coefficients [F, the

spectral sequence of the fibration G/T<»BT-»BG gives the isomorphism

'3

fT*(G/T\;fL‘“) = H*(BT#F)/ideal (I;I.'#(BT;”?)V"). Denoting by [ I”&zx, ] the graded F-al-

gebra of polynomial funetions on | & F (with degree of the generators =1J), on

; : A o e -
which W naturally acts by p‘ =pew, for p&F[ | ®F] and weW, the natural

: : T i ; ; ; >
isomorphism g & F ~y H*(BTF) gives rise to an algebra isomorphism
: ',.,— LA Ju v
Fl [ @ #1/ideal @ D #F]TH s (G G/T#) )

which doubles the degrees.

Vg
3\

Denote by Grel{! & F) the submonoid consisting of those F-linear maps

rEA T e g : e e +W
b:l af«i)u*-w'?} ®F with the property that, for any p:ﬁ&’tf & Fl

"'*f:‘:'

+W " i f ’ .
"), and b\h C the group of invertible elements of &.

pb == p@ bfa 1(3’4“ «'[ r‘“ X\ i

£

2.1. Proposition. The correspondence which associates to each b& v, the

o7

induced graded algebra endomorphism of H™(G/TsF), via (1), establishes an
antimultiplicative isomorphism onto the cohomology endomorphisms of G/T over ¥,
: ' ' ‘,;/f(
under whieh the cohomology automorphisms correspond to the elements ofJL.
Proof. Since G is in particular semisimple each Weyl group Wi acts

irredueibly on V. [21]. Tt follows that there are no nonzero degree one invariants of
1

the Weyl group W in®[1 () F] for ¥ =R and consequently (see [6], p.126) for any

Fli @ F]~>H"(G/T;¥) induces an isomorphism

he level of indecomposable algebra generators. Using

L

the proposition follow easily.



R

for the inverse of the above isomorphism,

b

From now on we shall use

6

End 1¥(G/T5F) >

NS

s, the ﬁomumfumi—? (f:r).

7

~

“We are now moving wards the proof of Theorem 1.1, Set F ={H.

o

75
sl
O
=

Consider the subgroup DC HYe A\ ; consisting of automorphisms which aet as |

multiplication by some positive real number on each Vi' Since D centralizes W, we
> ,

!
v have DC /L.

s

plainly

- A

%.2. Lemma. For each a€ 7T there ex deD such that ad is an isometry.

4
Proof. Assume ag¢ &. Sinece we just saw that there are no nonzero

S IAT :
~ BS SEL VY .
elements in RV} } it follows from the definition of » that the action of a on R[V]

ﬁ‘ 2W.

must preserve the linear subspace R[V]“" = &) BRIV, T 1, By irredueibility (see [6],
p ;

[

p.66) each ®[V.] 1 is one dimensional, generated by the 1'*varlam quad atic form

1
e P 5 ; :
g; defined by qi( X) = (x.,x.), for x =] x;&V. Hence q = L~ A;}.qj , any i. Summation-
< {or.
gives (ax,ax) = X}\j (x), for any x&V. If acJ{ pick a nonzero xi{:\/i and deduce

,.M

that Ai> 0, for any i, Define then dby d= i (A. , with //; = ’i/'\j;;i‘.

&4

The same methed gives the following result, which will be useful in )4
i 3 ”(;

B

2.3. Lemma. For any 8¢ [, ker a is W~invariant.

. If ax = 0 then we may write, for any we W, 0 = (ax,ax) = Z’:,,qa(x)

We have to show that JZCN, N being the normalizer of the Weyl group in

GL(V). By Lemma 2.2 it is enough to show that any isometrie a&J i‘;”mr'maiizes_w.

T i 1 pemt ":\ = | " 4 I T £} B P o o !\./,

For each & €@ denote by H_, the hyperplane orthogonal toe!, and set H =\ H_ .
: X L, oL

we claim that it suffices to prove that any such a leaves H invariant. Indeed,

& & 2 o e e
i & a1
% = 5 Voo 3 : .
o PO L e £ T 1N 25 Y S5 - ¢
~amming that for any ¢« €< there exists P& such that a(H )= L it is
- B | L o
immecdiate to see, using the fact that a is isometric, that as & ~ =s_, where s
E ol @ w{’
N e the ef{ "w':-.:"rv v thae asrpoon -( ;* o ylanoge oine i atlea o
A o, are the re flections in the ecorresponding hyperplanes; since the reflections



5, Generate W it follows that a €N,
S
In order to prove -that the action of a preserves H we proceed to the
» ‘ . yz w/:ﬁ S Y
determination of the cohomology classes in HY(G/T{R) whwh have mazximal height
(a computation for complex flag manifolds may be found in [19]).
Denoting by n the number of : positive roots (and reealling” that
= 2n = dimension of G/T) we shall consider the following polynomial funetion
'p{;iR[V]n, constructed' by evaluating n-th powers of 2-dimensional cohomology

classes of G/T on the f!indamental class of G/T: p(x) = <z x)", {G TI>, any x&V. For

i

any WEW : W(h) = (7™ YLIGITE: = AT ,[G/T]> =

= <deg(w )} THNIG/TD = detlw)-p(x). Tt is now easy to infer that p(x)=

8

/\.° l | ,@( % ,x), any X&V, fo;‘_&:x:\rs‘:e AER ([6], p.113). Moreover, /< must be

no:mero,‘fo otherwise (use [21], p.134) we would I have H ((“/"1 R) =

£
T

Coming back to our given orthogcnai a&tJdl, it is clear that a” must

7

-1 ; : stis 7
preserve the zeroes of pes ~, which implies that a = preserves the zero set of p,

which is just H.
Our next task is to deseribe the group structure of N. Let us choose a
system of simple roots SCO; if ¢ = 4 4.;,:5 is the decomposition into irreducible

components, there is a corresponding splitting S =LLS.‘ with Siw*’ . a system of

1

e

simj ble roots. We shall denote by Graphaut (S) the group of permutations of 5 which

are automorphisms of the Coxeter graph structure. It contains the subgroup Dgraut

(8), eonsisting of graph automorphisms which preserve short and long roots.

»)

2.5. Proposition. There is a split exact sequence

[
\'{
.»m,_..

K 1—>D g W~> N 2 Graphaut(8) ~> 1

(3

(o

53

Proof. The proof is inspired b}, [2], Proposition 2.13. The novelty corsists
i 3 S e £ R )
in the construction of the splitting (in [2] the surjectivity of fj 1s verified by
case-by-case checking); though perhaps known to Adams and Mahmud, this expl mii:

- )

aox‘%s:i‘rumu,«‘. will play a key role in what follows, therefore we shall treat this point



%)

b2

k!

carefully. As a word of caution, note that our graph-automorphisms are called in
5 v.'"v& ‘

[2] diagram isomorphisms.
A ¢
. Dencte by C the Weyl echamber corresponding to 8. The arguments of 2.4
show that the nlemen’ts of N aet on Weyl chambers. Call the stability group of C

N .. An element aé N

permutes the walls of C and thus induces a permutation of
% !

@

8, denoted by 77 (a), characterized by: a(Hﬂj): H‘{(a){y" any o €8S, It can be

U

checked ([2]) that x(a) is a graph-automorphism and that we have an exaet
Y 4 :

sequence 1 -1 =>Ne L Gmpnaut( 3). Granting for the moment the existence of
a splitting & : Graphaut(S)—>N _ , we can easily finish the proof. The transitivity

Nt
of the Weyl group action on chambers provides a natural group surjection
N(\,/D--% N/D-W, which is in fact an isomorphism (using the simple tra mmvuv)
: Y 4 . . o . % oy
The existence of f} and & - for pr gives thus rise to the eoz‘respondmg
constructions for N and the asserted split exact sequence is established. It rema
to construet the splitting for N(m

+

Pick g & Graphaut(3). We claim that there exists uniquely /»'.,: S—a{R such

that defining b€ GL(V) by b(ee) =)A (o)eg(), for any o« &8, we have

bsu:b""1 gL for any ot€S (1)
and | 1 w()=4, for any i (2)

£
' # T
M

where S JJ is the spmtmg gnvwn by the irreducible components o i} Defering
the proof, nptiee that, by (1), b\é.-;N; and that in order to show b#& NC and \}J/(b) =g it
is harmless to assume (by Lemma 2.2) that b is an isometry, eventually changing
&) to some other positive W (). If x¢C, then, for any < €S, we have 0< {x,o() =
= (b(x),ble)) = V(o )-(blx),glet)), which shows that bég Ny and again by
orthogonality ‘:)(H%) = Horoe) + @NY X &€ 8, hence \ (b) = g. Put then &'(g) =Db and
emphasize the dependence on g writing p_ instead of p. The Tact that & is a group

moerphism is equivalent to p_ =y u_cg", for any gg' (3). Since an easy

computation shows that eonditions (1) are equivalent to



)

p{i% Yulse ) = < }7,\. O e B ),ple >, for any o ,ﬁ &S such thnt <5> o> £0  (4)
1

{where <,> denote Cartan integers, as in [21]) one may use (4) and (2) for a rapid

e

proof of (3). Observing further that conditions (4) are involving independently the

various irreducible eompmem and that it is enough to cheek them only when

359 4 5 . ‘ : ]
Yotk < ii{n , it is clear how to prove the existence and the unigueness of a

solution p of (1) with arbitrarily preseribed values at the "eentral nodes" of each
component (specifically, we may choose the node 4 for each Af’ Ci" and for G2’ the
node E?for ecach B 3 the node ¥ 2 for moh Dg the node 4 for each Tg and for F4, in
the notations of [21], p.58). For each component (i choose bUC‘i a "eentr'°] node"

¥
1

Y)o and, for any other {zﬂ S;, by eh@osing a string of nodes joining ?o to 4 and

iterating (4)5 deduce that p(gﬁ): p(ﬁO}“c?, where the positive constant e, s
e 2 5| i
o e I8, : 2
independent of n; therefore L wB)=wB ) 1 e, where ¢, is positive and
%?}{{{: g E i O 1 )|

independent of p. This helps to com{’ﬂ‘ ote ’Lhm pr oof,

2.6. Remark. Let us say that two Dynkin diagrams are ®@-isomorphie if the

“underlying graphs are isomorphie; among f'onneo‘t nes the ow]y @-isomorphic but

not jsomorphic ones are Bp and o Let us say that a diagram is @-isotypic

g

the obvious notions of deco Dosition inte ©@-isotypie components and into isotvpie

components. A similar terminology applies to root systems, Lie algebras and Lie

groups. These notions naturally arise in connection with - graph (diagram)
automorphism groups, whieh obviously split as direet products, according to the
decomposition into §-isotypie (isotypic) components. As a byproduct of the above
proof, if G -":TT(}%}. is the @-isotypic decomposition, it follows that all the groups in

the statement of 2.5 split as the direct product of the groups eorresponding to each

, in @ manner compatible with ;; and a.

P

2,7. Proof of Theorem 1.1 E«“ i = @. By extension of scalars the group of

graded algebra autom

-y

yephisims of B (“ "T:@) is identified with the subgroup of



v P e N oy
graded algebra automorphisms of H (G/T4R) which preserve the rational structure

‘Z

H?(G./’i‘;éi;‘- e G/T4R). Using the inverse of  the rsamorohmm estab} shed in

Proposition 2.1 we may further identify the rational cohor ncloﬁ'y autommpmsm”

T~ e . 5 : =
with 4 (ancl ® @) which, by the result for F =R, is nothing else but the

s
normalizer of W in GL(1 ¢ ®@).

3 We shall denote in the sequel by Nﬁ*’} this normalizer group; set also
Dﬂ = group of automorphisms of V which set gs rational positive scalars on each
X s 5
"

irreducible component V As far as the group structure of N@ is concerned, we

have the following replica of Proposition 2.5:

2.8. Proposition. The split exact sequence of Proposition 2.5 restricts to
an exact sequence
ST e e L Graphaut(S) = 1.
E Q P @ Q 1 L i

which splits as the direct produet of the analogous exact sequences corresponding

to the @-isotypic components of V.

Proof. We only have to check that the restriction of.:/j/ to N@ is still onto.
Actually it can be shown that for any g & Graphs 1111\:;) there exists deD such that
G (@)d € GL( r@» ®), using the construction of & given in the proof of Proposi“cion.
2.5 and keeping in mind that scl (see 2.10). Heée is an alternative proof, based on
{2], Proposition 2. 13 which disposes of the case when G is simp}e. For a @-isotypic
G it is immediate to see that we have a split exact sequence (whwh will be useful

: again later on)

m el :
8, T‘"(mmhdut(?‘a ) - Graphaut(8) =—> 2. _—7 1. (1)
€ “—m
i=1
. e
where t} = L@ is the decomposition into irreducible components and JT (0)
- 3=

represents the permutation of the connected components of the Coxeter oraph

i 3 » 2 . e
induced by g& Graphaut(S). It is equally immediate to see that Jj © 1{: N
A



)

Sl

onto, which implies the result for the @-is \mple case. The general case follows by

Remark 2.6.
1 k2.6

2.9, Hemark G is simple. In most cé:\;es, namely excepting
fC%,} }>?,x4 or.G, X we have equality between a_:mph«automorphisms and diagram-~-au-
tomorphisms; in the exceptional cases there is only one automorphism of the
diagram but there is one more exotic g%aphﬂutomorphism, which turns the graph
end for end. If g€ Dgraut then g preserves Cartan integers hence, by (4) and (2) ir:x
the proof of Proposition 2.5,y =4; since S i‘;}““(iﬂ.,w), it follows that the splitting
©o

& of Proposition 2.5 also splits.the exact sequence of Proposition 2.8, when
Graphaut S) contains only diagram automorphisms. However it is not difficult to
see that the exact sequence does not split, for G = }32,1’?4 or Gz (due to the
presence of g square root factor in the expression of ”?" g being the nontrivial

. ». = S
graph-automorphism). In the general case, one can see that N@ is generated by
direct products of grading asutomorphisms and the automorphisms of the root
system, eventually together with the exotic admissible isomorphisms of [2],
corresponding to the graph isomorphisms between irreducible ‘Dynkin diagrams
which do not respeet the length of the roots (fOI' more details see the proof of

Proposition 5.1).

The following simple lemma is very useful.

o i 3 3 - .
2.10. Lemma. | coineides with the free abelian group generated by

20t /(0¢, ™), €S . In particular ST,

i ™1
Proof. The simple connectivity of G implies that | is generated by

20¢/(ed ol) y ¥ & , see 1], p.129. On the other ha nd, it is standard that, for any
A N e : S e oo ;
oledr, 204/((,5L) is a Z - linear combination of Ziv:z/gg,,js) : ?; &S , see e.g.
X i
o=

[20], p.27. With our choice of metrie, it follows immediately that S¢ 1§ .

: : e e T R T Y L T el PN g e e & E

2.11. Proof of Theorem k2. Since H (G/T;2) is torsion free [5], extension

b 0| > "A.Y; O annEaiv ek NCE Py Y fod /} 4 K*"{": 7Y I ES Y
of scalars with a certain subgroup of Aut H (G/T:R),
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.which 1’; plainly eontained in the S(ib-{i{”{‘(jup of those elements of Aut H*(G/TR)
which induce unimodular self-maps of H (’“ 'T;Z). Due to the keom@eetedﬂess
assumption on G this latter group ig identified, via the} inverse of the isomo phiﬁ:m
deseribed in Proposition 2.1, with NGL("). Our first aim is to show that
NAGL( ) = Au t(@).

-

The exact sequence of Proposition 2.5 easily describes Aut((}?) as

(o)

W-§ (Dgraut(S)). Since all snort roots have the same length, we infer from the

previous lemma that Aut (@)CN N GL(P ). '
In order to prove the other. inclusion, we have to start with an element

ae NAGLH), of the form a = d- 5 (g), with d&D and g€ Graphaut(S), and show that

«))

f.’g it wiii follow that a & Aut (4

necessarily g ¢ Dgraut(). (Since DAGL({") =

4

, we know that a(x)=

!
+-

Writing d= diag‘(dﬁ( e g With d &R

\ e $iE ks : 4 g 7
=R Mg ol }eglet) for any o¢ & S. By Lemma 2.10 the condition a(l' )1 simply
o & 3 :

means that for every ce S, a (2o/(ed, ) =n < (2g(el)/(glet),gled)), for some

—x

n & Z, whiech may be rewritten as
uw

3 (‘ 2 ‘(."" ;f‘:; & 30 £V SRR 6 10N “5& Il L~ ,4;" ; u‘_,:' (e
dg& p_gv,_z-) et e ) (goe gt )] n&{ (r.m_{ Z),any € S (1)

Adding the condition that det(a) = +1 and recalling that det(c7{g)) = +1, for-any
g ¢ Graphaut(S) (by construction), and then multiplying the condvtxox“, (1), we find
out that we must have nx =4, for any & 8. Take any C(_,“{:',éiS such  that

<{X,F > # 0. Since g is a gz‘aph*autormrphism and d{wi), we know that dg ':dgf .
o 3
Dividing the equality (1) corresponding to {3 by that corresponding to & and using

5 the defining properties of y_ (namely (4) in the proof of Proposition 2.5) we deduce
o

that <gu ,g {s> = Lol ’% , therefore g ¢ Dgraut(S) and the proof of our first claim is

completed.

On the other hand, it follows by classical Lie theory that for any

g & Dgraut(S) there exists a group automorphism h of G which leaves T invariant

- P

and such that ,’, (H.(h"R)) = ¢, where h denotes the induced map on G/T (see [7],
& :

YL

g 33, and also [2], p.14). Therefore all automorphisms of the root system are
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P

" indueed, by extension of scalars, by automorphisms of H” YarT :%), which eoncludes

3

the proof of our theorem {‘%F also shows that all integral cohomology

152

automorphisms are induced by self-maps of G/T, by contrast with the case of

elassifying spaces).

3. Invariant Geodesics

As explained in the introduction, the results of K.Grove, S.Halperin and
I\’L\’igué reduce the g‘eometric problem to the compu‘tétion of_ rational homotopy
fixed points of rational homotopy equivalences- of G/T. The;se in turn correspond
bijectively [10] to the automorphisms of the cohomology, which may be identified
as in the previous s eétian with the normalizer of the ‘Weyl group. We are going to
assoeia"‘re a - number F(a) to each a&MN in  such .a -way that
F(a) = dim[J] &j(G/T)(;«zué”x whenever a = f, (h ) and h is an isometry of G/T,
and then proceed to the effective computation of these numbers.

Denote by I the subalgebra of the invariams of the Weyl group in R[V]
(which is a commutative graded algebra freely generated by r elements, r = dim V,

=0

see [6], p.107) and by I the positive degree m\mrmnt In the notations of section 2

1

(whieh will be used throughout this paper) the natural action on R[V] of any aéN

. ey e =
induces a linear map, denoted by Jila): I+/I+=Iw->~i /I °I Detine  them

F-(a) dzm(l e (d).

3.1. Proposition. For any rational homotopy equivalence h : G/T—=G/T we

have dim {ﬁ”’Odd( 1/T) @ Q ]h = F{H()

R)).

{h

Proof. The proof uses rational homotopy theory ([24]). Wé may safely

b

replace @ oyw{ in the hfa hand side and then use minimal models over R. Since G/T
is formal (I24]) its minimal model coincides with the minimal model of its

cochomology algebra considered with trivial differential. The minimal model

i) — (G /T,0) is constructed as follows. Piek homogenous elements
LaNd/ 7 o3 L

“W
g:
3

o : - " : % 475
Pgseeesy ¢1 which freely generate the graded algebra I. Construct /i as a free
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3 g ' R S ;‘V?
com mutd‘r ve graded algebra by setting 7/

= VZQ QA 74 (where V and A indicate
symmetrie, respective exterior algebras) with Z, = V¥ and deg(z) = 2, for any

A T L7 w18 e
zZ&7 , and Z, = §}1£~“f,g.)an

o with ﬂeg{y.) = deg’(pi) -4 (where deg{,(p;)

considered by identifying ®[V] and VZ, as wq@mr algebras). Set dz = 0 for z¢€Z,

I

and dyf = p, for any i. Since there are no nonzero invariants of W in V* (remember

that G is

@

i > S s e I e S
still assumed to be 1-connected), it follows that (/,d) is indeed minimal.
Define ; z=2z for Z.QZO and (j ¥y = 0 for any i. Since (pl,'...,pp) is a regular

sequence in R[V] (see [6], p.115), it follows from [24] that < is a minimal model
5

5 ® o Y eSS i , ' it 3
map. Given h™:H™(G/T)~» H*(G/T), it is easy to construct a differential graded
T A 0 i - s s Sl
algebra map h:(l/.,d) < (/i,d) such that ¢ h=h"p. By [10] h will represent a
J 3

minimeal model of h, therefore, by rational homotopy theory, the dual of the action
.,,.ey(}dd NN SN Sl 3 e o wis . ﬁA .
of honJy, (G/T)DR is identiffed with the action of h on the indecomposables of

A
W - . - r :
odd degree of {/u t.e. with the linear part of the restriction h§ o Notiee that

A A ;
h('\.f:’to),cvz and that the restriction h i\//AC coincides with the action on R[V] of

a=H. (,z R), by construction. Denoting by J the ideal of ®[V] generated by I+, i.e.

: A, - A

J=(VZ ‘wffll we infer that h(J)CJ. To be more precise, decompose h }Zi as
e Iy '
follows: h{Zy =hy + hy, where hy:Zy—=>(VZ )~ Z, and
hz : ZI-—-%» (VZO & A Zl)"Z];’\ Zl’ write the.commutation condition with d and find

' / e A o - : ; Odd : :
out that hd 371 = dnr Writing further hy = (h) + h where

aA ; . ' ' A g

odd N ' e St : : : ,.odd ;

Jth) /‘1 = "f“L and hy Llwf;»v(\/ AO) * Z, deduce that nd% hy =43 (h), in

Y :
T 7 }*' J. All these considerations together imply that the aection of h dn
M..ow ; : +, & vy
(G/T) @ B may be ide entified with the aetion of a in JAV Ao) - J. Consider
i+

; ; S e s 3/0vts T ; :
now ’{he mmsz}_ surjection: I / I3 J/HV AO) * J, which is an jsomorphism, due

to the fact that R[V] is a free graded module over I (6], p.105), and conclude the

_proof.

Jinee in the geometric applications h will be a self-homotopy equivalence
3 : } 2 ¥ * o ot 13 3
and since we know in that case, by Theorem 1.2, that Ho(h™5R) ‘must lie in

W

- & (Dgraut(8)) and since obviously F(wa) = F(a), for any w ¢ W and a¢ N, we could
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just compute F(c(¢)), g € Daraut(8), checking case By case, in order to give the

proof of Theorem 1.4. However, we shall not pursue this way, but we choose to use

the following general result, which provides both a very convenient new déseription
of F(s(g)), g& Dgraut(S), and a useful information related to Lefschetz numbers

(see the next section).
>

3.2. Lemma. If a¢N has finite order and leaves some Weyl chamber

invariant, then F(a) = dim V@ and this number is positive. '

Proof. Assume ’a(C)v= C,  for: some  Weyl ; chamb‘er C, and let

oi"_d(a) = m{oo . We first show that a has a fixed poiht in C. Indeed, starting with

any ye&C, set x:?_?lai(y); then x€C and a(x) = % In particular this proves the
i=

second assertion. ¢

- For any linear map b, denote by ml(b) the multiplieity of the eigenvalue

1. In order to compute Fla) = my(7W(a)) -choose homogenous elements
pl,...,prél+(r= dim V) which freely generate the algelbra I and, writihg that
p?el, for any i; deduce the existence of a polynomial function A :er——%réR_r' with
the property that p og=Ao° p (%), where p :.V.v-—}iRr has p; as its i-th component;
by the very definition of 7ita), it has the séme characteristic polynomial as the
linear part of A, hence F(a) = ml(DOA). By taking derivatives in (%), in a point x€C
which is fixed by a, and recalling that the jacobian of p is nonsingular in all points

of C (see [6], p.113), we infer that ml(a) = ml(D A), which of course also equals

p(x)

dim V&, we know in fact that, for any teR_ , )A has the same characteristie

_ .Dp(tx

polynomial as a (using tx in place of x), hence, letting t go to zero, we conclude

that a and DoA ‘'have the same characteristic polynomial, and this finishes the

proof.

3:3. 'P'roof cfl Theorem 1.4. If fe Isom(G/T) then, by Theorem 1.2,
H.z(f*;«‘R) = w-G(g), with weW and geDgraut(S), and, by Proposition 3.1,
dim[ﬁgdd(ﬂ/’l“)@ G}]f = F(S(g)). Lemma 3.2 applies then to ©(g) (see the

construction of @ in Proposition 2.5) and clarifies the first assertion of the

lod 13681



i
oy
[o]

i

theorem. Moreover, recalling that “g: 1, for any g’(ﬁ—Dgraut(S), the same lemma
.p;ives that F(G (g)) equals the number of eyeles of g, considered as a permutation of

S. The fact that any diagram automor phism res peets the isotypic components (see

Remark 2.6) implies that dnn[JJ (u/T) & @] 4 -unless F) is isotypie, say
@ ‘gfaﬁ;l' qu/ # with « \,),1 : {:’} irreducible. For such an isotypie root
system, the split exact sequence (1) constructed in the proof of Proposition 2.8
restricts to a similar split exact sequence, in which Dgraut replaces Graphaut. We
thus see that dim['ﬁgdd(G/T) & @]f>i unless m(g) is a cycle, vsay 0. @, and
in this case g acts on Si as g; Si«:> Si‘+1 where g; is a diagram isomorphism, for
any 1 Since it is clear that g acts as a eyele on S if and only if ggy_q - - gy acts as
a cyele on S,1 and since the only cyelic diagram automorphisms of the connected
Dynkin_diagrams are the identity of the type A, and the nontri\}ial diagram
automorphism of the type Az, the second assertion of ou'r' ’gheorem follows

(remember that the order of taking products in Dgraut (AZ) is ircelevant!).

3.4. Remarks. It is shown in [14] that the finiteness assumption on the
number of f-invariant geodesics imposes a stronger restriction on f than the one we

quoted in the Introduction, namely
even odd f
dim{J7 . (M) ® @] < dlm[‘f’ (M) ® Q1" <1

However, in our case the first inequality always holds.
- This can be seen as follows: for any f¢ Isom(M), T ® @ has finite
. order, by Corollary 1.3.

The desired inequality may thus be rewritten as

which is a direct consequence of a result of S.Halperin, see [15], Theorem 3 (for a
detailed statement of this result, see the proof of Theorem 4. 1; the key fact here is
that dim 7 .(G/T) @ @<co, see the construction of the minimal model of G/T

given in the proof of Proposition 3.1).
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We finally mention the existence of examples of isometries f having only
e

finitely many invariant geodesies and with H, (f sR) as in the statement of our

theorem (see also [13)).

4. Free "f“%:m;si’m‘maﬁon Groups
The result stated in Theorem 1.5 was obtained in the special case G = U(n)
n [18] as a corollary of a slightly more general assertion abwqut noncoincidence
indices. Th-e proof of Theorem 1.5 to be given below, albéit independent of this kind
of generalization, also works and produces information about .the noncoincidence
index, with only minor changeé.
We shall therefore reformulate the statement of Theorem 1.5, using the

terminology of [18]. Define the noneoineidence index of M, n(M), as the maximum k

for which there exist k-1 fixed point free self-maps of M, no two of which having a

coincidence, see [18]; ‘also define the free symmetry index of M, f(M), as the

maximum of the cardinalities of the groups which can act freely on M. We always
have f(M)<n(M), and, for M = G/T, f(m)> order of W. We shall prove Theorem 1.5

in the following strengthened form:

4.1. Theorem. Set G/T = M.
(i) f(M) = order of W.

(ii) n{M) = unless G is simple, and in this case n(M) = f(M).

Proof. If G = Gl X GZ then M = 1\41 X Mz and it is immediate to produce
arbitrarily large families of fixed point free self-maps of M without eoincidences.
From now on we shall treat (i) and (ii) simultaneously, and assume that G is simple

n (ii).
: S
We have to show that, given a family - consisting of k fixed point free

homeomorphis SMS {resp. self-m *Do) without coincidences, we must have k < order of

r\\

-..»/

£ } must consist only of

Ox £ % dies
W. Notice first that the family =J° =11 (.f ’)g“\

automorphisms of H flc /T;R). This follows from the faet that H [\s; R) is induced



7

3

isomorphism then the irreducibility of ‘the

D

Weyl group action on V implies, via

Lemma 2.3, that I-'i’“‘f(*éi" s®) is trivial, which contradicts the fact that ¢ has no fixed

points, by the Lefschetz fix m point theorem. Observe next t*mt\)p* has the same

cardinality as J , by the Lefschetz coincidence theorem [26] (see also [18],

Theorem 4.1 and Proposition 4.%). (*ox1<~1dex*1ng the family ?“g}} w* R) H)( f

consisting of k omtmot elements, we know that L(a) = 0 for any ae Tand L(a,b) = 0

n-s_-’

for any a,b¢ 4, a # b (by the Lefschetz theorems) and SFCW G(Graphaut) (see the
proof of Theorem 1.2), respectively Fe NGL(V)(W) (by the previous re_marks); we
have denoted here by L(a,b), for a, b( , the Lefschetz coincidence number {see
[26], [18]) of the endomorphisms of H*(G/T;R) which correspond to a an& b by

Proposition 2.1, and L(a) = L(a,id), for any a(’;;{cr;, , as usual. The key step-of the proof

is contained in the following:

Claim. Write, according to Proposition 2.5, a = w-& (g), with weW and

ge Graphaut (respectively ¢ /\W' $(g), with /\( R,, w&W and g&Graphaut). If

b

L(a) = 0 then w #id (resp. A =41 and w # id).
Granting the claim, we are going to finish quickly the proof of the

CF : o2 :
theorem. Since we know that F & (W\§id} )- € (Graphaut),. we may write

r»../ .
=\l w -5, where
7=l B - |

‘\

W'O SLwa- W, w# ld§W°u(0 € 5 g for any g € Graphaut
)

2

If wé‘.r‘x’?,i\ W, then L{ws'(g),ws (b)) = +L(s (gh 1)),see e.g. [18], Proposition 4.2,
3
and, since this number is nonzero by the previous claim, our hypotheses imply that
g = h. This shows that k < order of W.
" The proof of the claim uses rational homo‘ropv thomv We recall the
following result, due to S.Halperin \[1‘"], Theorem 3), which rctrlétes Lefschetz
numbers to rational homotopy fixed points: let X be a 1-connected rational space

with the property that dim }u\,,(>\5 {€0- and dim u (A) <0G, and let ‘4&3" + XX be

any map; then m.i(lf J4E0 > my (T (/) {compare with Remark 3.4), where
i &

£ M1~ even |

by the action on R[V] of some a¢?y,, see Proposition 2.1; if a is not a linear
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my denotes the multiplicity of the eigenvalue 1, and equality holds if and only if
/. % % ' e ] \ian 5 . P . 2
Ly ) # 0. Setting X = (C:/?)O , we may apply this result, taking ¢ to be the formal
, 1
map which induces the eohomology automorphism corresponding to a (remember
that G/T is a formal space by [24]). Denoting by (m,d) the minimal model of X (see

A s :
the proof of Proposition 3.1) and by ¢ the minimal model of ({‘, we may compute

my using the induced map on de Rham homotopy, denoted by j]'”*(k{ﬂ). Reecall from
the proof of Proposition 3.1 that 7Ny = v* and 7794y = I+/I+~I+, and that
—even,” ; ad’> ~ ol ‘
Vi ('\(’) = g% and 7° (’ue) =Tk, If/{ # 1, it is easy to see that ml(a*) =0 and
ml(ﬁ'(a)) =0, due to the fact that ordlwe(g)) <eowhich imfglies in turn that
L(a) # 0. It remains to show that L(cr(g)) # 0, for any gé& Graphaut. By the previous
remarks, this is equivalent to F( (g)) = dim T8 (g‘)’ in the notations of (? 3. and it is
a consequence of Lemma 3.2, which is available since ¢ (g) leaves some Weyl

chamber invariant by construction (see the proof of Proposition 2.5). The proof of

Theorem 4.1 is now complete.

5. Generie Rigidity

Our first task will be to clarify the assertions made_in the Introduction in
connection with the rigidity of EO(M) and its felationship with the amount of
localization needed to construct generators for EO(M).

Given a set of primes P, we shall denote by EP(M) the subgroup of EO(M)
consisting of rationalizations of self-homotopy equivaienees of Mé, the localization
of M at P; the same construction, applied to the ezomplementary set of primes, will
be denoted by ,f?l/})(Pvi); for notational eonvenier_me, EI(M) will stand for the
rationalizations of self-homotopy equivalences of M. The isomorphism established
in Section 2, given by fﬁ > }‘Tz(fﬁ‘:;@), will serve to identify EO(M) and N, when
- M = G/T. In the notations of Proposition 2.8, which describos the group structure of
N,Q, we obviously have W( E'l and, as far as the products of grading automorphisms
are concerned, we know by [9] that, for any simple G, if d ::?I){E? is a prime, then

d& El/d and it is induced by the corresponding Frobenius isogeny. The generators of
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q

(plainly it is enough to consider the @-isotypic case).

corresponding to graph-automorphisms are settled in the next proposition
o,

5.1. Proposition. If G is @-isotypic then X'El/q is still onto, where g

denotes the maximum number of bonds appearing in the Dynkin diagram.

Proof. The group structure of 'Graphaut (S) is deseribed by the exact
sequence (1) which was derived in the proof of Proposition 2.8. If © is not isotypie”
then all its irreducible components are-of type B[_ or Cr , for some r> 3, and have
no nontrivial graph-automorphisms, and our claim amounts to the existence of a
homotopy equivalence between (BP/T)% and (CF/T)%. Tﬁis is provided by [9] and

comes from the exceptional isogeny in characteristic 2 relating the orthogonal and

symplectic groups. Since for an isotypic G the com‘position ”jj'owm}il is plainly

onto, we are reduced to the case when G is simple. Since moreover Dgraut £ }:{(El)

by characteristic zero Lie theory (see _thé proof of Theorem 1.2), we are finally left
with three cases: (@z BZ’F4 or GZ’ each one with a single graph-automorphism
which does not respect the lengths. The first one‘follows by using the already
mentioned homofopy equivalence (SO(5)/T) s (Sp(2)/T)% and the other ones by'

recalling the self-homotopy equivalences of (G/T) constructed in [8] for G = Fy

1/q
and G2 from the exceptional isogenies in characteristic 2 (respectively 3) of these

‘groups (see also [2], Proposition 2.15).

5.2. Corollary. For any G,M = G/T has the following property:

(%) given a set of primes P, for any f@.EO(M) there exist

fl‘«:’f: EP(M) and fz(é, El/P(M) such that f = f1f2 5

" Proof. Reduce to the @-isotypic case, recall the structure of EO(M) = N@

and use Proposition 5.1 and the remarks preceding it.
Given the corollary, the theorem below readily implies Theorem 1.6.

L

5.3. Theorem. Let M be a 1-conneeted finite formal complex. If M has the
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property () stated in Corollary 5.2, then M is generically rigid.

Proof. If M = G/K is a complex flag manifold, the generic rigidity of M
was derived in [11], from the assumption that EO(M) is generated by grading

automorphisms together with N

j(§<)/f{; using [9] it is easy to see that this
assumption implies the property (x). Our contribution consists in observing that the
arguments of [11] still work for an arbitr&ry 1-connected finite formal éomplex,
provided the property (*) holds. The generic rigidity of M follows immediately if I\/.i
satiéfies the hypotheses of_Lemma 1.3 [11] and the conclusion of Lemma 2.2 [11].
The argument showing that Lemma. 1.3 is available for our M is the same as in [li].

Writing P :ipl,’ e ,pn)j; , an easy induction which uses property () shows that for

any f1,... ,fn‘é;Eo(M) there exists f({»El/p(TvT) such that ffi éEp_(M), for any i. In

i
particular the conclusion of Lemma 2.2 [11] holds for M.
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