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Abstract

We prove a new separation theorem for any two subsets
n ; o gt :
of R, with disjoint convex hulls, by linear operators, or isomor-
‘phisms, or isometries, in the sense of the leicograpliical order

of R"

(or, equivalently, by "géneralized half-spaces"). Also, we
prove that if one of the sets 1s the non—positi&e orthant, then
the isometry can be taken lexicographically non-negative, or the

isomorphism non-negative (in the usual order). We give some appli4

cations.

§0. Introduction

The aim of the present paper is to give some theorems
on separation, of a new ("lexicographical") type, of two subsets
of Rn, by linear operators, in view of aéblications'to vector opti-
mizatibn (see [12]). '

The usual Separation theorems of two convex sets in B
by ilinear functionals. (or, equivalently, hy?erplanes), and the
various known extensions of these theorems to separation‘by linear
opefators, in the sense of the usual order of Rn; require rather
strong assumptions (see e.q. [3], [4},-[14} and the references
.therein). A theorem of a new tyée, on the‘se?aration of an arbitra-
- ry convex set in Rn.and any outside peint, by orthogonal matrices,

in the: sense of the lexicegraphical oxder -of R" (instead of the

usual order o.f Rn), has been giVen‘in [9]; we shall recall it in



theorem 1 below. Some geometric versions and some applications of
this éeparation theorem have been given in [9],‘[151 (see also re-
mark 1.1 below) and e ] (applications to generalized Lagran-
gian duality for vector eptimization) .

‘ In the present paper, we shall extend the case of Sepdara~
tion of a convex set and an outside point, in the abowve sense, to
the case of separation of two subsets of Rn, with disjoint convex
hulls, by linear operators, -or isomorbhisms (non-singular matrices)
or orthogonal ﬁatrices, in the sense of the lexicographical order

n

of R"  (theorem 2). Furthermore, we shall give.some results on the

particular case when the second set is the non-positive orthant in

Rn

(theorem 3), or the non-positive orthant without the origin
(theorem 4). Finally, we shall give two applications: a characteri-
zation of the elements of the "infimum" (in the sense of B2} 12l
of a set in. R™ (theorem 5) and an improvement of the mean value
theorem for the integral of a vector function with values in a con-
vex subset of R"; for further applications to surrogate duality in
vector optimization and to characterizations of convex sets with

convex complements, see [12] and [16] respectively.

81. Preliminaries. Separation of a convex set from a point

Let us recall now some notions, notations and results,
which we shall use in the sequel.

The elements of R (where ﬁ={~m,+aﬁ) will be considered

column vectors and the superscript T will mean transpose. We recall

Il

yz(ql ...qn)Teﬁn, in symbols, x <y y,if x#y and if for

that x=(;-,..§n)Te§n is said to be "lexicographidally less than"

k=min {iéﬁl,...,n}géi#qi}'we have §k<? cWewrlte gy If x ooy

or:x=y. The notations y >I»x,respectiVely,‘y ;le,will be also used.
We shall denote by i(Rn), U (R™) and U(Rn), the families

of all linear operators, all isomorphisms, and all linear isometries



= m
AR R, respectively. We shall identify each veéf (R®) with its
matrix with respect to the unit vector basis {ej}?zl of R}, that

is, we shall write

- n = e
v—(mij)i’j:lw(ml..,mn) (Clﬁu.cn), (}«1)
,') T: - P e g 07 8 e ]’1
whera mi (mil°"min) (i=1l,...,n) are the rows of (mij)i,j=l and

Cj:(mljf"mnj)T=V(ej) (j=l,...,n) are its.columns, with & being
the j-th unit vector (0...0 1 0...0)TeR™. o

We shall consider two orderings of £ (R®) (hence also of U(R"),
G(Rn)), namely, the usual order relation > (i termwise sense) and
the lexicographical order v 71, 0 in the sense of [10], defined co-

lumnwise (i.e., v >

> s

0 1fsand only if all colunns of v are 7L

Let us recall now two properties of the lexicographical order, pro-
ved. in J10], whichiwe shall need in thHe sequel (for the sake of
completeness, we include simple proofs for them).

Lemma 1.1 ([10}

4

» corollary 2.3). For v&i(Rn), we have v 2. 0

e L

if and-only if

N

V(x) »; 0 (x¢R®, x20). (1.2)

Proof. Let v=(cl...cn), SO C

ey e

rC.. are the columns. of ¥.

St ne o

LE(1.2) Bolds, then, since ej‘;o, we have

.cjzv(ej) >/_T_‘, 0 5 : (j=lrcel:lrn.)r (1'3)
f.ec,v 2. 0. Conversely, if (1.3} holds and x=J «.o €n°, 2% 0
then % z0 (J=1,.ev ), whence v(x)=§:«jv(ej) ?L 05 :

J=1 - :

Lemma 1.2 (a particular case of {10}, corollary 2.2 b)). Let

E=(ﬁij)? j._lé‘i(Rn) be .a unitary lower triangular matrix. Then
- F3= it b : R la
L(x) 71 O e lmeR”, x o B (1 .4]

L

§ = ) el e L)
L(x)=(§, 22131+§2...§;iznj§j+§n) (80 B ) e . (1,

I8 e >r,-0 and i _=min ii%%i#O},_then §10>>O and



Aioml

k=1 L _

E_JK--§‘+§ =il el =1 e B el )

= ki ok ‘ o , i 1OJ>3>§10 Slo ’
whence, by (1.5), £(x) 3 0. _ 7

For any subset G of Rn, we shall denote by supy G infL G,
the supremum, respectively, the infimum of G, for the lexicogra-
phical -grder of ﬁn, by €0 G the convex hull of ¢ and, by INF G,

the "infimum" of G in the sense of [1], [2], i.e., the subset of

b

R" defined as follows: x€INF G if %e€G (the closure of G in R®) and

if theré exists no geG sgch that g<x (i.e., such that gg=x, g#x),
For two subsets Gl’ G, Qf R", we shall say'that an. opsrator

ved (RY) séparates Gl from G2 (in the sense of the lexicographical

order of Rn),if

viyy) <p v(y,) KyleGl, Y5€Gy) i (1.6)

SO -

clearly, this happens if and only if -v separates G2 from Gl,

we can speak about separation of the sets G ~and 92'

Finally, for simplicity, we shall not assume that the sets
occurring in our separation theorems are #@ (where ¢ denotes the
empty set), but, instead, we shall méke the convention that if one
of them is empty, then the separation properties Will be considered

to hold (vacuously).

The following separation theorem has been proved in [9]:

Theorem 1.1 ([9], p.258). Let G be a cgnyég Subset of R and

X ¢G. Then there exists‘véU(Rn) such that

viy) <p vix) o (ye€G) . ELs7)

Remark l.l.a) Theorem 1.1 admits the following geometric in-

terpretation (and proof). We recall that, following Hammer [6], a
Yinear space B .
set S ina¥is called a semi-space at X (a hypercone, in the termi-

nology of [8]), if S is a maximal convex cone with vértex X0 and
XO¢S, or, equivalently, if S is a maximal convex set such that
XO¢S; in R this concept has been also defined, independently, by
Motzkin ([13], lecture III). Now, by [6], theorem 1 (or [13], Teeet

ture TIT), if CEE -is:convex and XO¢G,-then there exists a semi-




e s

space S at x, such that GCS. On the other hand, by [15], lemma

Iil; @ get Berl e a_semi-space at XOERF if and only'if there

exists ve0 (R™M) such that

s={yeR™|v(y) <, v(x,)} | e
(note that in [15] this result has been stated only with well:(RE ),
but the proof is the same for veO(ﬁn); note also that in (1.8) abo-
ve we have corrected a mis?rint of [15], namely, we have replaced
X of [}5] by v(xo)). Combining these two results, one obtains
again the separation theorem 1.1 above, as has been observed, es-
sentially, in [15]; however, . in (9], theorem l.1-abowe is obtained
by a simﬁle inductibn proof.

bk veOKRn), then for each z¢R"™ we have z=v (x ) , where
o)

xo=v"l(z)eRn. Hence, a set ScR” is a seml~space-&f apd only 1f

there exist veld (R™) and ZER such that

S={y€Ran(y) <y z}. o : (1:9)

Hence, since veU(R™) if and only if ~ve TR, it follows that

is a semi-space if and only if theve exigt ved (RM) and
zeR® such that
g I n d
S={yeRt|viy) >, =z} ‘ | (1.10)
&) Any set of the form (1.9), with vel (R™) and zeR"™ (instead

of ve0(R®) and zeR™) will be called a generalized half-space (such

sets have been called "half-spaces" in [9]).vAé has been observed

o o e z=(€')l ...én)T i1, 9)5 and.glz—oo or +o0, then (1.9)

is the empty set or the whole spaée respectively; furthermore [% ;
- : i

1€ ns?, §leR»and §2=—w or +®, then, for any V=(ml...mn) ef (R

‘ : L

with mE#O, (1.9) is the open half-space iyéRn[mly<:§l} gr-the olo-

sed half-space {yeRn]mfyé;gl}, respectively.

§2. Separation of two sets

Theorem 2.1. For any sets Gl,Gzc:Rn, the following state-

ments are equivalent:




. e 6 e
(®]

e el Glf\co G, = @.

2°-4°, There exists ved (RY), ve (Bl veOIR ) respectively,

satisfying (1.6).

) : : :
57. There exists either a generalized half-space S’c R" such

OmeTr———r

Gg B0, G mRi el ity ' i

or a generalized half-space s” ¢ R™ such ‘that

B N ——

Gl 6 oal ’ - (2.2

Q ®)

proof, 1% =4°, 1f 1° holds, then O¢co G; = €0 G,, which -1z a

convex set. Hence, by theorem 1.1, there exists ve0(R®) such that

v (y) <, 0 ' yeco G,-co G,), (23}
which implies 4°.
The implications 4° = 3% — 2° are obvious.

2° =»1°, Assume that vei(Rn) is as 'in 20, but 1° does not

k m ;
; Qo 2 1 2 iz ;
hold, say %Z%xiyizﬁiﬁ%jyj' where yieGl, yjeGZ,-Xi, Fj 4 0 0 P o
5 m. 2 :
j:l,'o«’m)fz>\i:2__,}i-:lo Then, by (106)[
E e | ‘
vy g iy D) =1 kig=1 m)
=P s b el o
whence .
k 1 k 1 . 1
VIZ . NyYi)=2 Mviyy) €p max  viyy) <g
i=1 i=1 l<igk
' ) ¢ 2o v D= oy
< 70 e i Y ) LV (yZ)=v( v
E ey i ol
= 2
in contradiction with %éixiyizgi%ﬂjyj,

42 5500 pr VéOYRn) disam dn 42 then, by (1.6,
sSupy V(Gl) éljinfL_V(Gz)' (2.4)
1f supLAv(Gl)¢v(Gl), then, by (2.4), for each of the generali-
zed half-spaces
n 3 5
Si={y€Rn|v(y)<<L supy v (G} € si={yeR"| v(y) <, inf. v(G,)}, (2.5
we have (2.1).:8imidlarly, if infL v(62)¢v(G2), then, by (2.4),. for
each of the generalized half-spaces.
¢ ot 2 Gl ool ; :
Saf={yeli | v (y) >q, Supp V(GlX}Q Sg—{yéR 'v(y):>1l1nfL V(Gz)}, (2.6)

we have (2.2). Finally, if sup v(G,)ev(G,), inf V(Gz)ev(Gz)p



)

=7 -

then, by (1.6}, there holds
- sup; v(G,) <i inf, v(G,), - : T ' (2.7)
and hence, for the semi-spaces :
N[ n : ’ .n P
Sé-—{yeR v (y) <y, infy V(GZ)}, S’l={yeR [vy) >, Supp v(Gl)},(2.8)
we have (2.1) and (2.2), respectively.
5239, If 8t dsiq generalized half-space of the form (1.9),

satisfying (2.1), where VeiJRn) and zeR%, then

vyl < 2 <y Viy,) PTG, weRt ),
_Finally, the case of a_generalized half-space 5% satisfying

(2.2) isicimidar.

Remark 2.1. .a) Let us also give the folldwing alternative ~

-proof of the implication 2° :@10, which does notwuée the characte-

rization of co G as the set of convex combinations of points of G:
Assume’ 2° and let
3 n %
H~{yER,}v(y) =i v(yz) (yzéGz)}, = (2.9)
n : : ,
K={yER ,v(yl) <y viy) (y,eco Gl)}. (2.30)

Then H,K are convex sets and, by (1.6), we have G, ¢ H. Hence,

co Gy ¢H, that is, G, < K. Hence, co G, €K, which implies %, B
b) . One cannot replace in 59 "genetalized half-space" by
"semi-space", as shown e.g. by the (convex) sets
T )
G, ={y=(1 1,) €R P <, C,=R\ Gy, .“' (2.11)
or by the (convex) sets
- T 2 s .
6y={y = ln; 1) er"|ny <0}, 6=R\ocy. (2.12)
Note also ‘that, for (2.11), the identity operator w=I satisfies
T
{1.6) and supy, V(G1)=(O +w)=infL v(GZ), while for (2.12), wv=I 'sa-
e . _
Elsfies @(1i6)"and sup, V(Gl)—(O —m)wlnfL V(Gz)'
c) In the particular case when G2={XO}, the implication 1° =4€
of theorem 2.1 yieids dgain theerem 1.1. Moreover, by iwemark 1.1 aj),
in this case there exists a semi-space S’ (namely, S’=S of (1.8)),

satisfying (2.1) (with G2={xo}); note that this also follows from

the above proof of theorem 2.1, since for G2={xd} we have _



infL.Vng)ev(Gz), sO only the cases (2.5) or (2.8) can hold.

d)e Since =S% S”,Rn\S' and R™\8” of (2.1) and (2ﬁ2)-afe cones,
the implication 1°=4° is a "cone sepafatién theorem", in a strong
sense (since, usually, in such a theorem, thé complement ‘of a cone
which "separates” G, from G,, need not be a convex set; see e.g.|7)).

Il g : ¢ i+
e) If Gl’ Gch are convex sets, condition T2 bccomos

PR

F e
_l.. Gl/\ G2~¢ .

In this case, the 1mp11catlon l’~x3 is equlvaJLnL to the

r

well- known result (see e. g.L6}, corollarv 2. 0o [8] 817, theorem 1)

according to which, for any two convex sets Cl’ 5 in a linear spa-

ce F, with Glwa2=§§,there exists a convex set H such that FN\NH

is convex, H and G F\H, namely,

l*‘ 25

B/ Nl (2555
Moty

‘'where S is a certain semi-space at 0. Indeed, since for any semi-

»spacé Seratil il st (2 A3 and BN ake convex; and GZQF\H ([16],[8])

it remains to show that, for F=Rn,.there exists vel(R") as in e

if and only if there exists a semi-space S at 0 such that H of

(2.13)-satisfies G, € H. Now, if veU(RY) ds-as i 8 then for
Si{yéﬁntxﬂy)*<l,0} we have, by (1.6), Gy-y, €5 (y,€G,), whence
G,=y,+ (G -y,)C y,+S<H. Conversely, if for S:{yeRn)v(y) <. 0%
R B Sl el ’ s e

where VEU(RD), the set H oof (2.13) satisfies Gig:H then

e e iptvlyert o uly) <, 0= /” x{ch v <, v y2>}
y26G2

so (1.6) holds, which proves our assertion.

4



i3 A

£f) For any two sets Gl,GéciRn,'we have 1’ if and oﬁly 1E

: O?EGl 7 G2 . (2:14)

-gﬁ-(2.14) holds and G,-G isuconvex, then, by‘théorem el

B e

there exists ve( (R™) such that

v (y) <; 0 7 ; (yeGl - G,), (2205

whence we obtain (1.6)#% Thus, in this case, we also have 12 and o

of theorem 2.1.

=83 Separation ofwgiset and the non-positive orthant

Now we shall consider the particular case in which G2=—Rz,
where R2={yeRnly;;O}.

Theoreim 3.1. For any set G BY such that & RE is convex,

the following statements are equivalent:

O 3 1
1 GG + R, .
g Gn(—RE):QJ.

32 en G)f\("Ri)=¢-

4°-6°. There exists vei(Rn), well (B . welliBYy, respectively,

S
21\
AN




el

such that

e R T e e e,

vig) > viy) : (geG, ye-RD). (3.1)

Same as 40, 52 and.6” respectively, with v >. 0.

i %L

0 : : :
109-11°. same as 4° and s° respectively, with v > 0.

e o e

Proof. The eguivalences 1°¢ ... e 6° hold by remark 2.1 f)

X

:usR-I_ =

with G,=G, G replacing v of (X.6) by -v.

2
6° = 9°. For veUKRn) as in 60, let us consider the matrix re-
presentation (1.1) of v and let

iozmin {ié{l,...,n}t(ml...mi)Tg 21, (ml.”na)iy (geGﬂm~R2Uu(3.Z

"Since (by (3.1)) the set on the right hand side contains i=n,
au

we have lgiogn. We' claim that (ml...mi ) ZL il ve.., that
o
T Gt
(mlj°°'mioj)- 21, 0 . ‘(j~l,...,n). oo A3 wd)

Indeed, assume first that i_>1. Then, by (3.1} ahd-(3.2),;

there exist €G and EuRn such that
9o Yo +

e by :
(ml“°mio~l) go= (My..omy Sl - (3.4)
But, since yo+ye~Ri (yEMRE),.we have, by (3.1},
: T T A -rM. :
(ml"'mioml) 95 21, (ml"'mio~l) (yo+y) (ye R+). (3.5

FEroma(3-4) -andi(3.5) it follows that

b ' (pe=lly, - - (36

(ml...mi -l) Y <,
o

whence, by lemma 1.1,

(ml°'°mio—l) 71, O (3.7)
and: thus oy llsl )
T , oy - =
(mlj'°°mio~l,j) 21, (5t (el fosa, i) e (358,
If (m m e g e e om0 se
B el g o T 17 e
holds for this j. Assume now that
it : A
e < T =h oG TR T S e (3.9)
1 A=l 3 i i iy
fhen, by (3.4) and (3.9),;
(m m )T =(m m ')T(y SXEa) {XeR. ). {3,304}
1... ioi"l go l&.l io"-l O j +

On the other hand, since yowkejé~R2 (AeR+), we have, by

Jo€G and A 3.2),



. T il ’
(ml"°mio) 9. o0 (mla..mi ) (yomkej) (A€R+), (A1)

O

From (311)  and (321 0) it : follows that

m; g Y -Am; e. , - :
logo:>mloyo mloe:J (XCR+), (3.12)
i : . : . .
whence m, =ms = >0 (since otherwise, taking A—+e, we arrive at
o) o i

.a,contradiction with (3.12)) . Hence, by (3.9) , wesgbltain that (3.3
holds for this j,.tooo .
Finally, assume that io=17 Then, by (3.2), for any 9,€G and
all j=1,...,n we have (3.12) (with iosi), whence, as abéve, it
follows that mlj 70 (j=l,.;.,p).\Thus, m? ;L:O, which proves the

clatm (331

Next, we claim that therevexists $=(ﬁij)?’j=lGU(Rn), X7 Z1, O
such that
%ij =m (i=l,;,u,io;j=ly,..,n)aG-l3)

ﬁﬁeaL we shall construct the ﬁjj's by -induection on i. By

veU(Rn), (m )T (i=l,..a,io) are mutually orthogonal non-zexro

b e
vectors; also, they satisfy (3.3). Assume now that for some k with

N

O¢kg¢n~i ~1 we have constructed mutually orthogonal non-zero vectors
i

(i . e b=l e satisfying (3.13) and
~ ~s T e
(mlj°"mio+k,j) ZL 0 : il ool (3.14)

Then, by the orthogonality assumption, we have

rank(mij) 3lo+k, (3515)

Lol plidthas guliye . iyn

i.e., there exist indices 1g m(1l)< ..o<‘w(io+k)$ n . such that

det (m )

s m(3) £0. o (3.16)

+k
o)

=1

there exist (unique) real numbers §1’°"’§i gk such that
1 - sl (o) =

i,j=l,...,io+k

i
Choose any ﬂ(io+k+l)e{l,...,n}\\{ﬂ1i)}i JIhen,; by (3.16),

i +k
SO
2 m «z—N. j = e« o i ° ° 7
= mi,v(j)gj m.l,W(io+k+l) el e R )

Let us ‘define



mio+k+1, Tr(j)zgj (j:”—l,o..,io+k), (3.18)

la%d

m, R : =1 (3:.19)
lo+k+L,ﬂ(iO+k+l) : ) .

o g el

mio+k+l,j:O | (36{;,,..,n}\\iﬁ%l)}izj 8.2

Then, by the induction assumption and by (Bl T)=(3.19), the
vectors (&.....m. )T
ioie

o (izl,..,,io+k+1) are mutually orthogonal; also,

Byel35td ) (35060 (3190 and . (3.20) 5. we have
)

Ing o

(mlj°"mio+k+l,j 0 =l o n (3i21)

o

which proves the claim on the existence Of:§6UKRn), v Z1, 0, satig-
fving (3.0 3).

Binglly, frem (3.2) it foilows fhat

(ml..“mio)Tg e (ml...mio)Ty : (geG, ye-KY) (3.22)
and hence, by (3.13),

el Vv (geG, ye-R}). (3.23)

: . : : SRR e : ~
The converse-implication 9° =36 is cbvious,

8° =»11°. If velU(R™) is as in 8°, then, by v 0 and [10],

g 7L
corollary 2.1, there exist a unitary lower triangular matrix
KeU(Rn) and a matrix ped (R™), p> 0, such that v={p. Then p=£71ve
eURY and, since T is also unitary and lower triangular, we have,

by {3:1) and lemma 1.2,

1’1)

p(x)=L"Y (v(x)) >. 0 (xeG + RY).

L
But, by (3.1) and since Z

(3.24)
eU(R®), we have p(x)=£"l(v(x))#0
(xeG + Ri) and -henece, by (3.24}),
‘ 1 &
p(x) >, 0 (x€G + R}« (325

Thus, we may take p as the operator v required in 212,

Finally, the implications 11° =8% =5 7° =42 and 11° -5 10979

nogn,

gene |

are obvious. ia

Remark 3.1. a) One can give a direct proof of the implication

50::>80, slightly simpler than the above proof of 62 == 9°, Namely,

after proving 63.3) as above, note that, by veU(Rn), we have

il
rank (ml’“"mio) =lgs

is8sy there exist indices lewm(l) < ... <Hfi.)<n

~



det (m

irﬂ(j))i,j=l, : ,ioféo" _ : ‘ (3+26)
Let
& (m'l“.mio e’rf(io+l)“‘e7r(n)) €L (R ) ‘ (3_27)

q

where iﬂ(i0+l),.e.,ﬂﬂn)}x{l,...,n}\\{ﬁ(l),,,_,w(io)}; Then det V#0,
sorweli(Bh ). Alge, by (3.27) and (3.3), we have % >1

from (3.2) there follows (3.22), whence, by (3.27), we obtain

U Pinally,

(393 . e o iz

One can also give a direct proof of the implicatioh 4O<:>7O,
which is. even simpler. Namely, after proving (3.3) as above, it is
enough to take

N T 19 T
V“(ml“‘mio 05 s DR e i(Res Y

indeed, ¥ 27, 0 and, by (3.22) and (3.28), we have (3.23).

b) One cannot replace, in llo, VéU(Rn),‘vzzo, by the stronqér
properties veOXRn), v>0, since it is easy to seé& that the only
nonnegative orthogonal matrices  are.the permutétion matfices,

Let us consider now the particulér case G2=—R2\\{O} of -the

situatieon of ftheorem: 2. 1.

Theorem 3.2. For any set G R such that G + Ri‘is convex,

the following statements are equivalent:
155 0dec + RAXJ0}).
2°. 6N (=R} \ {0})=0.
e A -
3. .oalce BN (~R+\{o})—@.

4°-6°, There exists vei(Rn)) veU(Rn), veU(Rn)i respectively,

such that

Vgl >r viy) _ (geG, ye-—Rﬁ\{o}). (3.29)
7g Same-as e and 6° respectively, with v > 0.
1T, Same as 40 and 59 respectively, with v 0,

Proof. The equivalences 1° &= ;..¢¢60 hold by remark 2.1 f)

with Gl:G,-szmRi\\{O}, obserwing that 'GZZRi\\{O} and replacing

o SO Bl a5



SR

60 = 07 e Pf 0¢ co G, thén, by 30, we héve (co G)f\(an)=¢, SO

4~

we can apply theorem 3.1, implication 6° =>9°, on the other hand,

if 0 ¢ co G, then, by theorem 2.1 (see also (2.3)), there exists

vel (R") satisfying

6a) > v (y) 5 (g € co G,yc~R2\\{O}),(3

30
whence (3.29). In particular, since 0 eco G, we have
0 > vi(y) ) (ye- R \{o}), iz

whence 0'}L v(y) (ye~Ri), and hence, by lemma 1.1, v Z1, O

The converse implication 9% = 6" e ohvicus,

The proof of the implication 89 5 11 je sdmilae to that of

theorem 3.1, implication 80::xllo, replaeging, in (3,24) and (3.25),

¢ + R by G + (RT\{0}). Finally, the implications 11° = 8° = 7°=4¢

and llozzélOO ;970 are obvious.

§4. Ap@lications

- As an application of theorem 3.2, let us give here the follow-

ing characterization of the elements of INF G:

Thepxem 4.1.-Let Rl be»such that G + Rﬁ is‘convex, and

let xeR™. The following statements are equivalent:
B e TG,

e and there exists vel (R™) vz 0, such that

vig) > vyl (Get, geR ,oyen) . (4.1)
Proof. 1° = 2°, we may assume, without loss of generality

(replacing G by G-x) that x=0. Now, if T holds for x=0, then

Gfﬁ(—Rz\\{O}):Q, whence, by theorem 3.2, there exists veU(R ), w20,

satisfying (4.1) with x=0.

]’l)

S L ved (R satisfies (4.1) , then Gr\{yeRnly<:x}:¢,

and hence, by xeG, we have 1°. A

Remark 4.1. a) Using theorem 3.2, one can also give other
equivalent conditions, which we omit.

b) One cannot replace (oen) of-2 by



v (y) >, V(x) ‘ (y€G \ ix}) , (4.2)

as shown e.g. by the (convex) set

T2
G={(7y 178" 1,20, 1,20, 7+, »1} c ¥ (4.3)
: LoIyE
and the element x=(§ j) €GNINF G. Indeeqd, e ol 0 €G\\{X}

(0 l)eG\\{x}, SO dF (4, D) holds for some ved (R™ )y, then
: e
V(X)=V<-~l—é--2—>=~]2‘-V(el) + ~21~v(e2) S e

which is impossible.

Pinally, let us give an application of theorem 1.1.

Theorem 4.2, Let G be'a_convex subsef of Rn and let f=

=(fl,...,fn) be a function from a finite in%erval fa,b] ¢ R into G,

with the components & ,...,fn integrable (Lebeegge).'Then

ff )dteG. - (4.4)
Proof Assume that x éG Then, by theorem 1. l there exists
veld (R™M) satisfyving (1.7), whence, in partieular,
vIE(t)) < vix,) (tela,b)). (4.5)

Let us consider the matrix .representation (1.1) of v and let

A=ftelab] | nf (O=ix, (G=1,...,4-1),mE@)<mx]}  (=1,...,n). (4.6)

The sets A. are measurable (Lebesgue) and A,/\A.=¢ (i#j),

\‘_:L/Al [a,b] (by (4.5)), whence ZL*FIA )=b-a, where g denotes the

Lebesgue measure. Let

i,=min {i&{l,...,n}lﬂ(Ai)> 0}, : (4.7)
Then, by (4,5)=(4.:7),; we have

T Stels . A I Sy
.mi_f(t)—mixO f--a.e. in J[a,b] (1—1,...,1O 1), 4.8
Wb en n -a.e. in [e b] (4.9)

L B e POl :

the inequality (4.9) belng strict on some set of positive measure.
Henee . by integration of (4.9), we obtain

o 2 :
m { £(t)dt<ml x_(b-a),
x X @]
- a (©F5

whence, by the definition (4.4) of X



which is impossible.

mT X <mT X
150 i

o
O (0]

Remark 4.2. Theorem 4.2 improves a result stated e.g. in [5],

pp.200-201, where the conclusion is XOEE, the closure of G.
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ABSTRACT
(of {?2)) on separation of con-
<>},>s*z?c1't;c;3?§; cdn the  sense of - theliexi-
on B we some thecorems of sur-
rogate duvality for vector optimization problems with
convex constraints (but no regularity assumptionj, where
the surrogate constraint sets are generalized half-spa-
ces and the surrogate multipliers are lincar -Ccperators,
or dsometries. -In the case.of inegua~-
lity constraints, we prove that the surrogate'multipli-

1\./‘ ’l.. :"'

coacranh DYOVEe
vogiupl VEQ\v

ries or non-negative ({(in the usual order) linear iso-
mnorphilsms.

0= INTRODUCTLON
: : ‘ G S
We recall.that, given a subset G of R (assumed

hon-empty, throughout the sequel), called "constraint

2 . : Ny e : : : b
§ ca s puhedlenagt h:R —>R=[~cc0,+00] , called"objective

set!

functional"”, and the primal scalar optimization problem

(P) gz int-h (G

e t)

«



ur

the set. of "solutions” of (P) . is defined by

JG(M):LgOcﬁih(go)<h(g) (gcg2}=
={90¢GlGr\Ah(qo)(h>z¢}. | o 0.2)
where ¢ is the empty set and Ah(q )(h) is the level set
& % o A ;
—ixre n : 3 .
M (g )(h)—{jCR 1h(y)<h(yoy}. - (0.3)

o

Furthermore, a "sdrrqgate dual problemS to (P) ., in
the sense of [14] (see also [19]), is any optimization
‘problem of the form :

n

3 * g n.*
(Q) B=sup A((R) }; A(¥Y)=inf h(A

(Fe(RE b (0.4)

G’\i/)

where (R")  denotes the -family of all linear funetio-

e R g n, ¥
nals ¥Y:R —R and where AG Y c R (Y (R ) s Bheiisels
3 =3 :

AG,W are ‘called "surrogate qonstréint sets“} Eor the‘
classical particular cases, see e.qg. [3], [7], [4]) (see
also [2], [8] and the references therein). Due to the
second eguality in (0.2),a suitable tool for-obtaining
characterizations of the solutions ef. (P) consists (see
[71, [15)) in separation of the constraint set G from

*
the level set Ah(g )(h), by linear functionals WE(RH)
o)

Let us consider now the case when the above h is
replaced by an "objective mapping" h:Rnweﬁm.and §é(h)
is replaced by the set of all "Pareto-solutions! of the
corresponding primal vector optimization problem (P),

e by
‘Ué(h)=1gO€G!h(go)¥h(g) (geG) }=

~losGienA o sl (0.5)

h(g )

O -
her s b o o
where > is the natural partial order of R , P denotes
the negation of > (where x>z means that xzz, X#z), and

A (h)iadiss sl the: Ylevel set! (0::3)  withe<in Ethe

h(go)



wr

sense of the natural partiél order on R.. Again, the
second equality in (0.5) suggests that a suitable tool
for obtaining'characterizations of the Pareto-gsolutions
o= (P . of Ysurrogate duality”'type, should be the se-
paration of the constraint setiG from the level set ;

A (h); generalizing the terminology of [14]-[16],

h(go)

this may be called “"vector optimizatien by levyel set
methods". ; : .

Since the usual separation theorems of gwo convex
sets in Rn, and the warious known extensions of‘these
‘theorems to separation by linear operators, in the
usual partial order of Rn, require rather strong assum-
ptiens, the duality theorems for ‘(scalar or vector)
oﬁtimizaﬁion,'obtained from them; reguire-somes e
larity assumptions". Therefbre, a theorem of a new
type- (given in [017); on the séparation of an arbitrary
convex set in R© and any-outside point, by linear ope-
Fators; in the sense of the lexidographicalvorder of
Rn (instead of the usual order of Rn), has been used
in [11] ,-to obtain theorems of generalized 'Logramgian
duality feor wector optimization. s

In the present paper, we shall develop a theory
of surrogate duality for vector optimization, based on
the theorems of [12] on the separation of two subsets
of B by-lineay opératérs V:anaRn, in the sense of the
lexicographical order of R®. In §51-5, we shall consi-
der -abstractly given 'subsets G of RY and weAshall re-
place the surrogate:constraint sets A mentioned above

_C“;Y[\}(J ¥ :
;-which correspond to those . gi-

by'sultable sets AG,V

ven. for.scalar optimizatiqn, in 16 formula (2:5).
Besides characterizations of the Pareto-solutions of
(P): in terms of separatign and surrogate constraint
(&)

sets (81), we shall also give characterizations onE



them in terms of surrogate subq.fferentials (§2), sur-
rogate Lagrangians (§83), and surrogate Lagrange multi-
pliers - (1.e., solutions of a surrogate dual problem of
van Slyke-Wets [21] ~Jahn [6] type; see §4), which we
shall introdude here, as well as characterizations of
pairs of primal-dual solutions in terms of the saddle-
‘-points (in the sense of [20] eand [13]) of pur surro—
gate Lagrangians. In §6, we shall consider subsets G of
r" given by (a finite number of) inequality constraints,.

ti.e. J-ofithe form

G={ger"|u(g) <0}=u"" (-r¥), (0.6)

where u:Rn«>Rk and R&s{xeRk 30} this, in this ease,

By (0.6) and (0.5), for any iR >R we have

h

(h))F\(~R+

s

(h)z{goee’u(Ah(g ) y=@}. | L0 7)

o}
In this case, we shall.introduce other surrogate
constraint sets Au,v QRD’(where v:Rk~»>Rk are linear opr
erators), corresponding. to those given, for scalar
optimization, by Luenberger [7] and we shall give for
+them some:results corresponding to those of g8 15
moreover, we shall . show that it is sufficient to eon-~
'sider non-negative linear operators v.
! Note that the results of the present paper are new
even in the particular case of scalar optimization,
gince even in ‘that tdse we use lineaf operators instead
bof linear functionals. .
‘ Let us recall now some notiong, notations and re-
;sults, which we shall use in. the seguel.
The elements of R will be considered column vec-

tors and the superscript T will mean transpose. We

f ~——

‘ ; el : : :
recall that xu(@q.n.én) ER" 1g said to: be "lexicogra-
: i i\

phically less than" y:(n1.,.nn) eﬁn, in symbols,

Edna i we

&
o 1 L

r Y if styiand A F for kominlied 1 s swrnt
L .



have We write o Sy iR e
CSiieiay ey I

respectively N

tionsg v >L e
Furthcrmore, we shall denote by CL
non-negative orthant" Oben, dven
Cr={yer" |y 2 U1
We -shsl] denote by x(Rn), U(Rn)

Milies .of all linear ObPerators,
: ; ; ; n n
il -l ines, lSometries y;p — R
consider two'orderings of @in'

e : -
LR J) nNanely, the usual order

v>O¢:>v(x)>O

and the l@xicographical
which :

v ZL

We. ressia that

0= v (x) ;L 0

any subset g

) -1 o x :
S={yeR [V (y) S Zh

whére vax(Rn)

: : e : :
10 913 sines Ved (R ) 5iF ang only if
is €quivalent to

n
S={yeRr v (y) o
: s =n
where Ve SR ana z'eR

and= {121 . the generalizeq half-spaces

z:(Z;7 i Cn)éﬁn include, among others
(for C1=~m), the whole Space (for ¢72+m),

oPen half-spaceg (for C1€R, Co=5

TSpaces (for c1eR,

5 : o R e e e
call that d:subset g Of Riidge called

sty
at xO“, where XOGR :

Y o stevs

;I X, will
the

(eep™ e

(xeRn, x20).

of Rn

and zeR" 44 called [{27 a

.half-spacer (such setg have been calleq

the notg-

be also used,

”lexicographical

(0.8)

and O{Rn),‘the fa-
all isomdrphisms,
. respectively{ We shall
(hence also of y(pn, ;

relation Zrodn whickh

- [0.,9)

order in the Sense of s T

(O.TO)
of - the form

(04117

"generalized

”half~spaces”
“VELRN, (0 11
(0129

« As has been Observed in [9]

(0.71)'swith
, the'empty set

the (Lsual)

)t e closed half-
L5=+®) ang the Semi-spaces. We re-
(5]

ifog g a maximal convex

A s e e
d b@ldl_“b}_ﬁdb@

set such



thiak xoiﬁ; b 12 remark.1‘2 )8 set. 5 ¢R” is a se-
mi-space (at some XOGRH) it and -emly it there exist
,v&O(Rn) (or VEU(RH)) and zeR™ such that we have (0.11)
for, eguivealently, (0.12)3) < In 881-5, the surrogate
constraint sets AG,V will be generalized half-spaces or
complements of generalized half-spaces.

For two subsets G1', G2 of Rn, we shall say that

an operator VG£(RD) "separates G, from G;" (in the

1 2
sense of the lexicographical order of Rn), if

v(q1) % vig,) . i (g1éG1, 9,€G,) ; (0.13)

clearly, this happens if and only if =y separates G2
from G1. :

vLet us recall some parts of the two main separa-

~tion theorems of [12], which we shall use in the sequel;

Theoren.- 0.1 {part-of [12], theozem Z,ﬁ). For any

' n :
convex sets G,,G, CR7, the following statements aze

equivalent:

O \ ¥ —
(o G1rxcz ?.

20~4O; There exists ve&(Rn); veu(Rn), veO(Rn),

respectively, satisfying (0.13).

Theorem 0.2 (part:of [12], theerem-3.7 ) Bor any

Lk : B :
set @ R such that Q+R is convex, the following sta-
rements - are equivalent;
o %4
iR ) =0,

s
20—40. There exists Véi(Rk), Veu(Rk), vc@TRk),

respectively, such -that

: k :
v(w) >L v(z) (@eﬁ,_ze~R+)._ _ (0{14)
5oat Some. as 20, S e respectively, with
\% ;L 0.
o

8 e e e

o o : ;
297 Same as -2 and 3 respectively, with v>0.
We recall  [12) that the sets G

|/ G2 and @ in theo-



rems 0.1 and 0.2 are not assumed to be #@, but, instead,
the convention. . is made that if one of them is empty,
then (013}, respectively, (0.14) , are considered to
hold (vacuously). : 7 ‘

We shall use the ”uﬁper addition” + on R" defined
compbmentwise (we recall that the usual upper .addition
"% on R is defined by atb=+e if a=-b=+w and atb=a+b for

the other a,beR).

1. SURROGATE CONSTRAINT SETS. SEPARATION

proposition 1.1, Let 6 cRY, vediR?) and let
ke : ) n B P
bg, vV (v(G)+C ) ={yeR"|v(y)ev(G)+C  }=
={yeR"| geG, v(y) zp v(g)}. ‘ (1)
a) We have :
GQA&V. : ; i 2
b) We have
= n 1 ] ‘ 5
e |vigdping vi(GLl, . . o 3y

where infL vlGyidenotes the infimu of w(G) for the le~

xwicoegraphical order of el and where

2 e dnt v (Gl vi{G)

o i o
= . (1.4)
>L if ,infL v(G)¢v(G) ,
le] AG - is either a‘qeneralized'halfmspace, or the com-
T r

plement of a generalized half-space.

Proof. a) If geG, then for yzqeRn we have

v(y) >L whg ), and, thusy byt K5, gEAG,v

b)'Lot ycﬁ Then,<by - {1.1); thereegists geC

(D]

iV

such that vi(y) 21 v(g) 2

infL viGl¢v(G), then vi(y) ;L vilba)s 2o dnE G0 Bisy

inf v(G). Moreover, if

L



viy)p infL vi(G).

Conversely, let yéRn, vk )ip infL VG TSR :
infL v(G)ev(C), say, infL v(G)=v(g), where -geG, then,
by (1.4}, viy) 2. wlg). and hence, by (1.1}, ycA i

/L ,
ian v(G)e&v(G), then, by (e, i) >L inf. ( 5}, and
hence there exists geG such that v(y) v (g) hen, by
ot yéAQ v
Remark 1.1.-8) By (1. 3) (1.4), the sets AG . COr=
I'

rcspond to those given, for scalar optjmlzatlon, in [16],
formula (2.5) (see also [17], formula (3.78)).

b One - ean ales write {1.1) dn the forn
e =\ Rl e (1.5)
o N 2 : :

where
B, ={yer"[v(y) > v(9)] (geG).  (1.6)

Then ﬁ%ﬁv)}ngis a family of "parallel" complements

o f generaliécd half=spaces, totally ordered by .inclu-
sion. Indeed, if g,g'eG, then either v(g) ;I Vel - or
vigl) 77, g BaE g 2y Vg i)s, ticn Y’(v)g

e g (v) (since if y-wq(v), then v(y) 2L vdag) e wlaty,
(v)). On the other hand, B pbgl) oo wila)s

S0 yédj'
then clwie WZI(V)-

c) TE va(R } /- then, by (1.1); we have
...’] -.._.’I

B (v(G))+v (C ) =G+v " (Cp)y : )
where v“1(CL):{yeRn\v(y) BL O} is Lhe complement of a

semi~space at 0.

g ,.' n
Theorem 1.1 et € be a convex sulbset of R, let

a0t ] : -
qOGG and let h:R —sR  Dbe such that Ah( ) is convex.
; o
The following statements are equivalent:

o

M
1 “‘ 9, € G(h) ‘



et : T ;
- =4 - Thewe exicts ve£(RY), veUan), ve@(Rn),.

regspectively, such i that

el ) e S el | (yeAh(go)(h), geG)aii (1. 8)

0 .
= dbere exisks vex(Rn), veu(Rn), veﬁ(Rn),

respectively, such that

goelg »(h), _ ; - : . {1.9)
G N :
where AG cr? is the set defined by (1,1);
Proof. Since G and Ah(q )(h) are convex., thelequi-
valences Tolﬁ>...‘ﬁ?4o follo®w from (0.5) and theorem 0.1.
40 =y, TE veU(Rn) of 4° does not satiste (1.9,
2 *$18CTS /\ & ‘“ s e
then there exists y' ¢! e vr\Ah(gO}(h) Jhon,'by N AG i
and (1.1}, there exists g'eG such that viy') 2 Vaagll,

L
which: violates-={1.6).

: : . o G 6 et
The implications 7 =6 =257 are obvious.

o (e e ; 1 e ; .
St TE O Fevr ge (R ) as dn 57, thHere exist
y'eA

(h) and g‘GG suel that vipld g vilgYsten,

b(go) L

by (Tfi), we have y CA e Thus , AGrvr\Ah(go)(h)¢¢,
whence, by (0.5), g ¢UA (5. :
G,V

Remark 1.2. a) ‘By the equivalence 1 &@5 we shall

.n :
call AG V{Qk. ai-stirregate constraint: set.
L

b) The convexity of G and Ah( (h) is nee dcd
it
clumhe fack that g €6 and (1.9) imply 1°, means

. )
only in the proofs of 1°=n -

that

A

P L U (1.0
G. Senise
G,v

and can be also proved directly, as follows: g 6Geh
3 O G
14

and  (1.9) imply AG'Vr\Ah(qO)(n):@, whence ,.. by - (Fo2),
Gf\Ah(q )(h):@, SO goétg(h), Thug, as shown: by the

HEO)



£

S oA Slee e : ol '
above proofs, the implications n- =s1 (=2 ) res

i St . : A
e in valid for AG replaced by any set Ac¢R  such that
£ .

(& S=2 e

Corollary t.1. Let G be a convex subset of R" and

e == N
let‘h:Rlprm be such that Ah(g )(h) is convex for each

gOGG« Then

:G_m\wﬂnJ e (1.11)

velU(R) G,v
e

lgg_hj,.,.,hm:Rn~a§ be explicitly quasi-convex func-

-H

Corollary 1.2. Let G be a convex subset o
e

tionals, and let

I

hiyd={h, (y), ... h_(y))eR" . (yer ) (1. 129

1

Then we have (1.11).

m

Proot. The explieit quaSiwconvexity of the hi‘s
implies the convexity of Ah(g )(h), so-corelilary 1.1
applies. °
In the next corollary, we shall use the standard
identification.of each v&&(Rn) with: i€s matrix with
respect to the unit vector basis {ej}§=1 of Rn, o e

we shall write

ooy e = (e 13)

2 i,j=1:

T X - A
where m.={m,. .. M.}y (1=%. .«n) are the rows otr
i i1 in
(

n i} = ] = 7 1 .
)i,j=1 and (mlj°"mnj) v(ej) (7 1,.,,,Q) are its

columns. Also, we recall that, for a linear subspace G

of Rn, G“L denotes ﬁhe sat

.
1]

G ={p = (uy .. on JeR™ [uTg=0 (geG) ). S 1)

g > liy ; : n
Corollary 1.3. . Let G be a . linecar subspace of R,

N el . : : : : +
let h:R“wﬁR“ be such that Ah(g )(h) is convex, and let
e Sl = Ph(g) T SR2ntesy QA0 SCh




PR

o e e O8O ' fo e =
gotﬁc Then we have d w2 &b of tHeopenm 1., Wheve we

L2 )

s 44 [ il A ,
can take vu(m1.,,mn) such that mi,,a.,mheG i i

m

Prool. Let vo:(MT,..mn}l gatisfy (1.8). Then,
eleaxly, :

S cler i T
(mq...mi) Y <1, (m1,..mi) g . |

(ycAh(gO)(h)i geGy - iels o nnl, (1.15{

In particular, for i=1, we must have

m?ygm?g : (yeA

o

: ; : : n '

whence; since G is a limear subspace of R , we ebtain
Ul . e T oA

m1cG . ‘Assume now that i-1<n and m1,...,mi»1ée e BY

(1.15) , there are two -Cases:

Case (a). There exist y'éA (h}y and: g'es such

o “hg,)
that

ol b [
pee M)y “n1‘°‘mi) g tEgl vl m.g Jos CEatT)

; : : : n
Then, since G is a linear subspace of R , we have

g'+tge@ for all geG, whence, by (1.17), (1:15) and
0 7 ol
1’“"’mi~166 .

[0 mfg')l:(m1u.

s e I e :
SL(m1'°'mi) (g'+gr=10...0 mi(g +qg) ) (geG) .

m

(:[1 i i
£
°mi) % I

«Q

: i T T o A
Consequently, migfgmi(g‘+g) (geG) , whence, since G

3 , m i [
is a linear subspace of RP, we obtain mieG !

Gase Ab). All inequalities in (1.15) are strict.
v

’ i fi...ln% éL |

-ei(Rn) gsatisfies (1.8), 90 we can take r%,...,rnéG :

Then, clearly, any-matrix V':(m1.,.m

2. SURROGATE SUBDIFFERENTIALS

e ¢ I3 ol T
Definttion 2. 1. For DuR =R —and yOeR , we shall

call surrogate subdifferential of h at Ve the set



'hiy )  £(R") defined by

Al e
J h(JQ) {ved(R")

AVAR = )’ } 1=
JO~1A (h) }

ot (e ‘)n o )’ . ‘ .
_.{Vé.’ou‘(l\ )IYOC'L{YGRHLV(Y) Sy )}

(h)}; =)
“1L o :

here the lastvequality holds by proposgtion 1.1 b,

Proposition 2.1.:We have

Od
Proal « By al2.1), vanh(yo) &L rand anly 1F
h(y) +hiy,) (yer", viy) 2y viyg)). (2.3)
which is equivalent to
' n ;
S P e (yeR ', hiy)<h(y_)). (2.4)

Remark 2.1. Geometrically, proposition 2.1 means
that BYh(yO) is the set of all Vei(Rn) which separate

)(h) f;om ¥

Provosition 2.7, TEAA th). 'is convex, then

h(yo>

lngy )70

Proof . iSince Ah(y )(h) is convex and yO¢A y(h),

%s e

there exists (by theorem 0.1) vei(Rn) satisfying (2.4),

Thity -

whence, by proposition 2.1, ve?d =

Remark 2.2. a) We have the followinq resule ef -

converse type: TF m=1. and SYh(yO)#@ for-all yOéRn,‘then ,

h.ds gquasi-convex (iie., Ac(h) 1ls .convex tor. each ceR) .

Indeed, if ceéR and yOGRn\AC(h), thén h(yo);é, whence

No(h)e R (B) " Then,; by (2.2) ;- for any veSYh(yO) we

TS

s ()

Cf<
have _
viy) < vy (ycAc(h)), (Z:5)



SO Ac(h) can: be separated from any outside peinkt yovby
some v@ﬁ(Rn), and hence Ac(h) is -an- intersection of. ge-
nerxalized-half-spaces (by [18]), preposition 1.3); fhus,
Ac(h) is. convex. Note that'this result also follows
from [9], propositions 2,9 (implication a)=3b)), 2.3,
2.4 ‘and corollary 2.5. =

b) One can define another surrogate subdifferen—
tial of hat y -, by ' o

3 ihiy )= (veu®™) |y _eV @kl )

iy

Then , cledrly, agh(yo)ggﬁyh(yo), and the preceding
‘results remain.wvalid for BYh(yO) replaced by'alh(yo).
Similar remarks can also made for U(R") replaced by
UKRD). In the sequel, for simplicity, we shall consider

only T LR )

Weerecallb (ecevesg.  [1] , Che 11, 7). that the tadi-

Tiie = : e :
cotoer operator XG:R =R or a sct GaRevis definge by

s o TEC .7
Touhal e, ‘

. o
where +o denotes the element (+w,..+®) eRm.

Sedorar ? n 5 ST :
Proposition 2.3. For any G cR and h:R ~R", we

VA2

- have
(h)=f e 4 .
U mysenll thiy ., - : | .
R .
f“lﬁEE_Q X"f‘(+cx)):+m (Xeﬁm) :

—

Preof. If goeG\ﬂ)}

](hiXG), then there exists yeRn
R :

such that h(y)fo(y)<h(go)4xG(go)=h(go). Hence, XG(y):O,
so yeG, and h{y)<h(g_ ). Thus, g;o<ff-1)é G5
Conversely, if qoeG\Ua(h), then there exists geG

such that h(q)<h(qo), whence XG(q)=XG(qO)=O and h(g)+



+XG(g)<h(go)+xG(go). s go¢1gn(h+xG).

_Theorxem 2.1. Under the assumptions of theorem 1.1,

(O +510)
the statements 1 =7

of Eheorem 1.l are equivalent +o

the following ones:

>

8% 03" (hixg) (g,)
9%, 8V (nixg) (g,) LR

proof. 8° =1°. Note that

={yer™ |0 (y)- O(yo)}=Rn = o

N7 3

A
{yo};O L

Hence, by (2.1), we have g if and only -4 f
(Bixg) (¥) £(hiyg) (g,) (YERTE, - (250)

or, equivalently, h(y)ih(go) (yeG). :

1°=9°, 1f 1° holds, then we have (2.10) for all
yeRn, whence also for all'yGRn such that v(y) zL v(go),
where vei(Rn) is arbitrary. Hence, by -(2.1), we get
TVEBY(h%XG)(gO).

Finally, the implication 9°=38° is obvious.

3. SURROGATE LAGRANGIANS

Definition 3.1. We shall call surrogate Lagrangian

for problem (P) the operator Q:Rn>(£(Rn)~¢§m defined by

2y, v)=hiy) tx, e yer™), G
G,v ;

where A. <R is the set Ele
, G,v

Theorem 3.1. Under the assumptiorsof theorem 1.1,

, @5 O ;
the above statements 1°-9° are equivalent to each of

122, There endsts Ve (B o vell®Y), vetir ),

respectively, such that




g
gOeGr\UPH(ﬂ(.,v))”. 4 (3:.2])

L 2 Ao - L = = - n
Praof. It is enough to. show that, for sy vedlR T,
(129) dssequivalent to(3:2)

Tof qOGG“\U'n(V(.,V)), then there exists yeRn such
. R .

that Lly,v)<Zlg ,v), i.e. Bly)+x,  (y)<hlg )+x, - (g}=
G,v G,v

=h(go) (since gOeGg;AG’V). Hence, 0 (v}=0,. so
.YGAG,V Fand h(y)<h(go). Thu;, go¢UAG V(h).
i 14
Conversely, if gOéG\\UK (h) , then there exists
b v g

such that h(y)<h(go), whence Vo (y)=XA (g )=0
5 e

yeh
O
\JIV. G,.{J

G,v

(by gOeG el

G,V) and L(y,v)<f{g ,v). Thus, goélgn(it,vﬂ.

<

4. SURROGATE DUAL PROBLEMS. -SURROGATE LAGRANGE
MULTIPLIERS :

Definition 4.1, Given the vecotor ecptimization pro-

e (R of 0D, ek

W={zeR" Fvel(R™), 2(y,v)dz (yeR™)}, SR )

where. 4 is.the surrogate Lagrangian (3.1). We shall call

surrogate dual problem to (P), the problem

(0) find the Pareto maximal elements of W. (4aa2)

‘Any.element zeW will be called a feasible element

for (Q); any Pareto maximal zeW will be called a solu-
tion of (Q), and any vég(Rn) as dn (4. 1) will be ealled

a-surrogate Lagrange-multiplier associated £o the solu-

fdtonm 7.

Theerem 4.1+ Under the assunptions of <theeoren [.1,

: ‘ O a0 . , - N
the above .statements 1 =127 are equivalent to.each of
20 i - :

132, h g €W
(g,)

T h(qo) is-a-solution of (0},

-



h(y) th(g,) : (vedy )
z(y,V)fh(y)+xAN (y)= . -
GV o -*--M!xhuo) (ys*/-\g v) g
!

Eso h(go)ew.

13O:x¢149. Assume that h(go)ew and let z'eW. Then
;there exists v'G&(Rn) such that
Riyddx, - Aylefly iz fgera) . 613
4va' 5

whence, since gOGGSQA {by: (1.2)) ., we obtain

Gt

h(g )=h(g )4y
: © © A‘(}"_\71

hence, since z'eW was arbitrary, h(go) is a Pareto ma-

ximal element of W.

The implication 140::$130 is obvious: 
e LS h(qo)ew, then there exists ve£(R")
such that
h(y)%xA »(y)ih(go) i (yer™), Ghad)
"G,V *

whence h(y)th(g_ ) for all yeA ; SO 5° holds.
: o GV

Remark. 4.1..As shown by the above proof,; the-egui=-

B s o] o e :
valences 5 &> 13 ¢ 147 rvemain valid 4§ weszeplace

everywhere (including the definition of the Legrangian
- : o n
2).- Ehes surrogate constralnt set AG 2 by any set - ACR
. §
£, '

such. that. G<

5. SADDLE~POINTS OF SU‘RRQG?\TE LAGRANGIANS : ;
: We recall (see:[20],  [13]) that i£ B, Vidre two

e o e : L
‘sets and K:EXV—>R , a point (y,v)€FXV is said to be

assaddle~point of K, if

YRR Y o) #E (g e ) Cytel s viei) (2 1)



We shal] considexr now the case when F=R , V=£(R )
e

Lagrangian for problem (P) (see

\”J

Y >~ A=
surrogate

f)

andaK=9, th

. = 3
Theorem 5.1. Liet G be a .convex subset.pf R, let
o e i e :
h:R —R  be such that Aty ){n) is convex for each
'.:,C)
g €6 and

Gndon h40, ke = 15:2)
where dom h={y*e¢R"|h(y’)<+=}, and let yeR . The Follow-

ing statements are equivalent:

21y, ) £21y,v) L (v, v ") (y‘éRn, VELIRY). T 15.3)

0 o) :
Proot. 19:¢2 . Assume 17. Tuenp by thco“cm dzl,

; \ : o} O Y n =
1mp11catlon 1" =>137, there exists ve¥(R ") such that

{using also yeG and (1.2)) 2
L{y',v)+hiy)=h(y)+x, (y)=2(y.Vv) (3 heR )
G,V
Furthermore, using again yeG and (1.2},
Ly, v)=h(y) ¢hiy)=hly)+y, (y)=Lly.v') (vel(R)})
,LAG’V,

; » ; e bk s s
2 =$?O, Let vé&XRn) be as in 2 . 1T yv£G, Then,
: n
since G is convex, there exists (by theorem -0.1) v'ef(R)

such that

vilyhas, v {g) ~_ (gEGé." (5.4)

Then, by (1.1), we have y¢A. i . whence
g 12 Sy 3
2y, v')=h(y) +x, (y)=+o , 5 (5.5)
ek ] &
and hence, by the sceond pait of (5.3), - L{yivl=+os. But

then, for any y'eGridem hcd,  Ndom h, we have

~

Rly' Vish(y')hix,  (y')<+w=2ly,v),



e

L o i
by

in contradiction with the First Part of (5.3). Thus,

YEG.,
G P | > ~ o A P il
FJhiily, S1nce yeéQG IR ecach "’ecggﬁﬂ o We
AT gV A=Y
3 R g 22 e o= S i
have, by +the Lirst part of Eoe 0

- 3 &

T N T o t- 4 . - = - - - % vy
Bemark 5. 1. &} We have used the assumption 1523
42 o] ¢

=217. Note = ol
i

"e_generality,

Obvions] ., Gz?f s

b) One can give a corollary of theorem~5f1, Simi- -
lar Lo coral ] LTy «]i9
Comblnlng theorems 9«1 @nd 4.1, we Obtain

quollary Dol aner h“_aSSUHULlOHS s of theorenm

' et MR
Tl the 5ta+e@§NC§ L2 o LheOlON 2.1 are equivalent

e

to Lo the roﬂow WG onese

A0 g
el and h(yv)ew. _

C i s peaio. - & :

g yée&{h} and h{y} i3 a spiutlcn Df (0.

Do INEOUALI LY CONSTRAT AINTS

"‘--——-___,___~_.____ e e

e ke consider now the case whe 2N G-is given by
9.53. and hapse U {h) is the set {C. /). Of course,
for this case Ohe can consider the sur roqato Constraint
sets AG,V (veL(rR")) defined by 1), 5 one can
apply the results of §§1-5, However, exploiting (0.6)
and 07y, e shall 1ntroduce somc other surrogate
constraint sets Au s e (ch(h })-.and we shall-prove
corre<pond1ng rcsults for them; moreover, we shall show
Ehat 3t 3¢ suffj*iont to consider VQ*WP]) such: that

V4 2L 0, or even such that v>0.

Nameiy, in view of G of (O.G), where u:Rn~»Rk, let



-

I
- i

us define, for each se¥iR™),

=
A __,r-'wr\l"l 7 Am =t oA N \
A =AYER I TS 0} {6.1)
i 0 ~ J o U oe
u,v ! 5
»— o~ -3, Pl ~ ~ e a
Remark 6.1. @) For vo0, the wets A correspond
; U,V ; :
o O L A e e Lonmn e Y a3 e S B SYRRNIEY < PR, Fibsy
L LIUUOLE Yiavelly, LOL SCdiadal UPLLIL LA L1001, 11 7

Nete that A = is not & particular case of A = of {1.9):

indeed, e.g., forv=1, we have A =—C

—_— 76 i o PR n =T -
AG!V—{§CR 13ge SR e

We shall prdve now, fox G of {0.6) and,Au of

- - ehde f .
6719 , where ve@{R ), v>0, some results corresponding
Jeaney 5 2 2 o
Lo those of £1 . on any GeR and AG o oL A4 o) where
b n '
vESLIR ).
Proposition b.le For o of 10.5) and wLIR), v20,
wWe _haye
G A : ' ~ {6.4)
uyV - %
3 ¥ 1{y} <0,

Procf. Obviously, v20 and u{yi<0 imply wv{
K

. n ; :
Theorem 6.1. Let u:R —R Dbe a convex mapping, let

gOGG,‘where Geis detined by (0.6); iﬂémigE h:RT—R" be

such that'Ah(g-)(h),is convex. The following statements
O J
are equivalent:

% eV, (h) .
G o : ki, k ko
2 =4 .. There exisbs wef(R"), weldR "), veliln ),

reapectively, such khat

veleahsee 50 : (xéRk,E}yéA Rl uilylen)a(6:5)
L _ h(go) :
5529 Ghme ae 20, 3% and 4° respectively, with




6] o)
8 —9 Same as 2 and

10°=12°. There exists VEMIR Doy VGU(RK); veOYRk)¢

“yespectively, satisfying™y > 0 :=and

B RIS
g EKZ {hd . i 5.6
i Py

0. o i ‘ s e
13°-14"., Same as 19> gg@_l?o respectively, with

W20.
- = O , (¢ e Cohd
Proof. 1 &>...<39 . Bince Ah(g )(h) and aarescon—
: 23 ek dee Tea oo Q..
VCXH 50 iS 1 Z\x E lhil'i’xx_—" lBu.CC\'} f Y ”"t;”‘x {h\
IR we Aol y e Anteed, LRSI L
o e]

e e O B : gl . P o
2402,CR ., 0<AgT, then Ay1+(1"A)y26Ah(gh){n) and Jdufy,)+
+(1~A)u(y2)=u(Ay3+(1—A)y?)+z for some zeRE , Whence
3 S = o k

+z 7 -\ +Z = ’ h) K o. A48 S
A(u(yq) /1) (1 /)(u(yz)%/2)€u(Ah(gO)(n,)+§+ Also, ok

k ‘. N 5
A h))+R 7 ={x€R" |dye? 1Y) & =
u h“qo)( ))+R7={xeR" |y Ah(g\) thi, aieel, 16.7)
a0 hence (6.5} ds eunivalent o
: k
viu(y)) 2 sl 7 e §(h}, Zéka). {6.3}
i \:JOI i
_ Hence, the eguivalences 15&3 . &9 follow from
;(0:7) and theorem 0.2." ;
{ Y OReniD O ) k SO S
=127 . TE ve@{R )y of 7. does noet sabtisfy - (6.6) ;

o - ot e 1 7 (0 5 IS G T :
Clheh: therve exists vy GAu,vrwAh(go)(h)' Then; by ¥y éAu,v
: ' -k
we -have v(u(y')) SL

o)

L
o
a contradiction. The proof of the implication 9°=314°

0. On the other hand, for x=u(y')e€

‘we obtain, by w'€R thl: and- {6 .5k awlulytiesuly) > 0,

e simd lak
: The implications 12° =511°=102 and 12°=13°=10°
are obvious. ' : :
e} O e 'k Bz . s =
10 =5" . Tf-vedlR ) 0f 10 @ does not sabisty (6.5},

then for some xeﬂ:there exists yGAh & Chy - witheuty) %
(@)
L

(
sueh that vix) &+ 0s Then, sinece v.2

)
. 0, we obtain, by



(3 s & . S ke
(00 )l ty)) Sy v (%) $q, e YCAU,V 3 1nd thus
q ¢1£ I '

Wy

Remark 6.2. The above proof of the implication.
7osﬁ1?o shows that, for any VGx(Rk) (not necessarily,‘
Sher G R k) and not nec essarily ;T 0) - £6.5) implies (6.6]).
Thus, 20f4 “implye, Lospoctivoly, that there.eXists
xvei(Rk), veu(Rk), veU(R ), satisfying (6.6);‘However,
for implications of the converse type (see-the above
proof of TOO:$50) we need the additional assumption
v oZr v : -

Some concepts and results of the preceding sections

can be carried over, mutatis mutandis, to the case “of

comstraint sets G -of thHe form (0.6}, replacing \w:(Rn)
1
(ox uxu )) by VCw(QL)(Or WER ), o (o:.v;O) and

'
I
e :
A by A of A6 .. 1) dn csome-cases, Vel (R ) alse
G,v R LY
works. For example, one can consider the surrogate
. Lagrangian

) Pl
O}(v) (yeR ", ve (R ),v;LO), (6.9)

and the surrogate dual problem

(Q) f£ind the Pareto maximal elements of
W={zeR"Bve (R, v > 0 2ywidz (yeRM)), (6.10)

where &(v,v) is defined by (6.9). We omit the details.
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